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Introduction to Gradient h-almost η-Ricci Soliton on Warped Product Spaces ∗

Nandan Bhunia, Sampa Pahan, Arindam Bhattacharyya and Sanjib Kumar Datta

abstract: In this paper, we introduce the new concept of gradient h-almost η-Ricci soliton. We discuss here
a steady or expanding gradient h-almost η-Ricci soliton warped product Bn

×f F m, m > 1. We show that the
warping function f of this warped product attains minimum as well as maximum and it will be a Riemannian
product under certain conditions. We also describe some suitable restrictions to these constructions for the
compact base of this warped product. Later, we study h-almost η-Ricci soliton and gradient h-almost η-Ricci
soliton on warped product manifolds including a concurrent vector field.
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1. Introduction

Firstly, we discuss the concept of the warped product. A fertile generalization of the concept of the
direct or cartesian product is nothing but a concept of the warped product. The notion of the warped
product has come in the physical and mathematical literature. The idea of the warped product had
been developed due to a surface of revolution. There are two natural elongations of the warped product
manifolds which are convolution manifolds and twisted products. There exist so many exact solutions of
Einstein field equations and modified field equations. These solutions are warped product. Robertson-
walker models and the Schwarzschild solution are the examples of warped product. For the purpose of
the study of manifolds of negative curvature Bishop and O’Neill [3] introduced the warped product.

Recently, the perusal of warped product plays a significant role. At first, Bishop and O’ Neill [3] had
given the idea of warped products and they had constructed examples of complete Riemannian manifolds
with negative sectional curvature. Suppose that (B, gB) and (F, gF ) are two Riemannian manifolds of
positive dimensions and f : B → (0,∞) is a positive smooth function. Also, suppose that π : B×F → B

and η : B×F → F are the natural projections on B and F respectively. The warped product M = B×fF

is the manifold B × F furnished with the following Riemannian structure such that

g = π∗gB + (f ◦ π)2η∗gF , (1.1)

where f is known as warping function. π∗ and η∗ are pull back maps of π and η respectively. B and
F are base and fiber of M respectively. Note that if f is a constant function, then M is just a usual
Riemannian product.

Though in the Riemannian geometry, the class of warped products with a non-constant warping functions
serve a rich class of examples, Kim and Kim [17] showed it there hardly exists a compact Einstein warped
product having non-constant warping function under the condition of non-positiveness of scalar curvature.
Additionaly, they noticed that one warped product would be an Einstein manifold if its base is a quasi-
Einstein metric. It should be focused that some paradigms of expanding quasi - Einstein manifolds with
an arbitrary Einstein manifold as a fiber and steady quasi-Einstein manifolds having fiber of non-negative
scalar curvature which was developed in Besse [2]. In recent times, Barros, Batista and Ribeiro [1] served
few volume estimations of Einstein warped products which are similar to a classical result of Yau [21] and

∗ The first author is supported by UGC JRF of India.
2010 Mathematics Subject Classification: 53C15, 53C21, 53C24, 53C25.

Submitted September 15, 2022. Published January 29, 2023

1
Typeset by B

S
P
M

style.

© Soc. Paran. de Mat.

www.spm.uem.br/bspm
http://dx.doi.org/10.5269/bspm.65021


2 N. Bhunia, S. Pahan, A. Bhattacharyya and S. K. Datta

Calabi [7] for complete Riemannian manifolds with non-negative Ricci curvature. Their approach is with
quasi-Einstein manifold. They also showed a hindrance for the existence of such a class of manifolds.
In this regard, we want to mention He, Petersen and Wylie’s [15] work on Einstein warped product
manifolds. As it is an elongation of Case, Shu and Wei’s [9] work and some erstwhile works of Kim and
Kim [17], the result of [15] is that the base may have non-void boundary.

Secondly, we discuss the concept of Ricci soliton. Ricci solitons are the generalization of Einstein mani-
folds. Hamilton [13] developed this idea at the beginning of 80’s. A Riemannian manifold M furnished
with a metric g is said to be a Ricci soliton if it satisfies the following relation

Ric +
1

2
£Xg = λg, (1.2)

where λ is a scalar quantity and X is a vector field of M . The above equation (1.2) is known as the
fundamental equation. Ricci solitons are of three types depending upon the values of λ. If λ > 0, λ < 0
and λ = 0 , then a Ricci soliton will be shrinking, expanding and steady respectively. Moreover, If we
take X = ∇ψ in equation (1.2), where ψ being a smooth function on M , then we denote the gradient
Ricci soliton as (M, g,∇ψ, λ). Hence the equation (1.2) becomes

Ric + ∇2ψ = λg, (1.3)

where ∇2ψ is the Hessian of ψ. To know more see [8,13].

J. N. Gomes, Q. Wang, C. Xia introduced a new kind of Ricci soliton, called h-almost Ricci soliton in
[12]. They have given the following definition.

An h-almost Ricci soliton is a complete Riemannian manifold (Mn, g) which are smooth and satisfy the
equation

Ric +
h

2
£Xg = λg + µ(η ⊗ η),

where X ∈ X(M), λ : M → R is a soliton function and h : M → R is a function. Then (Mn, g,X, h, λ)
is called an h-almost Ricci soliton.

Inspired and motivated by the concept of warped product and Ricci soliton [4,18,20], we introduce a new
notion of h-almost η-Ricci soliton as follows.

Definition 1.1. A complete Riemannian manifold (Mn, g) furnished with a metric g is said to be an
h-almost η-Ricci soliton if it satisfies the following relation

Ric +
h

2
£Xg = λg + µ(η ⊗ η), (1.4)

where λ is a scalar quantity, X is a vector field on M , h : M → R is a smooth function and η is a 1-form.

Moreover, if we put X = ∇ψ in equation (1.4), then we obtain an another definition as follows.

Definition 1.2. A complete Riemannian manifold (Mn, g) furnished with a metric g is said to be a
gradient h-almost η-Ricci soliton if it satisfies the following relation

Ric + h∇2ψ = λg + µ(η ⊗ η), (1.5)

where ψ is a smooth function on M and ∇2ψ is the Hessian of ψ. We denote it as (M, g,∇ψ, h, η, λ) for
convenience.

At the beginning of 90’s, it was proved that a Ricci soliton which is a compact gradient expanding or
steady, is an Einstein manifold [14,16]. Petersen and Wylie [19] gave a theorem in reference to Brinkmann
[5] that warped product is nothing but a surface gradient Ricci soliton. Robert Bryant [6,10] constructed
an example of a steady Ricci soliton as a warped product (0,∞) ×f Sm, where m is greater than one,
where warping function is a radial function. As the function f is not limited, hence we face two very
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simple questions which are given as follows.
(1) When a warped product having a limited warping function would be an h-almost η-Ricci soliton ?
(2) Are there any condition? if yes, what are these conditions ?

In this paper, Theorem 2.7 partly provides an answer to these above questions. The concept of [17]
inspires our second theorem. Our first theorem is the natural generalization from Einstein case to Ricci
soliton case except the condition of compactness on the product which has been considered in [17]. By
the way, one significant fact comes out during the study of h-almost η-Ricci soliton which are felt like a
warped product. The base space of them satisfy the following equation

Ric + ∇2φ = λgB +
m

f
∇2f, (1.6)

It is the generalization of Einstein metrics containing quasi-Einstein metrics. Theorem 2.8 sets up a crite-
rion of compactness for shrinking gradient h-almost η-Ricci soliton warped product under the assumption
that the base is compact. The following two lemmas are very important for further study.

Lemma 1.3. [3] If Y , Z ∈ Γ(B) and V , W ∈ Γ(F ) on M , then the following results hold

(i) On B, DY Z is the lift of ∇Y Z,

(ii) DY V = DV Y =
Y (f)

f
V,

(iii) H(DV W ) = −
g(V,W )

f
∇f,

(iv) On F, V (DV W ) ∈ Γ(F ) is the lift of F∇V W .

Particularly,

∆h̃ = ∆h+
m

f
∇h(f), (1.7)

for all smooth functions h on B.

Lemma 1.4. [3] If Y , Z ∈ Γ(B) and V , W ∈ Γ(F ) on M = Bn ×f F
m, where m > 1, then the following

results hold

(i) Ric(Y, Z) = RicB(Y, Z) −
m

f
Hf (Y, Z),

(ii) Ric(Y, V ) = 0,

(iii) Ric(V,W ) = RicF (V,W ) −

[

∆f

f
+

| ∇f |2

f2
(m− 1)

]

g(V,W ).

Besides these two lemmas, the following two identities will help us to prove Proposition 2.3.

div(∇2φ) =Ric(∇φ, .) + d(∆φ), (1.8)

1

2
d(| ∇φ |2) =(∇2φ)(∇φ, .). (1.9)

Now, by taking trace of the equation (1.5), we gain

R + h∆ψ = kλ+ µ.

Hamilton [14] proved the following result

2λψ− | ∇ψ |2 +∆ψ = c, (1.10)

where c is some constant. In this way, we have derived similar equation to (1.10) for gradient h-almost
η- Ricci soliton warped product’s base, cf. equation (2.4). It is the first outcome of our next section.
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2. The conditions for existence of h-almost η-Ricci soliton on warped product spaces

Now a Riemannian manifold (Bn, gB) has been taken as possible base of a gradient h-almost η-Ricci
soliton warped product (M = Bn ×f F

m, g,∇ψ, h, η, λ). We cosider that ψ is the potential function and
ψ being the lift of φ, which is a smooth function defined on Bn, that is, the crucial information of M
will be carried by base. Keeping in mind with these considerations, we set up some conditions on the
functions which parametrize a gradient h-almost η-Ricci soliton by the almost η-Ricci soliton warped
product. Hamilton’s equation (1.10) for Bn is the first condition.

Proposition 2.1. Let M = Bn ×f F
m be a warped product and φ defined on B is a smooth function

such that (M, g,∇φ̃, h, η, λ) is a gradient h-almost η-Ricci soliton. Then we obtain

2λφ− | ∇φ |2 +∆φ+
m

f
∇φ(f) = c,

where c is a constant.

Proof. Hamilton’s equation (1.10) on manifold M is given by

2λφ̃− | ∇φ̃ |2 +∆φ̃ = c, (2.1)

where c is some constant. Note that

∇φ̃ =∇̃φ, (2.2)

∆φ̃ =∆φ+
m

f
∇φ(f). (2.3)

Using equations (2.2) and (2.3) in equation (2.1), we gain

2λφ− | ∇φ |2 +∆φ+
m

f
∇φ(f) = c. (2.4)

This completes the proof. �

Proposition 2.2. Let M = Bn ×f F
m be a warped product and φ defined on B is a smooth function

such that (M, g,∇φ̃, h, η, λ) is a gradient h-almost η-Ricci soliton, where m > 1. Then we gain

RicB + hHφ = λgB +
m

f
Hf + µ(η ⊗ η),

RicF = [λf2 + f∆f + (m− 1) | ∇f |2 −hf∇φ(f)]gF + µ(η ⊗ η).

Proof. From Lemma 1.4, it is clear that

Ric(Y, Z) = RicB(Y, Z) −
m

f
Hf (Y, Z), ∀ Y, Z ∈ Γ(B). (2.5)

The gradient h-almost η-Ricci soliton is

Ric + h∇2φ̃ = λg + µ(η ⊗ η).

i.e., Ric(Y, Z) = λgB(Y, Z) + µ(η ⊗ η)(Y, Z) − hHφ(Y, Z). (2.6)

From the equations (2.5) and (2.6), it follows that

RicB + hHφ = λgB +
m

f
Hf + µ(η ⊗ η). (2.7)

Hence, this completes the proof of the first assertion of Proposition 2.2.

For V,W ∈ Γ(F ) Lemma 1.4 gives

Ric(V,W ) = RicF (V,W ) −

[

∆f

f
+ (m− 1)

| ∇f |2

f2

]

g(V,W ), ∀ V,W ∈ Γ(F ). (2.8)
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Also, from the equation (1.5), we obtain

Ric(V,W ) = λf2gF (V,W ) − h∇2φ̃(V,W ) + µ(η ⊗ η)(V,W ). (2.9)

In view of the equations (2.8) and (2.9), we have

RicF (V,W ) =λf2gF (V,W ) − h∇2φ̃(V,W ) + µ(η ⊗ η)(V,W )

+ f

[

∆f +
(m− 1) | ∇f |2

f

]

gF (V,W ). (2.10)

Since, ∇φ̃ ∈ Γ(B) and using the equation (1.7), we obtain

∇2φ̃(V,W ) = g(DV ∇φ̃,W ) = g

(

∇φ̃(f)

f
V,W

)

= f∇φ(f)gF (V,W ). (2.11)

In view of the equation (2.11), the equation (2.10) implies that

RicF (V,W ) =[λf2 + f∆f + (m− 1) | ∇f |2

− hf∇φ(f)]gF (V,W ) + µ(η ⊗ η)(V,W ). (2.12)

Hence, this completes the proof of the second assertion of Proposition 2.2 and consequently, the proof of
Proposition 2.2 has been completed. �

Proposition 2.3. Let (Bn, g) be a Riemannian manifold having two smooth functions φ and f(> 0)
which satisfy the following equations

Ric + h∇2φ = λg +
m

f
∇2f + µ(η ⊗ η), (2.13)

2λφ− | ∇φ |2 +∆φ+
m

f
∇φ(f) = c, (2.14)

for some constants m(6= 0), c, λ and µ ∈ R. Then f and φ will satisfy the following equation

λf2 + f∆f + (m− 1) | ∇f |2 −hf∇φ(f) = β, (2.15)

where β ∈ R is a constant, if the following condition is satisfied

0 = − hfd(∇φ(f)) +
hf2

m
d(h | ∇φ |2) −

hf2

m
d(| ∇φ |2)

+ 2fµ(η ⊗ η)(∇f, .) +
f2

m
∆φdh−

2hµf2

m
(η ⊗ η)(∇φ, .)

−
2f2

m
(∇2φ)(∇h, .) + dhf(∇φ(f)). (2.16)

Proof. By taking trace on both sides of the equation (2.13), we have

S = nλ+
m

f
∆f + µ− h∆φ, (2.17)

where scalar curvature of B is S. Hence,

dS = −
m

f2
∆fdf +

m

f
d(∆f) − ∆φdh− hd(∆φ). (2.18)

Now, we use the second contracted Bianchi identity, which is

−
1

2
dS + div(Ric) = 0. (2.19)
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We obtain by computation from the equation (2.13),

div(Ric) =
m

f
Ric(∇f, .) +

m

f
d(∆f) −

m

2f2
d(| ∇f |2)

− hRic(∇φ, .) − hd(∆φ) − (∇2φ)(∇h, .) (2.20)

From the equation (2.13), it follows that

Ric(∇f,X) + h(∇2φ)(∇f,X) =λdf +
m

2f
d(| ∇f |2) + µ(η ⊗ η)(∇f, .)

− h(∇2φ)(∇f, .). (2.21)

Replacing ∇f by ∇φ in the equation (2.21), we obtain

Ric(∇φ, .) =λdφ+
m

f
(∇2f)(∇φ, .)

+ µ(η ⊗ η)(∇φ, .) −
h

2
d(| ∇φ |2). (2.22)

Using equations (2.21) and (2.22) in the equation (2.20), we gain

div(Ric) =
mλ

f
df +

m(m− 1)

2f2
d(| ∇f |2) +

mµ

f
(η ⊗ η)(∇f, .)

−
mh

f
d(∇φ(f)) +

m

f
d(∆f) − hλdφ− hµ(η ⊗ η)(∇φ, .)

+
h2

2
d(| ∇φ |2) − hd(∆φ) − (∇2φ)(∇h, .). (2.23)

Using equations (2.18) and (2.23) in the equation (2.19), we obtain

0 =
m

2f2
∆fdf +

m

2f
d(∆f) +

1

2
∆φdh

−
h

2
d(∆φ) +

mλ

f
df +

m(m− 1)

2f2
d(| ∇f |2)

+
mµ

f
(η ⊗ η)(∇f, .) −

mh

f
d(∇φ(f)) − hλdφ

− hµ(η ⊗ η)(∇φ, .) +
h2

2
d(| ∇φ |2) − (∇2φ)(∇h, .). (2.24)

Multiplying the equation (2.24) by 2f2

m
, we get

0 =d[f∆f + λf2 + (m− 1) | ∇f |2] −
hf2

m
d[∆φ + 2λφ− h | ∇φ |2]

+
f2

m
∆φdh+ 2µf(η ⊗ η)(∇f, .) − 2hfd(∇φ(f))

−
2hµf2

m
(η ⊗ η)(∇φ, .) −

2f2

m
(∇2φ)(∇h, .).

Using the hypothesis

2λφ− | ∇φ |2 +∆φ+
m

f
∇φ(f) = c,
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we derive after some steps

0 =d(f∆f + λf2 + (m− 1) | ∇f |2) + hfdf(∇φ(f)) − hdf(∇φ(f))

+
hf2

m
d(h | ∇φ |2) −

hf2

m
d(| ∇φ |2) + 2fµ(η ⊗ η)(∇f, .)

+
f2

m
∆φdh− 2hfd(∇φ(f)) −

2hµf2

m
(η ⊗ η)(∇φ, .)

−
2f2

m
(∇2φ)(∇h, .) + dhf(∇φ(f)). (2.25)

If we consider that

0 = − hfd(∇φ(f)) +
hf2

m
d(h | ∇φ |2) −

hf2

m
d(| ∇φ |2)

+ 2fµ(η ⊗ η)(∇f, .) +
f2

m
∆φdh−

2hµf2

m
(η ⊗ η)(∇φ, .)

−
2f2

m
(∇2φ)(∇h, .) + dhf(∇φ(f)).

Then the equation (2.25) becomes

d
(

f∆f + λf2 + (m− 1) | ∇f |2 −hf(∇φ(f))
)

= 0, (2.26)

which is sufficient to complete the proof. �

Theorem 2.4. Let M = Bn ×f F
m be a warped product and φ is a smooth function on B such that

(M, g,∇φ̃, h, η, λ) is a steady or expanding gradient h-almost η-Ricci soliton. Also, suppose that fiber
Fm of this warped product is of dimension ≥ 2 and the warping function f of it attains minimum
as well as maximum with the condition (2.26). Then M will definitely be a Riemannian product if

(h− 1)∇φ(f) ≥ (1−m)
f

| ∇f |2.

Proof. Let M = Bn ×f F
m, m > 1, be a gradient h-almost η-Ricci soliton satisfying

Ric + h∇2φ̃ = λg + µ(η ⊗ η)

Then Proposition 2.2 indicates

RicF = βgF + µ(η ⊗ η),

where

β = λf2 + f∆f + (m− 1) | ∇f |2 −hf(∇φ(f)).

From Proposition 2.3, it is clear that β is a constant. Equations (2.13) and (2.14) are guaranteed from
the equations (2.4) and (2.7) satisfying the condition (2.26). Suppose that p, q ∈ Bn are the points where
the warping function f reaches its minimum as well as maximum in Bn. Hence

∇f(p) = 0 = ∇f(q), ∇f(p) ≤ 0 ≤ ∇f(q). (2.27)

As, λ ≤ 0 and f > 0 , we obtain

−λ(f(p))2 ≥ −λ(f(q))2

and plugging this with the equation (2.27), we get

0 ≥ f(p)∆f(p) = β − λ(f(p))2 ≥ β − λ(f(q))2 = f(q)∆f(q) ≥ 0. (2.28)
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Equation (2.28) now implies

β − λ(f(p))2 = β − λ(f(q))2 = 0.

Hence, λ < 0 implies that f(p) = f(q). That is, the warping function f is a constant function.

When λ = 0, we obtain that β = 0 and the equation (2.27) becomes

Lf =(∆ − ∇φ)f, [where L = ∆ − ∇φ]

=
(1 −m)

f
| ∇f |2 +(h− 1)∇φ(f)

Clearly, (1−m)
f

| ∇f |2≤ 0. It is also seen that Lf ≤ 0, if (h− 1)∇φ(f) ≥ (1−m)
f

| ∇f |2 .

Hence, if (h− 1)∇φ(f) ≥ (1−m)
f

| ∇f |2, then by using strong maximum principle, it is obvious that f is
a constant. Therefore, in both cases M is a Riemannian product. �

Theorem 2.5. Let M = Bn ×f F
m be a warped product and φ is a smooth function on B such that

(M, g,∇φ̃, h, η, λ) is a shrinking gradient h-almost η-Ricci soliton having compact base and fiber of di-
mension greater than or equal to two. Then M will definitely be a compact manifold if
∫

Bn(1 − h)f(∇φ(f))dB > 0.

Proof. Let M = Bn×fF
m, m > 1, be a gradient h-almost η-Ricci soliton with Ric+h∇2φ̃ = λg+µ(η⊗η).

From Theorem 2.4, it follows that RicF = βgF + µ(η ⊗ η), where β is a constant which is given by the
equation (2.27) or equivalently

β =λf2 + f∆f + (m− 1) | ∇f |2 −hf(∇φ(f))

=λf2 + f(∆f − ∇φ(f)) + (m− 1) | ∇f |2 +(1 − h)f∇φ(f)

=λf2 + fLf + (m− 1) | ∇f |2 +(1 − h)f∇φ(f).

Integrating on both sides, we have

β.volφ(Bn) =λ

∫

Bn

f2e−φdB + (m− 2)

∫

Bn

| ∇f |2 e−φdB

+

∫

Bn

(1 − h)f(∇φ(f))dB.

As m > 1 and λ > 0, hence we can conclude that β > 0 if
∫

Bn(1 − h)f(∇φ(f))dB > 0. Therefore, by
using Bonnet-Myers Theorem, it is obvious that Fm is compact and consequently Bn ×f F

m becomes a
compact manifold. �

Theorem 2.6. Let M̄ = I ×f M be a generalized Robertson-walker space time furnished by a metric
ḡ = −dt2 ⊕ f2g, where (M, g) is a Riemannian manifold and I is an open connected interval with the

usual flat metric −dt2. If ( ¯̄M, ḡ, u, h, η, λ) be a gradient h-almost η-Ricci soliton, for u =
∫ t

a
f(r)dr,

where a ∈ I is a constant, then Ric = (λ− hḟ)ḡ + µ(η ⊗ η).

Proof. Assume that ζ = grad u, hence ζ = f(t)∂t. Clearly, the vector field is orthogonal to M . Let ∂t,
∂1, ∂2, ..., ∂m are orthogonal bases of χ(M̄), then the Hessian tensor of u is given as follows.

Hu(∂t, ∂t) = ḡ(∇Xgrad u, Y ).

Now, the following cases may arise. The first case when X = Y = ∂t. For this, we get

Hu(∂t, ∂t) =ḡ(∇∂t
grad u, ∂t)

=ḟ ḡ(∂t, ∂t).
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The second case when X = ∂t and Y = ∂i, i = 1, 2, 3, ...,m. For this , we get

Hu(∂t, ∂i) =ḡ(∇∂t
grad u, ∂i)

=ḟ ḡ(∂t, ∂i).

At last, when X = ∂t and Y = ∂i, i = 1, 2, 3, ...,m. For this , we obtain

Hu(∂i, ∂j) =ḡ(∇∂i
grad u, ∂j)

=f ḡ(∇∂i
∂t, ∂j)

=f ḡ

(

ḟ

f
∂i, ∂j

)

=ḟ ḡ(∂i, ∂j).

Hence, Hu(X,Y ) = ḟ ḡ(X,Y ) and consequently

(£ξ ḡ)(X,Y ) =ḡ(∇Xgrad u, Y ) + ḡ(∇Y grad u,X)

=2Hu(X,Y )

=2ḟ ḡ(X,Y ).

Let ( ¯̄M, ḡ, u, h, η, λ) be a gradient h-almost η-Ricci soliton, then

Ric +
h

2
£ξ ḡ = λḡ + µ(η ⊗ η)

i.e., Ric = (λ− hḟ)ḡ + µ(η ⊗ η)

This completes the proof of Theorem 2.6. �

Now we give the following definition for proving the next theorems.

A vector field ς on a Riemannian manifold M which satisfies ∇Xς = X , for any vector field X is called a
concurrent vector field [11]. ς is called gradient if there is a function u defined on M such that ς = ∇u

Theorem 2.7. Let (M, g, h, ς, λ, µ) be an h-almost η-Ricci soliton and ς be a concurrent vector field on
M where M = Bn ×f F

m and ς2 6= 0. Then F becomes an Einstein manifold for U1, U2 ∈ X(B).

Proof. We consider that (M, g, h, ς, λ, µ) is an h-almost η-Ricci soliton. Then we have

Ric(X,Y ) +
h

2
£Xg(X,Y ) = λg(X,Y ) + µη(X)η(Y ),

where η(X) = g(X,U).

Since ς is a concurrent vector field, we obtain

Ric(X,Y ) +
h

2
(g(DXς, Y ) + g(DY ς,X)) = λg(X,Y ) + µη(X)η(Y ).

Hence we get
Ric(X,Y ) = (λ− h)g(X,Y ) + µη(X)η(Y ),

Putting X = V ∈ X(F ), Y = W ∈ X(F ), and U1, U2 ∈ X(B) then by using Lemma 1.4, it follows that

RicF (V,W ) = (λ − h)f2gF (V,W ) +

[

∆f

f
+

| ∇f |2

f2
(m− 1)

]

f2gF (V,W ).

Since ς is concurrent and ς2 6= 0, ς is concurrent and f is constant. Hence we have [ ∆f
f

+ |∇f |2

f2 (m−1)] = 0
and also we obtain

RicF (V,W ) = (λ− h)f2gF (V,W ).

Therefore, F is an Einstein manifold. �
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Theorem 2.8. Let (M, g, h, u, ς, λ, µ) be a gradient h-almost η-Ricci soliton where M = Bn ×f F
m.

Then (B, g, u, λ) is a gradient Ricci soliton if h is a constant function and U1, U2 ∈ X(F ).

Proof. Let (M, g, h, u, ς, λ, µ) be a gradient h-almost η-Ricci soliton. Then we have

Ric(X ′, X ′′) + hHu(X ′, X ′′) = λg(X ′, X ′′) + µη(X ′)η(X ′′).

Let X ′ = Y ∈ X(B), X ′′ = Z ∈ X(B) and U1, U2 ∈ X(F ), then it follows that

Ric(Y, Z) + hHu1

B (Y, Z) = λg(Y, Z).

Using Lemma 1.4 we have

RicB(Y, Z) −
m

f
Hf (Y, Z) + hHu1

B (Y, Z) = λg(Y, Z).

Then we obtain

h(Y (Zu1)) − h(∇Y Z)u1 −
m

f
(Y (Zf)) + ∇Y (Z(m ln f)) − Z(Y (m ln f))

+ RicB(Y, Z) = λgB(Y, Z).

Hence we get

Y (Z(hu1 −m ln f)) − (∇Y Z)(hu1 −m ln f) + RicB(Y, Z) = λgB(Y, Z).

It follows that
H

φ
1

B (Y, Z) + RicB(Y, Z) = λgB(Y, Z),

where φ1 = hu1 − m ln f, h = constant and u1 = u at a fixed point on F. Hence we establish that
(B, g, u, λ) is a gradient Ricci soliton. �
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