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A weak solution for a class of quasilinear elliptic Systems with nonstandard growth In
musielak-Orlicz space

Ouidad AZRAIBI, Badr EL HAJI∗ and Mounir MEKKOUR

abstract: Here we study existence of a weak solutions for some nonlinear elliptic systems like{
− div σ(x, u,Du) =f(x, u,Du) in Ω

u(x) =0 on ∂Ω,

where Ω ⊂ Rn is a bounded open domain. The Term f satisfy the growth and sign condition. We establish
the existence solution by using the idea of Young measure.
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1. Introduction, Essential Assumptions And Main Result

Let Ω be a bounded and smooth open subset of Rn, and consider, as a model, the following nonlinear
elliptic systems {

−div σ(x, u,Du) = f(x, u,Du) in Ω

u(x) = 0 on ∂Ω,
(1.1)

where u : Ω → Rm is a vector-valued function. We denote by Mm×n the real vector space of m × n
matrices equipped with the inner product F : G =

∑
i,j FijGij .

In some recent papers the problem (1.1) was studied when u : Ω → R by using different ideas. For
instance in [6] El haji et al. have been showed the existence of entropy solution in weighted Orlicz spaces.
In [18] the authors have been studied the existence result of sub-supsolution, nonlinear regularity theory
and strong maximum principle. A regularity results for weak solutions have been proved by Pucci and
Servadie (see [38])

The mathematical literature in the case u : Ω → Rm is massive; without the aim to be complete we
refer the reader to [1,2,3,4,5,6,8,9,10,18,13,19,41,42] and references therein.

However, in this paper we are interested in existence results by using methods of Young Measure in
order to identify weak limits. Furthermore, we get our solution under weak monotonicity conditions in
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the framework of Musielak-Orlicz space. the concept of Young measure is introduced by Young [39]. In
this sense, many applications and developments were presented in nonlinear partial differential equations,
optimal control theory and the calculus of variations.

Let P and φ two N -functions such that P ≪ φ. Therefore, let us summarizing the main hypotheses :

σ : Ω×Rm×Mm×n → Mm×n and f : Ω×Rm×Mm×n → Rm are Carathéodory’s functions (Continuity).
(1.2)

There exist 0 < d1(x) ∈ Lφ̄(Ω), d2(x) ∈ L1(Ω), 0 < d3(x) ∈ Lφ̄(Ω) and α, β, γ > 0 such that

|σ(x, u, F )| ≤ d1(x) + φ̄−1P (x, γ|u|) + φ̄−1φ(x, γ|F |) (Growth) (1.3)

|f(x, u, F )| ≤ d3(x) + φ̄−1P (x, γ|u|) + φ̄−1φ(x, γ|F |) (Growth) (1.4)

σ(x, u, F ) : F − f(x, u, F ) ≥ −d2(x) + αφ

(
x,

|F |
β

)
(coercivity). (1.5)

f(x, u, F ) · u ≥ 0 ( sign condition ) (1.6)

σ satisfies one of the following conditions:

(a) For any x ∈ Ω and u ∈ Rm, F 7→ p(x, u, F ) is a C1 and monotone, i.e.

(σ(x, u, F )− σ(x, u,G)) : (F −G) ≥ 0 ( Monotonicity) (1.7)

for all x ∈ Ω, u ∈ Rm and F,G ∈ Mm×n.

(b) There exists a function

W : Ω× Rm ×Mm×n → R such that σ(x, u, F ) = (∂W/∂F )(x, u, F )

and F → W (x, u, F ) is convex and C1.
(1.8)

(c) σ is strictly monotone, i.e. σ is monotone and

(σ(x, u, F )− σ(x, u,G)) : (F −G) = 0 ⇒ F = G. (1.9)

(d) σ is strictly M -quasimonotone on Mm×n, i.e.∫
Mm×n

(σ(x, u, λ)− σ(x, u, λ̄)) : (λ− λ̄)dv(λ) > 0, (1.10)

where λ̄ = ⟨vx, id⟩ , v = {vx}x∈Ω is any family of Young measures generated by a sequence in Lφ(Ω)
and not a Dirac measure for a.e. x ∈ Ω.

For almost every x ∈ Ω and u ∈ Rm, the mapping F 7→ f(x, u, F ) is linear. (1.11)

The aim of this paper is to demonstrate the existence of solutions for (1.1), without using the classical
strict monotonicity. For example, the hypothesis (1.8) allows to take a potential W (x, u, F ), which is only
convex but not strictly convex in F ∈ Mm×n, and to consider (1.1) with σ(x, u, F ) = (∂W/∂F )(x, u, F ).
Notice that if W is assumed to be strictly convex, then σ becomes strict monotone and the classical
monotone method may apply.

Our main existence result is the content of the following theorem whose proof will be given in Section
5.
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Theorem 1.1 Under the hypothesis (1.2)-(1.10), the Dirichlet problem (1.1) has a weak solution u ∈
W 1

0Lφ (Ω;Rm) satisfying ∫
Ω

σ(x, u,Du) : Dwdx =

∫
Ω

f(x, u,Du) · wdx

for all w ∈ W 1
0Lφ (Ω;Rm).

This paper is organized as follows. In section 2, we mainly give the most important and necessary
properties and notations of Musielak-Orlicz spaces. In section3, we give the definition of Young measures
and some useful general properties Then the section 4 is devoted to the Galerkin approximating sequences,
and to identify the limit of gradient sequences by means of Young measure. Finally in section 5 we manage
to prove theorem 1.1.

2. Preliminaries

In this subsection, we shall recall only the most important and necessary properties and notations of
Musielak-Orlicz spaces, and we refer the reader to (see [7]) for more details. Let Ω be an open subset of
RN , a Musielak-Orlicz function φ is a real-valued function defined in Ω× R+ such that
a) φ(x, .) is an N -function for all x ∈ Ω (i.e. convex, nondecreasing, continuous, φ(x, 0) = 0, φ(x, t) > 0

for all t > 0 and lim
t→0

sup
x∈Ω

φ(x, t)

t
= 0 and lim

t→∞
inf
x∈Ω

φ(x, t)

t
= ∞).

b) φ(., t) is a measurable function for all t ≥ 0.
For a Musielak-Orlicz function φ, let φx(t) = φ(x, t) and let φ−1

x be the nonnegative reciprocal function
with respect to t, i.e. the function that satisfies

φ−1
x (φ(x, t)) = φ

(
x, φ−1

x (t)
)
= t.

The Musielak-Orlicz function φ is said to satisfy the ∆2 -condition if for some k > 0, and a nonnegative
function h, integrable in Ω, we have

φ(x, 2t) ≤ kφ(x, t) + h(x) for all x ∈ Ω and t ≥ 0. (2.1)

When (2.1) holds only for t ≥ t0 > 0, then φ is said to satisfy the ∆2-condition near infinity. Let φ and
γ be two Musielak-Orlicz functions, we say that φ dominate γ and we write γ ≺ φ, near infinity (resp.
globally) if there exist two positive constants c and t0 such that for a.e. x ∈ Ω :

γ(x, t) ≤ φ(x, ct) for all t ≥ t0, (resp. for all t ≥ 0 i.e. t0 = 0).

We say that γ grows essentially less rapidly than φ at 0 (resp. near infinity) and we write γ ≺≺ φ if
for every positive constant c we have

lim
t→0

(
sup
x∈Ω

γ(x, ct)

φ(x, t)

)
= 0, (resp. lim

t→∞

(
sup
x∈Ω

γ(x, ct)

φ(x, t)

)
= 0).

For a Musielak-Orlicz function φ and a measurable function u : Ω −→ R, we define the functional

ρφ,Ω(u) =

∫
Ω

φ(x, |u(x)|) dx.

The set Kφ(Ω) =
{
u : Ω −→ R measurable/ ρφ,Ω(u) < ∞

}
is called the Musielak-Orlicz class (or gener-

alized Orlicz class). The Musielak-Orlicz space (the generalized Orlicz spaces) Lφ(Ω) is the vector space
generated by Kφ(Ω), that is, Lφ(Ω) is the smallest linear space containing the set Kφ(Ω). Equivalently

Lφ(Ω) =
{
u : Ω −→ R measurable/ ρφ,Ω

(u
λ

)
< ∞, for some λ > 0

}
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For a Musielak-Orlicz function φ we put:

φ(x, s) = sup
t>0

{st− φ(x, t)},

Note that φ is the Musielak-Orlicz function complementary to φ (or conjugate of φ) in the sense of Young
with respect to the variable s. In the space Lφ(Ω) we define the following two norms:

∥u∥φ,Ω = inf

{
λ > 0/

∫
Ω

φ

(
x,

|u(x)|
λ

)
dx ≤ 1

}
which is called the Luxemburg norm and the so-called Orlicz norm by:

∥|u|∥φ,Ω = sup
∥v∥φ≤1

∫
Ω

|u(x)v(x)| dx

where φ is the Musielak-Orlicz function complementary to φ. These two norms are equivalent (see [7]).
The closure in Lφ(Ω) of the bounded measurable functions with compact support in Ω is denoted by
Eφ(Ω), It is a separable space (see [7], Theorem 7.10).

We say that sequence of functions un ∈ Lφ(Ω) is modular convergent to u ∈ Lφ(Ω) if there exists a
constant λ > 0 such that

lim
n→∞

ρφ,Ω

(
un − u

λ

)
= 0.

The Musielak-Orlicz space W 1Lφ (Ω;Rm) is the set of all u ∈ Lφ (Ω;Rm) such that Du ∈ Lφ (Ω;Mm×n),
where Du is a matrix-valued function in which all components are distributional partial derivatives of u.
It is a Banach space endowed with the norm

∥u∥W 1Lφ(Ω;Rm) := ∥u∥1,φ = ∥u∥Lφ(Ω;Rm) + ∥Du∥Lφ(Ω;Mm×n).

If φ satisfies the ∆2-condition, then there exists θ > 0 such that for all u ∈ W 1
0Lφ (Ω;Rm),∫

Ω

φ(x, |u|)dx ≤ θ

∫
Ω

φ(x, |Du|)dx. (2.2)

The symbol C∞
0 (Ω;Rm) means the space of all C∞-functions u : Ω → Rm with a compact support in

Ω. Note that if |Ω| < ∞ and φ satisfies the ∆2-condition near infinity, then

W 1
0Lφ (Ω;Rm) = C∞

0 (Ω;Rm)W 1Lφ (Ω;Rm)

and W−1Lφ̄ (Ω;Rm) =
(
W 1

0Lφ (Ω;Rm)
)∗
. Moreover, if φ, φ̄ ∈ ∆2, then the spaces W 1Lφ (Ω;Rm)

and W−1Lφ̄ (Ω;Rm) are reflexive and separable. If we consider φ(t) = |t|p for p ∈ (1,∞), then

W 1
0Lφ (Ω;Rm) = W 1,p

0 (Ω;Rm). We say that uk converges to u for the modular convergence in
W 1Lφ (Ω;Rm) if for some β > 0,∫

Ω

φ

(
x,

Dαuk −Dαu

β

)
dx → 0 as k → ∞,∀|α| ≤ 1.

Furthermore, if φ satisfies the ∆2-condition (near infinity only when Ω has finite measure), then modular
convergence cöıncides with the norm convergence. For two complementary Musielak-Orlicz functions φ
and φ, let u ∈ Lφ(Ω) and v ∈ Lφ(Ω), then we have the Hölder inequality (see [7]):∣∣∣∣∫

Ω

u(x)v(x) dx

∣∣∣∣ ≤ ∥u∥φ,Ω∥|v|∥φ,Ω. (2.3)

Lemma 2.1
Let uk : Ω → Rm be a measurable sequence. Then uk converge in modular to u in Lφ (Ω;Rm) if and only
if uk → u in measure and there exists some γ > 0 such that {φ (x, γuk)}k is uniformly integrable, i.e.

lim
L→∞

sup
k

∫
{x∈Ω:|φ(x,γuk)|≥L}

φ (x, γuk) dx = 0.
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3. A Review on Young Measures

In the following, C0 (Rm) denotes the closure of the space of continuous functions on Rm with compact
support with respect to the ∥ · ∥∞-norm. Its dual space can be identified with M (Rm), the space of
signed Radon measures with finite mass. The related duality pairing is given by

⟨v, f⟩ =
∫
Rm

f(λ)dv(λ).

We mean by supp v, the support of the Young measure v. Note that if f ≡ id then ⟨v, id⟩ =
∫
Rm

λdv(λ).

For more details on this notion, the readers are requested to see [15,22,35,43] and other references therein.

Definition 3.1
Assume that the sequence {fj}j≥1 is bounded in L∞ (Ω;Rm). Then, there exists a subsequence {fk}k and

a Borel probability measure vx on Rm for a.e. x ∈ Ω, such that for almost each g ∈ C (Rm), we have

g (fk) →∗ ḡ weakly in L∞(Ω),

where

ḡ(x) =

∫
Rm

g(λ)dvx(λ).

We call {vx}x∈Ω the family of Young measure associated with the subsequence {fk}k.

Remark 3.1
The notion of gradient Young measures arises when we replace fk in the above definition by ∇uk

where uk : Ω → Rm. In this case, ∇uk take their values in Mm×n.
We are now ready to begin state the fundamental lemma on Young measures as following:

Lemma 3.1 [16]
Let Ω ⊂ Rn be Lebesgue measurable (not necessarily bounded) and wj : Ω → Rm, j = 1, .. be a sequence of
Lebesgue measurable functions. Then, there exists a subsequence wk and a family {vx}x∈Ω of nonnegative
Radon measures on Rm, such that

(i) ∥vx∥M(Rm) :=

∫
Rm

dvx ≤ 1 for almost x ∈ Ω.

(ii) φ (wk) →∗ φ̄ weakly in L∞(Ω) for all φ ∈ C0 (Rm), where φ̄(x) = ⟨vx, φ⟩.

(iii) If for all R > 0

lim
L→∞

sup
k

|{x ∈ Ω ∩BR(0) : |wk(x)| ≥ L}| = 0, (3.1)

then ∥vx∥ = 1 for a.e. x ∈ Ω, and for all measurable Ω′ ⊂ Ω there holds φ (wk) → φ̄ = ⟨vx, φ⟩ weakly
in L1 (Ω′) for a continuous function φ provided the sequence φ (wk) is weakly precompact in L1 (Ω′).

Remark 3.2
(a) In [16], it is shown that under hypothesis (3.1) for any measurable A ⊂ Ω,

g (., uk) → ⟨vx, g(x, .)⟩ in L1(A),

for every Carathéodory function g : A×Rm → R such that {g (., uk)} is sequentially weakly relative
compact in L1(A).

(b) A family {vx} satisfying (i)-(iii) always exists and vx is a probability measure if Eq. (3.1) holds.
The following lemmas are useful for us and can be considered as the applications of Lemma 3.2



6 O. AZRAIBI, B. EL HAJI and M. MEKKOUR

Lemma 3.2 [26]
(i) If |Ω| < ∞ and vx is the Young measure generated by the (whole) sequence uk, then there holds

uk → u in measure ⇔ vx = δu(x) for a.e. x ∈ Ω. (3.2)

(ii) If the sequences uk : Ω → Rm and vk : Ω → Rd generate the Young measures δu(x) and vx,
respectively, then (uk, vk) generates the Young measure δu(x) ⊗ vx.

Lemma 3.3 ( [28] Generalized Fatou’s Lemma)
Let F : Ω×Rm×Mm×n → R be a Carathéodory function and {uk} be a sequence of measurable functions,
where uk : Ω → Rm, such that uk → u in measure and such that Duk generates the Young measure vx.
Then,

lim inf
k→∞

∫
Ω

F (x, uk, Duk) dx ≥
∫
Ω

∫
Mm×n

F (x, u, λ)dvx(λ)dx

provided that the negative part F− (x, uk, Duk) is equiintegrable.

4. Existence of weak solutions

4.1. Galerkin approximation

Let V1 ⊂ V2 ⊂ · · · ⊂ W 1
0Lφ (Ω;Rm) be a sequence of finite dimensional subspaces with the property

that ∪i∈NVi is dense in W 1
0Lφ (Ω;Rm). Note that (Vi) exist since W 1

0Lφ (Ω;Rm) is separable. We define
the operator

T : W 1
0Lφ (Ω;Rm) → W−1Lφ̄ (Ω;Rm)

u 7→
(
w 7→

∫
Ω

σ(x, u(x), Du(x)) : Dw dx−
∫
Ω

f(x, u(x), Du(x)).w dx

)
,

where ⟨., . ⟩ denotes the dual pairing of W−1Lφ̄ (Ω;Rm) and W 1
0Lφ (Ω;Rm). The following assertions

allow the construction of the approximating solutions.

4.2. Step I

: The operator T (u) is linear, well defined and bounded for arbitrary u ∈ W 1
0Lφ (Ω;Rm)

Trivially T (u) is linear. By the growth condition in (1.3), together with Holder inequality, we have
we get ∫

Ω

σ(x, u,Du) : Dwdx

≤ 2

(∫
Ω

φ̄(x, |σ(x, u,Du)|)dx
)(∫

Ω

φ(x, |Dw|)dx
)

≤ c

(∫
Ω

φ̄ (x, d1(x)) + P (x, γ|u|) + φ(x, γ|Du|)dx
)(∫

Ω

φ(x, |Dw|)dx
)

and similarly ∫
Ω

f(x, u,Du) · wdx

≤ c

(∫
Ω

φ̄ (x, d3(x)) + P (x, γ|u|) + φ(x, γ|Du|)dx
)(∫

Ω

φ(x, |w|)dx
)

where c is a positive constant. Since u,w ∈ W 1
0Lφ (Ω;Rm) , φ ∈ ∆2, P ≪ φ and (2.2), we can infer from

the above inequalities that T (u) is bounded.
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4.3. Step II

The restriction of T to a finite subspace V of W 1
0Lφ (Ω;Rm) is continuous.

Proof Let V be a subspace ofW 1
0Lφ (Ω;Rm) with dimV = r and (wi)

r
i=1 a basis of V . Let

(
uk = aikwi

)
be a sequence in V which converges to u = aiwi in V (with conventional summation). Then on the one
hand the sequence (ak) converges to a in Rr and so uk → u and Duk → Du almost everywhere. On the
other hand ∥uk∥φ,Ω and ∥Duk∥φ,Mm×n are bounded by a constant C. By the continuity condition (1.2),
it follows that σ (x, uk, Duk) : Dw → σ(x, u,Du) : Dw and f (x, uk, Duk). w → f(x, u,Du) · w almost
everywhere. Let Ω′ ⊂ Ω be a measurable subset and w ∈ W 1

0Lφ (Ω;Rm). From the inequalities in the
proof of Step 4.2 together with the Eq. (2.2), we obtain∫

Ω′
|σ (x, uk, Duk) : Dw| dx

≤ c(∥d1∥φ + θ ∥Duk∥φ,Mm×n︸ ︷︷ ︸
≤C

+ ∥Duk∥φ,Mm×n︸ ︷︷ ︸
≤C

)

(∫
Ω′

φ(x, |Dw|)dx
)

and ∫
Ω′

|f (x, uk, Duk) · w| dx

≤ cθ(∥d3∥φ + θ ∥Duk∥φ,Mm×n︸ ︷︷ ︸
≤C

+ ∥Duk∥φ,Mm×n︸ ︷︷ ︸
≤C

)

(∫
Ω′

φ(x, |Dw|)dx
)

by the Holder inequality. Note that
(∫

Ω′ φ(x, |Dw|)dx
)
is arbitrary small if the measure of Ω′ is chosen

small enough. As a consequence, the sequences (σ (x, uk, Duk) : Dw)
and (f (x, uk, Duk) · w) are equiintegrable. Applying the Vitali Theorem, it follows that for all w ∈

W 1
0Lφ (Ω;Rm) we have limk→∞ ⟨T (uk) , w⟩ = ⟨T (u), w⟩.
Now, let fix some k and assume that w1, . . . , wr is a basis of Vk with dimVk = r. In the following

lemma, we write for simplicity
∑

1≤i≤r a
iwi = aiwi and we define the map

G : Rr → Rr(
a1, . . . , ar

)
7→

(〈
T
(
aiwi

)
, wj

〉)r
j=1

4.4. Step III

G is continuous and G(a) · a → ∞ as ∥a∥Rr → ∞ (the dot · is the inner product in Rr).
Proof Let uk = aikwi, u0 = ai0wi ∈ Vk. Then ∥ak∥Rr (resp. ∥a0∥Rr ) is equivalent to ∥uk∥1,φ (resp.

∥u0∥1,φ ). On the one hand, by Holder inequality, we have∣∣∣(G (ak)−G(a))j

∣∣∣ = ∣∣〈T (
aikwi

)
− T

(
ai0wi

)
, wj

〉∣∣
≤ 2 ∥T (uk)− T (u0)∥−1,φ̄ ∥wj∥1,φ

By vertue of Step 4.3, the continuity of G follows. On the other hand, consider
u = aiwi ∈ Vk, then ∥a∥Rr → ∞ is equivalent to ∥u∥1,φ → ∞ and

G(a) · a =
〈
T
(
aiwi

)
, aiwi

〉
= ⟨T (u), u⟩.

From the coercivity condition in (1.5), we obtain

G(a) · a = ⟨T (u), u⟩ =
∫
Ω

(σ(x, u,Du) : Du− f(x, u,Du) · u)dx

≥ α

∫
Ω

φ

(
x,

|Du|
β

)
dx−

∫
Ω

d2(x)dx

≥ c∥Du∥φ,Mm×n + c.
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Therefore ⟨T (u), u⟩ → ∞ as ∥u∥1,φ → ∞ Now, we can construct the sequence of approximating solutions
in the following way: According to Lemma (4.2), there exists R > 0 such that for all a ∈ ∂BR(0) ⊂ Rr

we have G(a).a > 0. Thanks to the standard method used in [36], we obtain the existence of x ∈ BR(0)
such that G(x) = 0. Consequently, for all k there exists uk ∈ Vk such that

⟨T (uk) , w⟩ = 0 for all w ∈ Vk. (4.1)

4.5. Weak limits by gradient Young measures

The following lemma is concerned with the weak limit points of gradient sequences by means of the
Young measure in Musielak- orlicz spaces.

Lemma 4.1
(i) If the sequence {Duk}k is bounded in Lφ(Ω;Mm×n), then there is a Young measure vx generated by

{Duk} satisfying ∥vx∥M(Mm×n) = 1 and the weak L1-limit of Duk is

∫
Mm×n

λdvx(λ).

(ii) For almost every x ∈ Ω, vx satisfies

⟨vx, id⟩ = Du(x) for a.e. x ∈ Ω.

Proof:
(i) It is sufficient to show that {Duk} satisfies Equation (3.1) in Lemma 3.1 Putting

δ(L) = min
|ξ|=L

(φ(x, ξ)/|ξ|).

We have ⟨T (u), u⟩ → ∞ as ∥u∥1,φ → ∞, then there exists R > 0 with the property, that ⟨T (u), u⟩ > 1
whenever ∥u∥1,φ > R. Hence, for the sequence of the Galerkin approximations uk ∈ Vk constructed in
Section 3, which satisfy ⟨T (uk) , uk⟩ = 0, we obtain the uniform bound

∥uk∥1,φ ≤ R for all k (4.2)

Then there is c ≥ 0 such that for any r > 0,

c ≥
∫
Ω

φ (x, |Duk|) dx ≥
∫
[x∈Ω∩Br(0):|Duk(x)|≥L}

φ (x, |Duk|) dx

≥ δ(L)

∫
{x∈Ω∩Br(0):|Duk(x)|≥L}

|Duk|dx

≥ Lδ(L) |{x ∈ Ω ∩Br(0) : |Duk(x)| ≥ L}|

Thus
sup
k

|{x ∈ Ω ∩Br(0) : |Duk(x)| ≥ L}| ≤ c

Lδ(L)
−→ 0 as L → ∞.

By Lemma 3.1 (iii), it follows that ∥vx∥M = 1 (i.e. vx is a probability measure). As Lφ (Ω;Mm×n) is
reflexive (Mm×n ∼= Rmn), then there is a subsequence (still denoted by {Duk} ) weakly convergent in
Lφ (Ω;Mm×n) ⊂ L1 (Ω;Mm×n), thus weakly convergent in L1 (Ω;Mm×n). Return to Lemma 3.1 and
take φ as the identity mapping, we obtain then

Duk → ⟨vx, id⟩ =
∫
Mm×n

λdvx(λ) weakly in L1
(
Ω;Mm×n

)
(ii) By (4.2), we have uk → u in W 1

0Lφ (Ω;Rm) and uk → u in Lφ (Ω;Rm) (for a subsequence), thus

Duk → Du in Lφ

(
Ω;Mm×n

)
Or Lφ (Ω;Mm×n) ⊂ L1 (Ω;Mm×n), then Duk → Du in L1 (Ω;Mm×n). Owing to (i), we conclude by the
uniqueness of limit that

Du(x) = ⟨vx, id⟩ for a.e. x ∈ Ω

The following lemma is the main technical to pass to the limit in the approximating equations and to
prove that the weak limit u of the Galerkin approximations uk is indeed a solution of (1.1).
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Lemma 4.2 (div-curl inequality):
The Young measure vx generated by the gradient Du uk is satisfying the following inequality:∫

Ω

∫
Mm×n

(σ(x, u, λ)− σ(x, u,Du)) : (λ−Du)dvx(λ)dx ≤ 0. (4.3)

Proof: Let us consider the sequence

Ik := (σ (x, uk, Duk)− σ(x, u,Du)) : (Duk −Du)

= σ (x, uk, Duk) : (Duk −Du)− σ(x, u,Du) : (Duk −Du)

=: Ik,1 + Ik,2.

By the growth condition in (1.3)∫
Ω

φ̄(x, |σ(x, u,Du)|)dx ≤ c

∫
Ω

(φ̄ (x, d1(x)) + P (x, γ|u|) + φ(x, γ|Du|)) dx < ∞

Since u ∈ W 1
0Lφ (Ω;Rm) , P ≪ φ and by the equation (2.2), it follows that σ ∈ Lφ̄ (Ω;Mm×n). According

to a weak convergence defined in Lemma 4.1 , we obtain that

lim inf
k→∞

∫
Ω

Ik,2dx =

∫
Ω

σ(x, u,Du) :

(∫
Mm×n

λdvx(λ)−Du

)
dx = 0

We have (σ (x, uk, Duk) : Du)
−

is equiintegrable (see the proof of Lemma Step 4.3 if necessary). The
sequence (σ (x, uk, Duk) : Duk)

−
is easily seen to be equiintegrable. Indeed, by the coercivity condition

in 1.5, we have

σ (x, uk, Duk) : Duk ≥ f (x, uk, Duk) · uk + αφ

(
x,

|Duk|
β

)
− d2(x)

≥ αφ

(
x,

|Duk|
β

)
− d2(x)

where we have used the sign condition f (x, uk, Duk) · uk ≥ 0. Therefore∫
Ωl

|min (σ (x, uk, Duk) : Duk, 0)| dx

≤
∫
Ω′

|d2(x)| dx+ α

∫
Ω′

φ

(
x, |Duk|

β

)
dx < ∞

We have by (4.2), uk → u in Lφ (Ω;Rm), and by vertue of Lemma 2.1 , we get uk → u in measure.
Hence, we may use lemma 3.3 which gives

I := lim inf
k→∞

∫
Ω

Ik,1dx ≥
∫
Ω

∫
Mm×n

σ(x, u, λ) : (λ−Du)dvx(λ)dx.

Now, we prove that I ≤ 0. According to Mazur’s theorem (see, e.g., [ [40], Theorem 2 , page 120])
there exists a sequence vk in W 1

0Lφ (Ω;Rm) where each vk is a convex linear combination of {u1, . . . , uk}
such that vk → u in W 1

0Lφ (Ω;Rm). This significant that vk belongs to the same space Vk as uk. By
taking uk − vk as a test function in (4.1), we obtain∫

Ω

σ (x, uk, Duk) : (Duk −Dvk) dx =

∫
Ω

f (x, uk, Duk) · (uk − vk) dx (4.4)

From the growth condition in (1.4) and the Holder inequality, it follows that∣∣∣∣∫
Ω

f (x, uk, Duk) · (uk − vk) dx

∣∣∣∣
≤ c

(∫
Ω

φ̄ (x, d3(x)) + P (x, γ |uk|) + φ (x, γ |Duk|) dx
)(∫

Ω

φ (x, |uk − vk|) dx
)
.
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The right hand side of this inequality vanishes as k → ∞, since by the construction of vk, we have

∥uk − vk∥φ,Ω ≤ ∥uk − u∥φ,Ω + ∥vk − u∥φ,Ω → 0 as k → ∞

Hence, the left hand side in (4.4) tends to zero as k → ∞. Using this result and the fact
that vk → u in W 1

0Lφ (Ω;Rm) to deduce the following

I = lim inf
k→∞

∫
Ω

σ (x, uk, Duk) : (Duk −Du) dx

= lim inf
k→∞

(∫
Ω

σ (x, uk, Duk) : (Duk −Dvk) dx+

∫
Ω

σ (x, uk, Duk) : (Dvk −Du) dx

)
= lim inf

k→∞

∫
Ω

σ (x, uk, Duk) : (Dvk −Du) dx

≤ lim inf
k→∞

c ∥|σ (x, uk, Duk)|∥φ̄,Mm×n ∥vk − u∥1,φ = 0.

In view of Lemma 4.1, we have∫
Ω

∫
Mm×n

σ(x, u,Du) : (λ−Du)dvx(λ)dx

=

∫
Ω

σ(x, u,Du) :

(∫
Mm×n

λdvx(λ)−Du

)
dx = 0

and together with I ≤ 0 we finish the proof of Lemma 4.2.

Remark 4.1 For almost every x ∈ Ω, we have

(σ(x, u, λ)− σ(x, u,Du)) : (λ−Du) = 0 on supp vx.

Proof
We have by Lemma 4.2∫

Ω

∫
Mm×n

(σ(x, u, λ)− σ(x, u,Du)) : (λ−Du)dvx(λ)dx ≤ 0

We infer from the monotonicity of σ that the integrand in the above inequality is nonnegative. Thus,
must vanish with respect to the product measure dvx(λ)⊗ dx. It follows that for almost every x ∈ Ω

(σ(x, u, λ)− σ(x, u,Du)) : (λ−Du) = 0 on supp vx

5. Proof of Main result

This section is devoted to prove the existence result for (1.1). We consider the following steps
Step I: In this step we try to sow that∫

Ω

(σ (x, uk, Duk) : Dw − σ(x, u,Du) : Dw) dx → 0 as k → ∞.

By strict monotonicity and remark4.1 implies that supp vx = {Du(x)}, then vx = δDu(x) for almost
every x ∈ Ω. By using (3.2) we obtain Duk → Du in measure. Furthermore, since uk → u in measure,
we deduce that uk → u and Duk → Du for almost every x ∈ Ω (for a subsequence). By continuity
condition (1.2), we have σ (x, uk, Duk) → σ(x, u,Du) almost everywhere in Ω. Since σ (x, uk, Duk) is
equiintegrable (see the proof of Step II of section 4), the Vitali theorem give us∫

Ω

(σ (x, uk, Duk) : Dw − σ(x, u,Du) : Dw) dx → 0 as k → ∞.
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Step II: Suppose that vx is not a Dirac measure on a set x ∈ Ω′ of positive Lebesgue measure
|Ω′| > 0. one has λ̄ = ⟨vx, id⟩ = Du(x), it follows that∫

Mm×n

σ(x, u, λ̄) : (λ− λ̄)dvx(λ)

=

∫
Mm×n

σ(x, u, λ̄) : λdvx(λ)−
∫
Mm×n

σ(x, u, λ̄) : λ̄dvx(λ)

= σ(x, u, λ̄) :

∫
Mm×n

λdvx(λ)− σ(x, u, λ̄) : λ̄

∫
Mm×n

dvx(λ) = 0

We get by using the strict M -quasimonotonicity of σ that∫
Mm×n

σ(x, u, λ) : λdvx(λ) >

∫
Mm×n

σ(x, u, λ) : λ̄dvx(λ) (5.1)

Now by using Lemma 4.2 and integrating (5.1) over Ω, we can have∫
Ω

∫
Mm×n

σ(x, u, λ) : λdvx(λ)dx >

∫
Ω

∫
Mm×n

σ(x, u, λ) : λ̄dvx(λ)dx

≥
∫
Ω

∫
Mm×n

σ(x, u, λ) : λdvx(λ)dx,

which is a contradiction.
Hence vx is a Dirac measure and we can assume that vx = δh(x).
Then

h(x) =

∫
Mm×n

λdδh(x)(λ) =

∫
Mm×n

λdvx(λ) = Du(x)

Thus
vx = δDu(x)

.
By (3.2) It follows that Duk → Du in measure for k → ∞. The remainder of the proof in this step is

similar as in step I.
Step III:
We claim that for almost x ∈ Ω and all F ∈ Mm×n

σ(x, u, λ) : F = σ(x, u,Du) : F + (∇σ(x, u,Du)F ) : (Du− λ)

holds on supp vx. By the monotonicity of σ we have for all τ ∈ R

(σ(x, u, λ)− σ(x, u,Du+ τF )) : (λ−Du− τF ) ≥ 0 (5.2)

By vertue of remark 4.1 together with the following equality

σ(x, u,Du+ τF ) = σ(x, u,Du) +∇σ(x, u,Du)τF + o(τ)

we conclude from (5.2),

−σ(x, u, λ) : τF ≥ −σ(x, u,Du) : (λ−Du) + σ(x, u,Du+ τF ) : (λ−Du− τF )

= τ((∇σ(x, u,Du)F ) : (λ−Du)− σ(x, u,Du) : F ) + o(τ).

Since τ is arbitrary in R, our claim follows. The equiintegrability of σ (x, uk, Duk) implies that its
weak L1-limit is given by

σ̄(x) :=

∫
Mm×n

σ(x, u, λ)dvx(λ)

=

∫
supp vx

σ(x, u,Du)dvx(λ) + (∇σ(x, u,Du))t
∫
supp vx

(Du− λ)dvx(λ)

= σ(x, u,Du)
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where we have used our claim and Du(x) =
∫
Mm×n λdvx(λ). Since Lφ̄ (Ω,Mm×n) is reflexive, thus

σ (x, uk, Duk) is weakly convergent in Lφ (Ω,Mm×n) and its weak Lφ̄-limit is also σ(x, u,Du). For
arbitrary w ∈ W 1

0Lφ (Ω;Rm), we deduce that∫
Ω

(σ (x, uk, Duk) : Dw − σ(x, u,Du) : Dw) dx → 0 as k → ∞.

Step IV :
We start by showing that for almost every x ∈ Ω, supp vx ⊂ Kx, where

Kx =
{
λ ∈ Mm×n : W (x, u, λ) = W (x, u,Du) + σ(x, u,Du) : (λ−Du)

}
. (5.3)

If λ ∈ supp vx then by remark 4.1

(1− τ)(σ(x, u, λ)− σ(x, u,Du)) : (λ−Du) = 0 for all τ ∈ [0, 1] (5.4)

Now, by thanking to 5.4 and using monotonicity condition, we have for τ ∈ [0, 1] that

0 ≤ (1− τ)(σ(x, u,Du+ τ(λ−Du))− σ(x, u, λ)) : (Du− λ)

= (1− τ)(σ(x, u,Du+ τ(λ−Du))− σ(x, u,Du)) : (Du− λ).
(5.5)

On the other hand, monotonicity condition implies that

(σ(x, u,Du+ τ(λ−Du))− σ(x, u,Du)) : τ(λ−Du) ≥ 0

thus,

(σ(x, u,Du+ τ(λ−Du))− σ(x, u,Du)) : (1− τ)(λ−Du) ≥ 0

since τ ∈ [0, 1]. The reverse inequality on the right hand in 5.5 holds and we can deduce that

(σ(x, u,Du+ τ(λ−Du))− σ(x, u,Du)) : (λ−Du) = 0,

i.e.

σ(x, u,Du+ τ(λ−Du)) : (λ−Du) = σ(x, u,Du) : (λ−Du) (5.6)

for all τ ∈ [0, 1]. Integrating 5.6 over [0, 1] and using the following equality

σ(x, u,Du+ τ(λ−Du)) : (λ−Du) =
∂W

∂τ
(x, u,Du+ τ(λ−Du)) : (λ−Du),

we may have

W (x, u, λ) = W (x, u,Du) +

∫ 1

0

σ(x, u,Du+ τ(λ−Du)) : (λ−Du)dτ

= W (x, u,Du) + σ(x, u,Du) : (λ−Du)

Thus we may deduce that λ ∈ Kx, i.e. supp vx ⊂ Kx. Using the convexity of W we can get

W (x, u, λ)︸ ︷︷ ︸
=:A(λ)

≥ W (x, u,Du) + σ(x, u,Du) : (λ−Du)︸ ︷︷ ︸
=:B(λ)

for all λ ∈ Mm×n. Since the mapping λ 7→ A(λ) is continuously differentiable, then for every F ∈
Mm×n, τ ∈ R

A(λ+ τF )−A(λ)

τ
≥ B(λ+ τF )−B(λ)

τ
if τ > 0

A(λ+ τF )−A(λ)

τ
≤ B(λ+ τF )−B(λ)

τ
if τ < 0.
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Hence DA = DB and we obtain

σ(x, u, λ) = σ(x, u,Du) for all λ ∈ Kx ⊃ supp vx

and thus

σ̄(x) =

∫
Mm×n

σ(x, u, λ)dvx(λ) = σ(x, u,Du).

Now we choose the following Carathéodory function

h(x, ρ, λ) = |σ(x, ρ, λ)− σ̄(x)|, ρ ∈ Rm, λ ∈ Mm×n.

Since σ (x, uk, Duk) is equiintegrable, then hk(x) := h (x, uk(x), Duk(x)) is equiintegrable and its weak
L1-limit is given by

hk → h̄ in L1(Ω)

where

h̄(x) =

∫
Rm×Mm×n

|σ(x, ρ, λ)− σ̄(x)|dδu(x)(ρ)⊗ dvx(λ)

=

∫
supp vx

|σ(x, u, λ)− σ̄(x)|dvx(λ) = 0 (by (13)).

Since hk ≥ 0 it follows that
hk → 0 strongly in L1(Ω).

We can conclude from the previous steps that

lim
k→∞

∫
Ω

σ (x, uk, Duk) : Dw(x) =

∫
Ω

σ(x, u,Du) : Dw(x)dx ∀w ∈
∞⋃
k=1

Vk.

Since uk → u and Duk → Du almost everywhere for k → ∞.
Furthermore, by continuity condition 1.2 we may infer that
f (x, uk, Duk) · w(x) → f(x, u,Du) · w(x) for arbitrary w ∈ W 1

0Lφ (Ω;Rm). Thanking to the growth
condition 1.4, we get(f (x, uk, Duk) · w(x)) is equi-integrable,

thus by using the Vitali Convergence Theorem we obtain that f (x, uk, Duk)·w(x) → f(x, u,Du)·w(x)
in L1(Ω).

Consequently, we have

lim
k→∞

∫
Ω

f (x, uk, Duk) · w(x) =
∫
Ω

f(x, u,Du) · w(x)dx ∀w ∈
∞⋃
k=1

Vk.

Now, if F 7→ f(x, u, F ) is linear, we argue as follows:

f (x, uk, Duk) →
∫
Mm×n

f(x, u, λ)dvx(λ) = σ(x, u, .)o

∫
Mm×n

λdvx(λ)

= σ(x, u,Du)

where we have used Du(x) = ⟨vx, id⟩ and the equii-ntegrability of f (x, uk, Duk).
Finally, since ∪∞

k=1Vk is dense in W 1
0Lφ (Ω;Rm) , the Dirichlet problem (1.1) admit a weak solution

u ∈ W 1
0Lφ (Ω;Rm) .
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