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The dot total graph of a commutative ring without the zero element

Jaber Hussain Asalool∗ and Mohammad Ashraf

abstract: Let R be a commutative ring with 1 ̸= 0, Z(R) be the set of zero-divisors of R, and Reg(R) =
R \ Z(R) be the set of regular elements of R. The dot total graph of R is the simple (undirected) graph
TZ(R)(Γ(R)) with vertices as all elements of R, and two distinct vertices x and y are adjacent if and only
if xy ∈ Z(R). In this paper, we study the (induced) subgraph TZ(R)(Γ(R∗)) of TZ(R)(Γ(R)), with vertices
R∗ = R \ {0}. After that, connectivity, clique number, and girth of TZ(R)(Γ(R∗)) have also been studied.
Finally, we determine the cases when TZ(R)(Γ(R∗)) is Eulerian, Hamiltonian, and TZ(R)(Γ(R∗)) contains an
Eulerian trail.
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1. Introduction

Throughout this paper, R will represent an associative and commutative ring with non-zero unity.
The symbols Z(R) and Reg(R) = R \ Z(R) stands for zero-divisors of R and regular elements of R,
respectively. In 1988, Beck [10] considered Γ(R) as a simple graph, whose vertices are the elements of R
and any two different elements x and y are adjacent if and only if xy = 0, but he was mainly interested
in colorings. In 1993, Anderson and Naseer [6] continued this study by giving a counter example, where
R is a finite local ring. In 1999, Anderson and Livingston [2], associated a (simple) graph Γ(R) to R
with vertices Z(R)∗ = Z(R) \ {0}, the set of nonzero zero-divisors of R, and for distinct x, y ∈ Z(R)∗,
the vertices x and y are adjacent if and only if xy = 0 and they were interested to study the interplay of
ring-theoretic properties of R with graph-theoretic properties of Γ(R). In 2008, Anderson and Badawi [3]
introduced the total graph of R, denoted by T (Γ(R)), as the (undirected) graph with all elements of R as
vertices and for distinct x, y ∈ R, the vertices x and y are adjacent if and only if x+ y ∈ Z(R). Also, in
2012 Anderson and Badawi [4] studied the two (induced) subgraphs Z0(Γ(R)) and T0(Γ(R)) of T (Γ(R)),
with vertices Z(R) \ {0} and R\{0}, respectively. Recently, Ashraf et.al., in [8] introduced the dot total
graph of R to be the simple (undirected) graph TZ(R)(Γ(R)) with vertices all elements of R, and two
distinct vertices x and y are adjacent if and only if xy ∈ Z(R). Also, Ashraf et.al., in [7] introduced
an ideal-based dot total graph of R denoted by TI(Γ(R)). The graph TZ(R)(Γ(R)) is connected with
diam(TZ(R)(Γ(R))) ≤ 2 since x−0−y is a path between any two vertices x and y in TZ(R)(Γ(R)). In this
paper, we consider the (induced) subgraph TZ(R)(Γ(R∗)) of TZ(R)(Γ(R)), with vertices R∗ = R \ {0}.
In addition, some fundamental graphs with zero-divisors can be identified in [1,5,9,11,13,14].

Let G(V (G), E(G)) be a graph with vertex set V (G) and edge set E(G). If there is a path between
every two vertices x, y ∈ V (G), then G is said to be connected. The distance between x and y denoted
by d(x, y) is defined as the shortest path from x to y (if there is no such path, then d(x, y) = ∞). The
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diameter of a graph G is the largest distance between any two vertices of G and is denoted by diam(G).
The girth of a graph G is defined as the length of the smallest cycle in G and is denoted by gr(G). if
G contains no cycle, then gr(G) = ∞. Note that if G contains a cycle, then gr(G) ≤ 2 diam(G) + 1.
The number of edges incident with a vertex v in a graph G is its degree and is denoted by deg(v). A
vertex v is said to be a cut-vertex in a connected graph G if G \ {v} is disconnected. Also, the subset
U of a vertex set V (G) is said to be a vertex-cut if removed together with any incident edges, causing
the graph to become disconnected. A graph G has connectivity κ(G) = k if k is the cardinality of the
smallest subset of the vertex set whose deletion causes the graph to become disconnected. We have the
same notions in the edges as well. An edge e is said to be a bridge in a connected graph G if G \ {e}
is disconnected. Also, the subset X of an edge set E(G) is said to be an edge-cut if removed, causing
the graph to become disconnected. A graph G has edge-connectivity λ(G) = l if l is the cardinality of
the smallest subset of the edge set whose deletion causes the graph to become disconnected. A clique
is a subset of vertices in a graph G where each pair of different vertices is adjacent. The clique number
of a graph G is represented by ω(G) and is defined as the highest feasible size of a clique in the graph.
An Eulerian graph is a graph G that contains an Eulerian circuit, which is a circuit that includes all the
edges of G. Also, the Eulerian trail is an open trail that includes all edges of G. A Hamiltonian graph
is a graph G that contains a Hamiltonian cycle, which is a cycle that includes all the vertices of G. In
addition, the Hamiltonian path is a path that includes all vertices of G. More information about the
graphs can be identified in [12]. The following is the structure of the present article:
In Section 2, we study the dot total graph of R without zero element. We give many examples and prove
that if R is not an integral domain, then TZ(R)(Γ(R∗)) is connected, and has a diameter of at most
two. We determine whether TZ(R)(Γ(R∗)) is a regular graph or a complete graph. Also, we calculate the
degree of each vertex in TZ(R)(Γ(R∗)). Further, in Section 3 and 4, we prove certain facts concerning cut-
vertices and bridges in TZ(R)(Γ(R∗)). In addition, we compute the κ(TZ(R)(Γ(R∗))), ω(TZ(R)(Γ(R∗)))
and gr(TZ(R)(Γ(R∗))). Finally, in Section 5, we demonstrate that TZ(R)Γ(R∗)) can be an Eulerian graph
and an Eulerian trail. We also determine the graph TZ(R)Γ(R∗)) is a Hamiltonian graph.

2. Definition and properties of TZ(R)(Γ(R∗))

In this section, we study the connectedness of TZ(R)(Γ(R∗)). In fact, after removing the zero element
from the ring R, TZ(R)(Γ(R∗)) is still connected if R is not an integral domain, and TZ(R)(Γ(R∗)) is
an empty graph if R is an integral domain. We find the diameter of TZ(R)(Γ(R∗)), and degree of each
vertex of TZ(R)(Γ(R∗)). Recall that TZ(R)(Γ(R)) is connected (for reference see [8]), and the diameter
of TZ(R)(Γ(R)) is at most two. We now show that the dot total graph of R∗ is not connected if R is an
integral domain.

Theorem 2.1 Let R be a commutative ring.

(i) If R is an integral domain, then TZ(R)(Γ(R∗)) is not connected.

(ii) If R is not an integral domain, then TZ(R)(Γ(R∗)) is connected. Moreover, diam(TZ(R)(Γ(R∗))) ≤
2.

Proof:

(i) Let R be an integral domain. Then all elements in R∗ = R\{0} are regular elements. Since there is
no adjacency between any two elements of Reg(R), implies that TZ(R)(Γ(R∗)) is an empty graph.
Hence TZ(R)(Γ(R∗)) is not connected.

(ii) Let R be a commutative ring which is not an integral domain. Then Z(R) has at least two elements.
Let x and y be distinct vertices of TZ(R)(Γ(R∗)). Then we have the following cases:

Case(i) If x, y ∈ Z(R), then x− y is a path in TZ(R)(Γ(R∗)).

Case(ii) If x, y ∈ Reg(R), then there exists some 0 ̸= z ∈ Z(R) such that xz ∈ Z(R) and yz ∈ Z(R).
Thus x− z − y is a path in TZ(R)(Γ(R∗)).
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Case(iii) If x ∈ Z(R) and y ∈ Reg(R), then x− y is a path in TZ(R)(Γ(R∗)).

Hence TZ(R)(Γ(R∗)) is connected and diam(TZ(R)(Γ(R∗))) ≤ 2. 2

Example 2.1 We have several rings with the set of zero-divisors Z(R) and the set of regular elements
Reg(R) and comparisons TZ(R)(Γ(R)) and TZ(R)(Γ(R∗)):

(i) R = Z4, Z(R) = {0, 2} and Reg(R) = {1, 3} (see Fig. 1).

Figure 1: (a) TZ(R)(Γ(R∗)) and (b) TZ(R)(Γ(R)), when R = Z4

(ii) R = Z9, Z(R) = {0, 3, 6} and Reg(R) = {1, 2, 4, 5, 7, 8} (see Fig. 2).

Figure 2: (a) TZ(R)(Γ(R∗)) and (b) TZ(R)(Γ(R)), when R = Z9
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(iii) R = Z2 ×Z2 = {(0, 0), (0, 1), (1, 0), (1, 1)}, Z(R) = {(0, 0), (0, 1), (1, 0)} and Reg(R) = {(1, 1)} (see
Fig. 3).

Figure 3: (a) TZ(R)(Γ(R∗)) and (b) TZ(R)(Γ(R)), when R = Z2 × Z2

(iv) R = Z7, Z(R) = {0} and Reg(R) = {1, 2, 3, 4, 5, 6} (see Fig. 4).

Figure 4: (a) TZ(R)(Γ(R∗)) and (b) TZ(R)(Γ(R)), when R = Z7

Notice that |R| ≤ 3 if and only if R is isomorphic to Z2 or Z3. In the next theorem we find the
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diameter of TZ(R)(Γ(R∗)).

Theorem 2.2 Let R be a commutative ring.

(i) If |R| ≤ 3, then diam(TZ(R)(Γ(R∗))) =

{
0 if R ∼= Z2,

∞ if R ∼= Z3.

(ii) If |R| ≥ 4, then diam(TZ(R)(Γ(R∗))) =


∞ if |Z(R)| = 1,

1 if |Reg(R)| = 1,

2 if |Z(R)| ≥ 2 and |Reg(R)| ≥ 2.

Proof:

(i) Let |R| ≤ 3. Then R ∼= Z2 or Z3. If R ∼= Z2, then TZ(R)(Γ(R∗)) is a complete graph of order one.
Thus diam(TZ(R)(Γ(R∗))) = 0. If R ∼= Z3, then TZ(R)(Γ(R∗)) is a disconnected graph with two
vertices and has no edge. Thus diam(TZ(R)(Γ(R∗))) = ∞.

(ii) Let |R| ≥ 4. Then depending on the cardinality of the zero-divisors and regular elements of R, we
have the following cases:

Case(i) If |Z(R)| = 1, i.e., R is an integral domain, then there is no adjacency between any elements
in TZ(R)(Γ(R∗)). Hence diam(TZ(R)(Γ(R∗))) = ∞.

Case(ii) If |Reg(R)| = 1 and |R| ≥ 4, then the set of zero-divisors of R has at least three elements.
Therefore, all elements are adjacent. Hence diam(TZ(R)(Γ(R∗))) = 1.

Case(iii) If |Z(R)| ≥ 2 and |Reg(R)| ≥ 2, then the proof is clear by the same arguments as used in the
Theorem 2.1.

This completes the proof. 2

Theorem 2.3 TZ(R)(Γ(R∗)) is a complete graph of order n = |Z(R)| if and only if Reg(R) = {1},
where 1 is the unity of R.

Proof: Suppose that TZ(R)(Γ(R∗)) is complete. Then each pair of distinct vertices in R∗ is adjacent.
This implies that all vertices of TZ(R)(Γ(R∗)) in Z(R)∗ except the unity belongs to Reg(R). Otherwise
TZ(R)(Γ(R∗)) is not complete. Hence Reg(R) = {1}.
Conversely, suppose that Reg(R) = {1} and we prove that TZ(R)(Γ(R∗)) is complete. Assume, on
contrary, that TZ(R)(Γ(R∗)) is not complete. Then there are two distinct elements x and y of R∗ such
that x is not adjacent to y. This implies that x, y ∈ Reg(R), which is a contradiction to our assumption.
Hence TZ(R)(Γ(R∗)) is complete. 2

Remark 2.1 TZ(R)(Γ(R)) and TZ(R)(Γ(R∗)) have the same condition to be a complete graph. In case
they are complete, then |V (TZ(R)(Γ(R)))| = |V (TZ(R)(Γ(R∗)))|+ 1.

Corollary 2.1 TZ(R)(Γ(R∗)) is not complete if and only if |Reg(R)| ⩾ 2.

Corollary 2.2 Let R be an integral domain, Then TZ(R)(Γ(R∗)) ∼= Kn, where n = |Reg(R)|.

Remark 2.2 For any integral domain R, we know that TZ(R)(Γ(R)) is a star graph. But the graph
TZ(R)(Γ(R∗)) is an empty graph (see Example 2.1, Figure 4).

In the next theorem, we find the degree of each vertex of TZ(R)(Γ(R∗)).

Theorem 2.4 deg(x) = |R| − 2 or |Z(R)| − 1, where x ∈ V (TZ(R)(Γ(R∗))).
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Proof: Since each vertex in TZ(R)(Γ(R∗)) is either nonzero zero-divisor or regular element, we have two
cases as follows:

(i) If 0 ̸= x ∈ Z(R), then x is adjacent to all vertices in TZ(R)(Γ(R∗)) except x, that is, x is adjacent
to (|R| − 2) vertices and hence deg(x) = (|R| − 2).

(ii) If x ∈ Reg(R), then x is adjacent to all vertices in Z(R)∗, that is, x is adjacent to (|Z(R)| − 1)
vertices and hence deg(x) = (|Z(R)| − 1).

Hence the degree of each vertex of TZ(R)(Γ(R∗)) is either (|R| − 2) or (|Z(R)| − 1). 2

Corollary 2.3 TZ(R)(Γ(R∗)) is a regular graph if and only if |Reg(R)| = 1 (i.e., TZ(R)(Γ(R∗)) is a
complete graph).

Remark 2.3 The minimum degree of TZ(R)(Γ(R∗)) is δ(TZ(R)(Γ(R∗))) = |Z(R)|−1, and the maximum
degree of TZ(R)(Γ(R∗)) is ∆(TZ(R)(Γ(R∗))) = |R| − 2.

3. Connectivity of TZ(R)(Γ(R∗))

In this section, we investigate the conditions that must be met to obtain a cut-vertex or bridge in the
graph TZ(R)(Γ(R∗)). Also, we find the connectivity of TZ(R)(Γ(R∗)).

Theorem 3.1 TZ(R)(Γ(R∗)) has a cut-vertex if and only if |R| ≥ 4 and |Z(R)| = 2.

Proof: Suppose that the graph TZ(R)(Γ(R∗)) has a cut-vertex (say z). Then there exist at least two
vertices u,w ∈ TZ(R)(Γ(R∗)) such that z lies on all paths from u to w. If u is adjacent to w, then we
get a contradiction. So we assume that u is not adjacent to w. Then u,w ∈ Reg(R) and each element
of Reg(R) is adjacent to the element of Z(R). Thus z ∈ Z(R)∗. Now, if |R| ≤ 3, then TZ(R)(Γ(R∗)) is
without edges. Therefore, we assume that |R| ≥ 4 and we have the following two cases:

(i) If |Z(R)| > 2, then Z(R) has at least one non-zero element (say z0). Now let z0, z ∈ Z(R)∗. This
implies that u,w are adjacent to each element of Z(R). In particular adjacent to z0 and z, that is,
there is at least one path from u to w and z does not lie on it, which is a contradiction.

(ii) If |Z(R)| = 2, then TZ(R)(Γ(R∗)) ∼= K1,m, where m = |Reg(R)|. Now, we find that if z is the
cut-vertex of TZ(R)(Γ(R∗)), then |Z(R)| = 2 and |R| ≥ 4.

Conversely, assume that |R| ≥ 4 and |Z(R)| = 2. Then it is clear that TZ(R)(Γ(R∗)) has a cut-vertex. 2

Theorem 3.2 TZ(R)(Γ(R∗)) has a bridge if and only if |Z(R)| = 2 (i.e., TZ(R)(Γ(R∗)) is a star graph).

Proof: Assume that TZ(R)(Γ(R∗)) has a bridge. We know that if |R| = 2 or 3, then TZ(R)(Γ(R∗)) ∼= K1

or K2. Therefore, TZ(R)(Γ(R∗)) has no bridge in these cases. Now let |R| ≥ 4. According to cardinality
of zero-divisor of R, we have the following cases:

(i) If |Z(R)| = 1, then TZ(R)(Γ(R∗)) ∼= Km, where m = |Reg(R)| which has no bridges.

(ii) If |Z(R)| = 2, then TZ(R)(Γ(R∗)) ∼= K1,m, where m = |Reg(R)|. Thus all edges are bridge.

(iii) If |Z(R)| > 2 and |Reg(R)| = 1, then TZ(R)(Γ(R∗)) ∼= Km, where m = |Z(R)|. Thus TZ(R)(Γ(R∗))
is a complete graph of order at least 3. Hence TZ(R)(Γ(R∗)) has no bridge.

(iv) If |Z(R)| > 2 and |Reg(R)| ≥ 2, then there exist at least two non-zero elements in Z(R). Thus
each edge lies on cycle of TZ(R)(Γ(R∗)). Hence TZ(R)(Γ(R∗)) has no bridge.

From all the above, we find that if graph TZ(R)(Γ(R∗)) has a bridge, then |Z(R)| = 2.
Converse of the proof is trivial. 2
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Corollary 3.1 Let |R| ≤ 5. Then TZ(R)(Γ(R∗)) has a bridge if and only if R ∼= Z4 or R1, where

R1 =

{(
a 0
b a

)
| a, b ∈ Z2

}
.

Theorem 3.3 κ(TZ(R)(Γ(R∗))) = |Z(R)| − 1.

Proof: We know that, for any graph G, κ(G) ⩽ λ(G) ⩽ δ(G) and by Remark 2.3, δ(TZ(R)(Γ(R∗))) =
(|Z(R)| − 1). Therefore,

κ(TZ(R)(Γ(R∗))) ⩽ (|Z(R)| − 1).

Let w ∈ V (TZ(R)(Γ(R∗))) such that w is adjacent to each vertex y ∈ R∗ implies that w ∈ Z(R)∗. Hence
Z(R)∗ is the minimum vertex-cut of TZ(R)(Γ(R∗)), otherwise, TZ(R)(Γ(R∗)) is connected. Hence

κ(TZ(R)(Γ(R∗))) = (|Z(R)| − 1).

2

Remark 3.1 The set of non zero zero-divisors of R, (i.e., Z(R)∗) is the minimum vertex-cut of
TZ(R)(Γ(R∗)).

4. Clique number of TZ(R)(Γ(R∗))

In this section, we discuss the clique number of TZ(R)(Γ(R∗)). Note that if |R| = 2, then

TZ(R)(Γ(R∗)) ∼= K1. Thus ω(TZ(R)(Γ(R∗))) = 1. Also, if |R| = 3, then TZ(R)(Γ(R∗)) ∼= K2. Hence
TZ(R)(Γ(R∗)) has no clique if and only if |R| = 3.

Theorem 4.1 Let R be a commutative ring with non-zero unity such that |R| ≥ 4, and |Z(R)| > 2.
Then ω(TZ(R)(Γ(R∗))) = |Z(R)|.

Proof: We know that Z(R) is closed under multiplication, so that each pair of elements in Z(R) are
adjacent. In general, they are adjacent to all elements of R. Thus each element of Z(R) is adjacent at
least to the unity. Since R∗ is the vertex set of TZ(R)(Γ(R∗)), we find that |Z(R)| elements are adjacent.
This completes the proof. 2

Theorem 4.2 Let R be a commutative ring with 1 ̸= 0, Z(R) be the set of zero-divisors of R. If
|Z(R)| = n > 2, then TZ(R)(Γ(R∗)) has a cycle. Moreover, gr(TZ(R)(Γ(R∗))) = 3.

Proof: Using the same reasoning as in the previous theorem, for |Z(R)| = n > 2, we find that at least
two non-zero elements are in Z(R). Let u, v ∈ Z(R)∗. Also, R has unity 1 ∈ Reg(R). Then u−1−v−u
is a cycle of length 3. Thus TZ(R)(Γ(R∗)) contains a cycle of length 3. Hence gr(TZ(R)(Γ(R∗))) = 3. 2

Corollary 4.1 Let Z(R) be the set of zero-divisors of R. Then

gr(TZ(R)(Γ(R∗))) =

{
3 |Z(R)| > 2,

∞ otherwise.

5. Traversability of TZ(R)(Γ(R∗))

In this section, we show that TZ(R)Γ(R∗)) can be an Eulerian graph and contains an Eulerian trail.
Also, we find out when the graph TZ(R)Γ(R∗)) is a Hamiltonian graph.

Theorem 5.1 Let R be a commutative ring with non-zero unity such that |R| ≥ 4, and |Z(R)| ≥ 3.
Then TZ(R)(Γ(R∗)) is Eulerian if and only if |R| is even and |Z(R)| is odd. Moreover, |Reg(R)| is odd.
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Proof: Assume that TZ(R)(Γ(R∗)) is Eulerian. Then each vertex in the graph TZ(R)(Γ(R∗)) has even
degree. According to Theorem 2.4, the degree of each vertex of TZ(R)(Γ(R∗)) is either (|R| − 2) or
(|Z(R)| − 1). Now we have the following two cases:

(i) If x ∈ Z(R)∗, then deg(x) = |R| − 2, which is even. Thus |R| is even.

(ii) If x ∈ Reg(R), then deg(x) = |Z(R)| − 1, which is even. Thus |Z(R)| is odd.

Hence |R| is even and |Z(R)| is odd. Moreover, |Reg(R)| is odd.
Conversely, assume that |R| is even and |Z(R)| is odd. Then (|R| − 2) is even and |Z(R)∗| is also

even. Using Theorem 2.4, we conclude that all the vertices of TZ(R)(Γ(R∗)) have even degree. Hence
TZ(R)(Γ(R∗)) is Eulerian. 2

Remark 5.1 For any commutative ring R with 1 ̸= 0, we know that TZ(R)(Γ(R)) can not be an Eulerian
graph (for reference see [8]). But, in view of previous theorem, TZ(R)(Γ(R∗)) can be an Eulerian graph.

Example 5.1 The following two examples represent the Eulerian graph.

(i) Let R = Z2 × Z2 × Z2. Then Z(R) = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0)}
and Reg(R) = {(1, 1, 1)} (see Fig. 5).

Figure 5: TZ(R)(Γ(R∗)), where R = Z2 × Z2 × Z2

(ii) Let R = Z2 × F4, where F4
∼= Z2[x]

⟨1+x+x2⟩ . Then Reg(R) = {(1, 1), (1, x), (1, 1 + x)} and Z(R) =

{(0, 0), (0, 1), (0, x), (0, 1 + x), (1, 0)} (see Fig. 6).
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Figure 6: TZ(R)(Γ(R∗)), where R = Z2 × Z2[x]
⟨1+x+x2⟩

Theorem 5.2 Let R be a commutative ring with non-zero unity such that |R| ≥ 4, and |Z(R)| ≥ 3.
Then TZ(R)(Γ(R∗)) contains an Eulerian trail if and only if either |Z(R)| = 3 and |Reg(R)| is even or
|Reg(R)| = 2 and |Z(R)| is even.

Proof: Assume that TZ(R)(Γ(R∗)) contains an Eulerian trail. Then the graph TZ(R)(Γ(R∗)) has exactly
two vertices with odd degree. Suppose that the two vertices w and z have odd degree and the vertices
x1, x2, . . . , xn have even degrees. Then we have the following cases:

(i) If w, z ∈ Z(R)∗ and xi ∈ Reg(R) for all 1 ≤ i ≤ n, then deg(w) = deg(z) is odd and deg(xi)
for all 1 ≤ i ≤ n is even, therefore (|R| − 2) is odd and |Z(R)∗| = 2 is even, thus |R| is odd and
|Z(R)| = 3. Hence |Z(R)| = 3 and |Reg(R)| is even.

(ii) If w, z ∈ Z(R)∗ and there exists at least one vertex xj ∈ Z(R)∗, then deg(w) = deg(z) = deg(xj)
is odd. Hence each vertex of TZ(R)(Γ(R∗)) has odd degree, which contradicts our assumption.

(iii) If w, z ∈ Reg(R) and xi ∈ Z(R)∗ for all 1 ≤ i ≤ n, then deg(w) = deg(z) is odd and deg(xi) for all
1 ≤ i ≤ n is even. Note that |Z(R)∗| is odd and |R| − 2 is even. So |Z(R)| is even and |R| is even.
Since w, z ∈ Reg(R) only, we have |Reg(R)| = 2. Hence |Reg(R)| = 2 and |Z(R)| is even.

(iv) If w, z ∈ Reg(R) and there exists at least one vertex xj ∈ Reg(R), then deg(w) = deg(z) = deg(xj)
is odd. Hence each vertex of TZ(R)(Γ(R∗)) has odd degree, which contradicts our assumption.

(v) If w ∈ Z(R)∗ and z ∈ Reg(R), then deg(w) = deg(z) = deg(xi) for all 1 ≤ i ≤ n is odd. Hence
each vertex of TZ(R)(Γ(R∗)) has odd degree, which contradicts our assumption.

As a result, we have either |Z(R)| = 3 and |Reg(R)| is even or |Reg(R)| = 2 and |Z(R)| is even.
Conversely, assume that either |Z(R)| = 3 and |Reg(R)| is even or |Reg(R)| = 2 and |Z(R)| is even.

We first suppose that |Z(R)| = 3 and |Reg(R)| is even. For any vertex x of TZ(R)(Γ(R∗)), we have the
following two cases:

(i) If x ∈ Z(R)∗, then deg(x) = (|R|−2). Therefore, TZ(R)(Γ(R∗)) has two non-zero elements in Z(R)
with odd degree.
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(ii) If x ∈ Reg(R), then deg(x) = |Z(R)∗| = 2. Therefore, TZ(R)(Γ(R∗)) has |Reg(R)| elements in
Reg(R) with even degree.

Thus, TZ(R)(Γ(R∗)) has only two vertices in Z(R)∗ with odd degree and |Reg(R)| vertices in Reg(R)
with even degree. Hence TZ(R)(Γ(R∗)) contains an Eulerian trail.

Now, we suppose that |Reg(R)| = 2 and |Z(R)| is even. Then |R| is even. For any vertex x of
TZ(R)(Γ(R∗)), we have the following two cases:

(i) If x ∈ Z(R)∗, then deg(x) = (|R| − 2). Therefore, TZ(R)(Γ(R∗)) has |Z(R)∗| elements in Z(R)
with even degree.

(ii) If x ∈ Reg(R), then deg(x) = (|Z(R)| − 1). Therefore, TZ(R)(Γ(R∗)) has two elements in Reg(R)
with odd degree.

Thus, TZ(R)(Γ(R∗)) has only two vertices in Reg(R) with odd degree and |Z(R)∗| vertices in Z(R) with
even degree. Hence TZ(R)(Γ(R∗)) contains an Eulerian trail. 2

Remark 5.2 In the above theorem, if |Z(R)| = 3, then the graph TZ(R)(Γ(R∗)) has an Eulerian trail
begins at one of these two non zero elements of Z(R) and ends at other. Also, if |Reg(R)| = 2, then
the graph TZ(R)(Γ(R∗)) has an Eulerian trail begins at one of these two elements of Reg(R) and ends at
other.

Example 5.2 The following two examples have the Eulerian trail.

(i) Let R = Z2×Z4. Then Z(R) = {(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 2)} and Reg(R) = {(1, 1), (1, 3)}
(see Fig.7).

Figure 7: TZ(R)(Γ(R∗)), where R = Z2 × Z4

(ii) Let R =
Z3[x]

⟨x2⟩
. Then Z(R) = {0, x, 2x} and Reg(R) = {1, 2, 1+x, 2+x, 1+2x, 2+2x} (see Fig.8).
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Figure 8: TZ(R)(Γ(R∗)), where R = Z3[x]
⟨x2⟩

Corollary 5.1 Let R be a commutative ring with non-zero unity such that |R| ≤ 3. Then TZ(R)(Γ(R∗))
can not be an Eulerian graph and has no Eulerian trail.

Theorem 5.3 Let R be a finite commutative ring with 1 ̸= 0, such that |R| = n ≥ 4. If |Z(R)| ≥ n
2 +1,

then TZ(R)(Γ(R∗)) is Hamiltonian.

Proof: Assume that w and z are any two vertices of TZ(R)(Γ(R∗)). Then we have the following two
cases:

(i) If w and z are adjacent for all w, z ∈ TZ(R)(Γ(R∗)), then TZ(R)(Γ(R∗)) is complete. Therefore,
TZ(R)(Γ(R∗)) is Hamiltonian.

(ii) If w and z are nonadjacent for some w, z ∈ TZ(R)(Γ(R∗)), then w, z ∈ Reg(R). Therefore, deg(w) =
deg(z) = |Z(R)| − 1. Thus

deg(w) + deg(z) = |Z(R)| − 1 + |Z(R)| − 1 ≥ n

2
+

n

2
= n.

Hence TZ(R)(Γ(R∗)) is Hamiltonian. 2

Corollary 5.2 Let R be a finite commutative ring with 1 ̸= 0, such that |R| = n ≥ 4. If |Z(R)| ≥ n
2 +1

for each pair w, z of Reg(R), then TZ(R)(Γ(R∗)) + wz is Hamiltonian if and only if TZ(R)(Γ(R∗)) is
Hamiltonian.
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