
Bol. Soc. Paran. Mat. (3s.) v. 2024 (42) : 1–13.
©SPM –ISSN-2175-1188 on line ISSN-0037-8712 in press

SPM: www.spm.uem.br/bspm doi:10.5269/bspm.64858

Analysis and Qualitative Behaviour of a Tenth-Order Rational Difference Equation

E. M. Elsayed1,2 and M. T. Alharthi1,3

abstract: In this article, we examine the qualitative behavior of the solutions of the following difference
equation

zn+1 = azn−4 +
bzn−4

czn−4 − dzn−9

, n = 0, 1, ...,

where the initial conditions z
−9, z

−8, z
−7, z

−6, z
−5, z

−4, z
−3, z

−2, z
−1, z0 are arbitrary non-zero real

numbers and a, b, c, d are positive constants.
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1. Introduction

In recent years, many researchers has studied the theory of difference equations due to the importance
of this field in modeling a large number of real- life problems. To study modeling some natural phenomena
that appear in biology, physics, economy, engineering, etc we use difference equations. Recent researches
have been a great deal of interest in studying boundedness character, the global attractivity and the
periodic nature of nonlinear difference equations.

Many researchers have established to study the behavior of the solution of difference equations for
example:

Cinar [6] studied the solution of the difference equation

zn+1 =
azn−1

1 + bznzn−1
.

Elsayed [15] examined the periodic solution and investigated the global stability of the following difference
equation

zn+1 = azn−l +
bzn−l

czn−l + dzn−k

.

El-Moneam et al. [14] presented results on the dynamic behaviour of the following difference equation
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zn+1 = Azn + Bzn−k + Czn−l + Dzn−σ +
bzn−k + hzn−l

dzn−k + ezn−l

.

Khaliq and Hassan [27] investigated the qualitative behaviour of the recursive equation given on the form

zn+1 = azn +
α + βzn−k

A + Bzn−k

.

Elabbasy et al. [8] analyzed the global stability, periodicity character, and obtained the solution of some
special cases of the difference equation

zn+1 =
dzn−lzn−k

czn−s − b
+ a.

Aloqeili [4] gave the form of the solutions of the recursive equation

zn+1 =
zn−1

a − +znzn−1
.

Ibrahim [29] introduced some relevant results of the recursive equation

zn+1 =
znzn−2

zn−1(a + bznzn−2)
.

For more researches about the qualitative behavior of difference equations see refs. [1]- [40].
In this paper we study some properties of the solutions of the of the following recursive equation:

zn+1 = azn−4 +
bzn−4

czn−4 − dzn−9
, n − 0, 1, ..., (1.1)

where the initial conditions z−9, z−8, z−7, z−6, z−5, z−4, z−3, z−2, z−1, z0 are arbitrary non-zero real
numbers and a, b, c, d are positive constants.

2. Basic Properties and Definitions

In this section we introduce some basic definitions and theorems that we need in the sequel.
Defintion 1. Let I be some interval of real numbers and let

F : Ik+1 → I,

be continuously differentiable function. Then for every set of initial condition x−k, x−k+1, ..., x0 ∈ I,the
difference equation

xn+1 = F (xn, xn−1, xn−2, ..., xn−k), n = 0, 1, ..., (2.1)

has a unique solution {xn}
∞

n=−k.
Definition 2. A point x∗ ∈ I is called an equilibrium point of Eq.(2.1) if

x∗ = F (x∗, x∗, ..., x∗),

that is, xn = x∗ for n ≥ 0, is a solution of Eq.(2.1), or equivalently, x∗ is a fixed point.
Definition 3. Let x∗ be an equilibrium point of Eq.(2.1).

1. The equilibrium point x∗ of Eq.(2.1) is called locally stable if for ǫ > 0, there exist δ > 0 such
that for all {xn}∞

n=−k is a solution of Eq.(2.1) and

|x−k − x∗| + |x−k+1 − x∗| + ... + |x0 − x∗| < δ,

then

|xn − x∗| < ǫ forall n ≥ 0.
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2. The equilibrium point x∗ of Eq.(2.1) is called locally asymptotically stable if it is locally stable
and if there exists γ > 0 such that if {xn}∞

n=−k is a solution of Eq.(2.1) and

|x−k − x∗| + |x−k+1 − x∗| + ... + |x0 − x∗| < γ,

then
lim

n→∞

= x∗.

3. The equilibrium point x∗ of Eq.(2.1) is called global attractor if for every solution {xn}
∞

n=−k of
Eq.(2.1) we have limn→∞ = x∗.

4. The equilibrium point x∗ of Eq.(2.1) is called globally asymptotically stable if it is locally
stable and global attractor of Eq.(2.1).

5. The equilibrium point x∗ of Eq.(2.1) is called unstable if x∗ is not locally stable.

Definition 4. The linearized equation of Eq.(2.1) about the equilibrium point x∗ is the linear
difference equation

yn+1 =

k
∑

j=0

∂F (x∗, x∗, ..., x∗)

∂xn−j

yn−j . (2.2)

The characteristic equation associated with Eq.(2.2) is

p(λ) = p0λk + p1λk−1 + .... + pk−1λ + pk = 0,

where

pj =
∂F (x∗, x∗, ..., x∗)

∂xn−j

.

Theorem 1. [34] Assume that pi ∈ R, i = 1, 2, ... and k ∈ {0, 1, 2, ...}.

Then
k

∑

i=1

|pi| < 1,

is a sufficient condition for the asymptotic stability of the difference equation

yn+k + p1yn+k−1 + ... + pkyn = 0, n = 0, 1, 2, ....

Next, to prove the global attractor of the fixed points we will introduce a fundamental theorem.
Theorem 2. [34] Let g : [a, b]K+1 → [a, b] be a continuous function, where k is a positive integer and

[a, b] is an interval of real numbers. Consider the difference equation

xn+1 = g(xn, xn−1,...,xn−k), n = 0, 1, .... (2.3)

Suppose that g satisfies the following conditions:

1. For each integer i with 1 ≤ i ≤ k + 1, the function g(z1, z2, ..., zk+1) is weakly monotonic in zi for
fixed z1, z2, ..., zi−1, zi+1, ..., zk+1.

2. If m, M is a solution of the system

m = g(m1, m2, ..., mk+1), M = g(M1, M2, ..., Mk+1),

then m = M , where for each i = 1, 2, ..., k + 1, we set

mi =

{

m, if g is non-decreasing in zi ,
M, if g is non-increasing in zi

}

,

Mi =

{

M, if g is non-decreasing in zi ,
m, if g is non-increasing in zi

}

.

Then, there exists exactly one equilibrium point x∗ of Eq.(2.3), and every solutionof Eq.(2.3) converges
to x∗.
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3. Periodic solutions

In this section we Introduce the following theorem states the necessary and sufficient conditions to
study the existence of periodic solutions of Eq.(1.1).

Theorem 3. There are a positive prime period two solutions of Eq.(1.1) if and only if

(c + d)(a + 1) > 4d, d > ac. (3.1)

Proof. Firstly, Let there exists a prime period two solution

..., τ , t, τ , t, ...,

of Eq.(1.1). We will prove that Condition (3.1) holds.
From Eq.(1.1) we see that

τ = at +
bt

ct − dτ
,

and

t = aτ +
bτ

cτ − dt
.

Then

cτt − dτ2 = act2 − adτt + bt, (3.2)

and

cτt − dt2 = acτ2 − adτt + bτ . (3.3)

Subtract (3.3) from (3.2) we get

d(t2 − τ2) = ac(t2 − τ2) + b(t − τ),

d(t − τ)(t + τ ) = ac(t − τ )(t + τ ) + b(t − τ )

Since τ 6= t, it follows that

t + τ =
b

d − ac
. (3.4)

Now, adding (3.2) and (3.3) gives

2cτt − d(τ2 + t2) = ac(τ2 + t2) − 2adτt + b(τ + t). (3.5)

We will use the following relation with (3.4), (3.5)

τ2 + t2 = (τ + t)2 − 2τt for all τ , t ∈ R,

yields that

τt =
b2d

(d − ac)2(c + d)(a + 1)
. (3.6)

From Eq.(3.4) and Eq.(3.6) it is clear that τ and t are the two positive distinct roots of the quadratic
equation

(d − ac)λ2 − bλ +
b2d

(d − ac)(c + d)(a + 1)
= 0. (3.7)

λ1,2 =
b +

√

b2 − 4b2d
(c+d)(a+1)

2(d − ac)
,

where β =
√

b2 − 4b2d
(c+d)(a+1) .
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If β > 0,we get

b2 >
4b2d

(c + d)(a + 1)
.

Therefore the inequality (3.1) holds.

Secondly, suppose that the inequality (3.1) is true. We will prove that Eq.(1.1) has a prime period
two solution.

τ =
b + β

2(d − ac)
,

and

t =
b − β

2(d − ac)
.

β is a real positive numbers, therefore τ and t are distinct positive real numbers.

Put

z−1 = τ and z0 = t.

We will show that z1 = z−1 = τ and z−2 = z0 = t.

From Eq.(1.1)

z1 = at +
bt

ct − dτ
=

act2 − adτt + bt

ct − dτ

=
ac[ b−β

2(d−ac) ]2 − ad[ b2d
(d−ac)2(c+d)(a+1) ] + b[ b−β

2(d−ac) ]

c[ b−β

2(d−ac) ] − d[ b+β

2(d−ac) ]
.

We Multiply the numerator and denominator by 4(d − ac)2

z1 =
2b2d − 4ab2cd+4ab2d2

(c+d)(a+1) − 2bdβ

2(d − ac){cb − bd − (c + d)β}
.

Multiplying the numerator and denominator by {(c + d)(a + 1)}{cb − bd + (c + d)β} gives

z1 =
[(4b3d3 + 4b3cd2 − 4ab3cd2 − 4ab3c2d) + (4b2cd2 + 4b2d3 − 4ab2cd2 − 4ab2c2d)β

2(d − ac){4b2cd2 + 4b2d3 − 4ab2cd2 − 4ab2c2d}
.

Dividing the numerator and denominator by {4b2cd2 + 4b2d3 − 4ab2cd2 − 4ab2c2d} yields

z1 =
b + β

2(d − ac)
= τ .

Similarly we can show that

z2 = t.

Then by induction we get that

z2n = t and z2n+1 = τ for all n ≥ −5.

Finally, Therfore Eq.(1.1) has the positive prime period two solution

..., τ , t, τ , t, ...,

Considering that the distinct roots of the quadratic equation (3.7) are τ and t, and the proof is complete.
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4. Analysis of Local Stability of the Equilibrium Point

This part studied the local stability character of the equilibrium point of Eq.(1.1). The equilibrium
point of Eq.(1.1) are given by

z∗ = az∗ +
bz∗

cz∗ − dz∗
.

If (c − d)(1 − a) > 0, then the only positive fixed points of Eq.(1.1) is given by

z∗ =
b

(c − d)(1 − a)
, c 6= d, a 6= 1.

Suppose that f : (0, ∞)2 → (0, ∞) be a continuous function defined by

f(r, s) = ar +
br

cr − ds
. (4.1)

Therefore

∂f(r, s)

∂r
= a −

bds

(cr − ds)2
,

∂f(r, s)

∂s
=

bdr

(cr − ds)2
.

Then
∂f(z∗, z∗)

∂r
= a −

bdz∗

(cz∗ − dz∗)2
= a −

d(1 − a)

(c − d)
= p0,

∂f(z∗, z∗)

∂s
=

bdz∗

(cz∗ − dz∗)2
=

d(1 − a)

(c − d)
= p1.

Then, the linearized equation of Eq.(1.1) about the equilibrium is

yn+1 − p0yn−4 − p1yn−9 = 0.

Theorem 4. Let

|ac − d| + d |1 − a| < |c − d| .

Then the fixed point of Eq.(1.1) is locally asymptotically stable.

Proof. By using Theorem (1), The Eq.(1.1) is asymptotically stable if

|p0| + |p1| < 1.

This gives
∣

∣

∣

∣

a −
d(1 − a)

(c − d)

∣

∣

∣

∣

+

∣

∣

∣

∣

d(1 − a)

(c − d)

∣

∣

∣

∣

< 1,

it can be written as

|a(c − d) − d(1 − a)| + |d(1 − a)| < |c − d| .

Hence,

|ac − d| + d |1 − a| < |c − d| .

The proof is complete.
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5. Global Attractivity of the Equilibrium Point of Eq.(1.1)

In this part, we examine the global attractivity character of solutions of Eq.(1.1).

Theorem 5. If ac > d, a 6= 1, then equilibrium point z∗ of Eq.(1.1) is a global attractor.

Proof. Let a, b are a real numbers and assume that f : [a, b]2 → [a, b] be a function defined by
Eq.(4.1).Therefore

∂f(r, s)

∂r
= a −

bds

(cr − ds)2
,

∂f(r, s)

∂s
=

bds

(cr − ds)2
.

Case (1) If a − bds
(cr−ds)2 > 0, then it is clear that the function f(r, s) is increasing in r, s. Let (ω, ζ) is a

solution of the system where M=ζ and m=ω as following Theorem (2).

ω = g(ω, ω) and ζ = g(ζ, ζ).

Then from Eq.(1.1), we get that

ω = aω +
bω

cω − dω
,

ζ = aζ +
bζ

cζ − dζ
.

Then
(ζ − ω) = a(ζ − ω), a 6= 1.

Hence
ζ = ω.

Then by Theorem (2) z∗ is a global attractor of Eq.(1.1).
Case (2) If a − bds

(cr−ds)2 < 0,then it is clear that the function f(r, s) decreasing in r and increasing in

s. Let (ω, ζ) is a solution of the system where M=ζ and m=ω as following Theorem (2).

ζ = g(ω, ζ) and ω = g(ζ, ω).

Then from Eq.(1.1), we get that

ω = aζ +
bζ

cζ − dω
,

ζ = aω +
bω

cω − dζ
,

cζω − acζ2 − dω2 + adζω = bζ,

cζω − acω2 − dζ2 + adζω = bω,

Therefore
(ζ2 − ω2)(d − ac) = b(ζ − ω), ac > d.

Hence
ζ = ω.

Then by Theorem (2), z∗ is a global attractor of Eq.(1.1). The proof is complete.
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6. Special Cases of Eq.(1.1)

This section studies the following special case of Eq.(1.1)

zn+1 = zn−4 +
zn−4

zn−4 − zn−9
, (6.1)

where the initial conditions z−9, z−8, z−7, z−6, z−5, z−4, z−3, z−2, z−1, z0 are arbitrary non-zero real
numbers .

Theorem 6. Assume that {zn}∞

n=−9 be the solution of Eq.(6.1) satisfying z−9 = r, z−8 = k, z−7 = h,

z−6 = g, z−5 = f, z−4 = e, z−3 = d ,z−2 = c, z−1 = b and z0 = a. Then, for n = 0, 1, 2....

z10n−9 =
[ne − (n − 1)r][e − r + n]

(e − r)
,

z10n−8 =
[nd − (n − 1)k][d − k + n]

(d − k)
,

z10n−7 =
[nc − (n − 1)h][c − h + n]

(c − h)
,

z10n−6 =
[nb − (n − 1)g][b − g + n]

(b − g)
,

z10n−5 =
[na − (n − 1)f ][a − f + n]

(a − f)
,

z10n−4 =
[(n + 1)e − nr][e − r + n]

(e − r)
,

z10n−3 =
[(n + 1)d − nk][d − k + n]

(d − k)
,

z10n−2 =
[(n + 1)c − nh][c − h + n]

(c − h)
,

z10n−1 =
[(n + 1)b − ng][b − g + n]

(b − g)
,

z10n =
[(n + 1)a − nf ][a − f + n]

(a − f)
.

Proof. It is clear that for n = 0, the result holds. Now let n > 0 and for n−1 The assumption holds.
That is;

z10n−19 =
[(n − 1)e − (n − 2)r][e − r + n − 1]

(e − r)
,

z10n−18 =
[(n − 1)d − (n − 2)k][d − k + n − 1]

(d − k)
,

z10n−17 =
[(n − 1)c − (n − 2)h][c − h + n − 1]

(c − h)
,

z10n−16 =
[(n − 1)b − (n − 2)g][b − g + n − 1]

(b − g)
,
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z10n−15 =
[(n − 1)a − (n − 2)f ][a − f + n − 1]

(a − f)
,

z10n−14 =
[ne − (n − 1)r][e − r + n − 1]

(e − r)
,

z10n−13 =
[nd − (n − 1)k][d − k + n − 1]

(d − k)
,

z10n−12 =
[nc − (n − 1)h][c − h + n − 1]

(c − h)
,

z10n−11 =
[nb − (n − 1)g][b − g + n − 1]

(b − g)
,

z10n−10 =
[na − (n − 1)f ][a − f + n − 1]

(a − f)
.

Now, it follows that from Eq.(6.1)

z10n−9 = z10n−14 +
z10n−14

z10n−14 − z10n−19

= z10n−14[1 +
1

[ne−(n−1)r][e−r+n−1]
(e−r) − [(n−1)e−(n−2)r][e−r+n−1]

(e−r)

]

= z10n−14[1 +
(e − r)

[e − r + n − 1][ne − nr + r − ne + e + nr − 2r]
]

= z10n−14[1 +
(e − r)

[e − r + n − 1](e − r)
]

=
[ne − (n − 1)r][e − r + n − 1]

(e − r)
.
[e − r + n − 1 + 1]

[e − r + n − 1]

=
[ne − (n − 1)r][e − r + n]

(e − r)
.

z10n−8 = z10n−13 +
z10n−13

z10n−13 − z10n−18

= z10n−13[1 +
1

[nd−(n−1)k][d−k+n−1]
(d−k) − [(n−1)d−(n−2)k][d−k+n−1]

(d−k)

]

= z10n−13[1 +
(d − k)

[d − k + n − 1][nd − nk + k − nd + d + nk − 2k]
]

= z10n−13[1 +
(d − k)

[d − k + n − 1](d − k)
]

=
[nd − (n − 1)k][d − k + n − 1]

(d − k)
.
[d − k + n − 1 + 1]

[d − k + n − 1]

=
[nd − (n − 1)k][d − k + n]

(d − k)
.
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z10n−1 = z10n−6 +
z10n−6

z10n−6 − z10n−11

= z10n−6[1 +
1

[nb−(n−1)g][b−g+n]
(b−g) − [nb−(n−1)g][b−g+n−1]

(b−g)

]

= z10n−6[1 +
(b − g)

[nb − (n − 1)g][b − g + n − b + g − n + 1]
]

= z10n−6[
nb − ng + g + b − g

nb − (m − 1)g
]

=
[nb − (n − 1)g][b − g + n]

(b − g)
.
[(n + 1)b − ng]

[nb − (n − 1)g]

=
[(n + 1)b − ng][b − g + n]

(b − g)
.

Similarly the other relations can be proofed.

7. Numerical Example

Here we will introduce some numrical examples which represent different types of Eq.(1.1)
Example 1. In Eq.(1.1), consider z−9 = 11, z−8 = 1.75, z−7 = 0.20, z−6 = .45, z−5 = 13, z−4 = 2.5,

z−3 = 10, z−2 = 14, z−1 = 3.5, z0 = 3.1, a = 1, b = 1, c = 1, d = 1. See Figure 1.
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plot of z(n+1)=z(n-4)+(z(n-4)/(z(n-4)-z(n-9)))

Example 2. Let z−9 = 11, z−8 = 5.1, z−7 = 2, z−6 = 4, z−5 = 3, z−4 = 1.5, z−3 = 10, z−2 = 1,

z−1 = 3, z0 = 2.1, a = 0.2, b = 6, c = 3, d = 1.We substitute the values into Eq.(1.1). See Figure 2
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Example 3. See Figure 3. We put z−9 = z−7 =, z−5 = z−3 = z−1 = 7.09639 = τ = ( b+β
2(d−ac)),

z−8 = z−6 = z−4 = z−2 = z0 = 4.0147 = t = ( b−β
2(d−ac)), a = 0.3, b = 5, c = 3.5, d = 1.5, in Eq.(1.1).
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z n

plot of z(n+1)=a*z(n-4)+(b*z(n-4)/(c*z(n-4)-d*z(n-9)))

Example 4. See the bellow Figure. By using Eq.(1.1), let z−9 = 6, z−8 = 11.75, z−7 = 0.20,

z−6 = .5, z−5 = 12, z−4 = 3.75, z−3 = 1.5, z−2 = 15, z−1 = 0.9, z0 = 4, a = 3, b = 1.5, c = 3, d = 2.
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plot of z(n+1)=az(n-4)+(bz(n-4)/(cz(n-4)-dz(n-9)))
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