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Impulsive Fractional Dynamic Equation with Non-local Initial Condition on Time Scales
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abstract: In this manuscript the existence and uniqueness of an impulsive fractional dynamic equation on
time scales involving non-local initial condition with the help of Caputo nabla derivative has been investigated.
The existency of the solution is based on the nonlinear alternatives Leray-Schauder’s type fixed point theorem
along with the Banach contraction theorem. The comparison of Caputo nabla derivative and Riemann-
Liouville nabla derivative of fractional order is also discussed in the context of time scale.
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1. Introduction

In our real world, some situation may arise which cannot be modeled in entirely continuous phenom-
ena or in entirely discrete phenomena, in such situation we need a common domain which justify both the
conditions. On the basis of unification of these conditions Stefan Hilger introduced a common domain
called time scale T which unifies both continuous and discrete calculus [16,17]. Dynamic equations on
time scale were introduced to solve this kind of model which is a combination of both the differential
and difference equation. Many researchers worked on dynamic equation in linear and non linear form
involving local initial and boundary conditions. Some authors have discussed the dynamic equation
using the tool of fractional calculus due to the accuracy and advantage in the physical interpretation.
For detailed study of fractional dynamic equations by Caputo, Rieamann-Liouville, Caputo-Hadamard
and many others, readers can go through the manuscripts [4,6,8,9,12,29,24,26,30,32] and the references
therein.

In real world situation, we have seen some equations where the systems are allowed to undergo some
sudden perturbation, whose duration can be negligible in comparison with the duration of the process. In
this case the solution of these equations may have jump discontinuities at time θ1 < θ2 < θ3 < · · ·, given
in the form p(θ+

k ) − p(θ−
k ) = Ik(θk, p(θ−

k )). The dynamic equations having jump discontinuities for their
solutions are called impulsive dynamic equations. The theory have interesting applications in the branch
of mathematical modeling of different types of real world situation which require sudden changes at a
particular time of their evolution, for example: natural disaster, particular diseases, etc. Work related to
impulsive dynamic equations can be seen in the manuscripts [13,18,19,26] and the reference therein. In
recent time, several researchers and authors have shown their attention in the topic of impulsive dynamic
equations on time scales. However a few number of works have been seen in the impulsive dynamic
equation by using the fractional calculus on time scales with non local initial condition.
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In the manuscript [26], the authors discussed the impulsive dynamic equation in terms of non local
initial condition, whereas in [18,19], the authors investigated the fractional dynamic equation with instan-
taneous and non-instantaneous impulses with local initial condition by using the tools of delta (Hilger)
derivative. A dynamic model with non local initial conditions are applicable in all branches of science
and engineering, due to the advantage of using non local initial conditions such as, the measurement at
more places which can be incorporated to get a better model. For detailed study of the advantages of
non-local initial conditions, one can see [2] and the references therein.

So motivated by aforementioned work, it is worthwhile to study the impulsive fractional dynamic
equation with non-local initial condition of the type;











CDwp(θ) = L
(

θ, p(θ),C Dwp(θ)
)

, θ ∈ IT , θ 6= θk

p(θ+
k ) − p(θ−

k ) = Ik

(

θk, p(θ−
k ), k = 1, 2, 3, · · ·, n

p(0) = φ(p),

(1.1)

where k ∈ N∪ {0}, and IT = [0, T ] ∩T, for T ∈ T, denote the time scale interval. L : IT ×R×R → R is a
left dense(ld) continuous function, and CDwp(θ) denote the Caputo nabla derivative of order w ∈ (0, 1)
which is discussed later in the paper. We assume that 0 < θ0 < θ1 < θ2 < θ3 < ... < θn < θn+1 = T ,
which represents the impulse at a certain moment, and the term p(θ+

k ) = limd→0 p(θ + d) and p(θ−
k ) =

limd→0 p(θ − d) represents the right and left limits of the function p at θ = θk in the context of time
scales. Ik is a continuous real valued function on R for each k = 1, 2, 3, · · ·, m and Ik(θk, p(θ−

k )) are the
impulses acted on the time scale interval IT which will be specified later.
The manuscript is organized as follows. In Section 2, we have presented some auxiliary results related to
fractional dynamic equation on time scale, which will be required to show our main findings. In Section
3, we compare the Riemann-Liouville and Caputo nabla derivative in the context of time scale. In Section
4, we have given the existence and uniqueness theorem of an impulsive fractional dynamic equation with
non local initial condition. In Section 5, we provided an example, which makes the manuscript easier to
understand. Finally, conclusion of the paper is presented in Section 6.

2. Auxilary results

Definition 2.1. [29] A function ρ : T → R, defined by ρ(θ) = {ζ ∈ T : ζ < θ} is said to be backward
jump operator. Any θ ∈ T is said to be left dense if ρ(θ) = θ and if ρ(θ) = θ − 1, then θ is said to be
a left scattered point on T. If T has a minimum right scattered point say y, then set TV = T \ {y}, else
TV = T.

Definition 2.2. [26] A funtion x : T×R×R → R is said to be left dense continuous function, if x
(

·, u, v
)

is left dense continuous on T for each ordered pair (θ, ζ) ∈ R × R. And x(θ, ·, ·) is continuous on R × R

for fixed point θ ∈ T.
Remark: The set of all left dense continuous function from T to R is denoted by C

(

T,R
)

.

Definition 2.3. [19] Consider a function g : T → R. Let G be a function such that G∇(θ) = g(θ), for
each θ ∈ TV, then the nabla integral is presented by

∫ θ

a

g(x)∇x = G(x) − G(a).

Proposition 2.4. [6] Let g be an increasing continuous function on the time scale interval [0, T ] ∩T. If
G is the extension of g in the real line interval [0, T ], T ∈ R, one can get

G(θ) =

{

g(θ), if θ ∈ T,

g(ζ), if θ ∈ (θ, ρ(θ)) /∈ T,

then
∫ u

r

g(θ)∇θ ≤

∫ u

r

G(θ)dθ, (2.1)

for r, u ∈ [0, T ] ∩ T, such that r < u.
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Definition 2.5. [29, Higher order nabla derivative] Assume H : TV → R is a ld continuous function on a

time scale T. The second order nabla derivative H∇∇ = H
(2)
∇ can be define, provided H∇ is differentiable

on TV
(2) = TVV with derivative H

(2)
∇ = (H∇)∇ : TV

(2) → R. Similarly, proceeding upto nth order we get

H
(n)
∇ : TV

n → R, it is attained by cut out n right scattered left end points from T.

Definition 2.6. [29] Let H : TVn → R be a ld continuous function, such that H
(n)
∇ (θ)(nth order of nabla

derivative) is exists. Then the Caputo nabla derivative is defined as

CDw
a H(θ) =

1

Γ(n − w)

∫ θ

a

(θ − ρ(ζ))n−w−1H
(n)
∇ (ζ)∇ζ,

for n = [w] + 1. If w ∈ (0, 1), then

CDw
a H(θ) =

1

Γ(1 − w)

∫ θ

a

(θ − ρ(ζ))−wH∇∇ζ,

where [] is used to denote the greatest integer function.

Definition 2.7. [29] Let H be any ld continuous function define on the set TV, then the Riemann-
Liouville nabla derivative of order w ∈ (0, 1) is defined as

Dw
θ0

x(t) =
1

Γ(1 − w)

(

∫ θ

θ0

(

θ − ρ(ζ)
)−w

x(ζ)∇ζ
)∇

.

Definition 2.8. [6, Definition 13] Let H : IT → R be an integrable function. Then the Riemann-
Liouville nabla fractional integral of H is given by

D
−w
θ0

H(θ) = Jw
θ0
H(θ) =

1

Γ(w)

∫ θ

θ0

(θ − ρ(ζ))w−1H(ζ)∇ζ.

The Rieamm-Liouville nabla integral always satisfies the condition

Jw
θ0
Ju

θ0
H(θ) = J

w+u
θ0

H(θ).

Lemma 2.9. [6, Definition 13] If p(θ) be a ld continuous function, then
{

DuJwp(θ) = p(θ)

DuJwp(θ) = Jw−up(θ).

Definition 2.10. [19] Let D ⊂ C(T,R) be a set. Then D is a relatively compact, if it is bounded and
equicontinuous simultaneously.

Definition 2.11. [26] A mapping H : A → B is completely continuous, if for a bounded subset B ⊆ A,
H(B) is relatively compact in A.

Definition 2.12. [18, Nonlinear alternatives Leray-Schauder’s type fixed point theorem] Let X be a
Banach space with C ⊂ X closed and convex. Assume U is a relatively open subset of C with 0 ∈ U and
G : U → C is a compact map. Then either,
(i) G has a fixed point in U; or
(ii) there is a point u ∈ δU and λ ∈ (0, 1) with u = λG(u).

Definition 2.13. [26] If L : IT ×R×R → R is a ld continuous function, then for w ∈ (0, 1), a function
p is a solution of

CDwp(θ) = L
(

θ, p(θ),C Dwp(θ)
)

, p(θ)|θ=0 = φ(p)

if and only if p is the solution of the integral equation

p(θ) = φ(p) +
1

Γ(w)

∫ θ

0

(

θ − ρ(x))w−1L(x, p(x),C Dwp(x)
)

∇x. (2.2)
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3. Comparison of Riemann-Liouville and Caputo nabla derivative

Proposition 3.1. For any w ∈ R, let m − 1 < w < m, m ∈ N such that CDw
θ0
G(θ) is exist in the time

scale T, then

CDw
θ0
G(θ) = J

m−w
θ0

G
(m)
∇ (θ).

Proof. The proof is obvious from the definition 2.12 and 2.13. �

Theorem 3.2. For any θ ∈ TVn , the Caputo nabla derivative and Riemann-Liouville nabla derivative of
the order w, where m = [w] + 1 satisfies the following relation:

CDw
αG(θ) = Dw

α

(

G(θ) −

m−1
∑

v=0

(θ − α)v

Γ(v + 1)
G

(v)
∇ (α)

)

,

for a fixed point α ∈ T.
The proof of this theorem is based on the Taylor’s theorem defined in [30, Theorem 10].

Proof. Let us consider a ld continuous function G which is n times nabla differentiable, then for any fixed
α ∈ T and m ∈ N ∪ {0}, m < n one can get

G(θ) =

m−1
∑

v=0

(θ − α)v

Γ(v + 1)
G

(v)
∇ (α) +

1

Γ(m)

∫ θ

α

(θ − ρ(ζ)G
(m)
∇ (ζ)∇ζ

=

m−1
∑

v=0

(θ − α)v

Γ(v + 1)
G

(v)
∇ (α) + Jm

α G
(m)
∇ (θ). (3.1)

Now taking the Riemann-Liouville derivative Dw
α of order w in both side of Equation (3.1) and using

Lemma 2.9 and Proposition 3.1,

Dw
αG(θ) =Dw

α

m−1
∑

v=0

(θ − α)v

Γ(v + 1)
G

(v)
∇ (α) + Dw

αJ
(m)
α G

(m)
∇ (θ)

=Dw
α

n−1
∑

v=0

(θ − α)v

Γ(v + 1)
G

(v)
∇ (α) + Jm−w

α G
(m)
∇ (θ)

=Dw
α

m−1
∑

v=0

(θ − α)v

Γ(v + 1)
G

(v)
∇ (α) +C Dw

αG(θ). (3.2)

From the above we obtain

C
D

w
αG(θ) =D

w
αG(θ) − D

w
α

m−1
∑

v=0

(θ − α)v

Γ(v + 1)
G

(v)
∇ (α)

=D
w
α

(

G(θ) −

m−1
∑

v=0

(θ − α)v

Γ(v + 1)
G

(v)
∇ (α)

)

. (3.3)

�

Proposition 3.3. If w ∈ (0, 1), then m = 1. Hence, from the equation (3.3)

C
D

w
α (θ) = D

w
α

(

G(θ) − G(α)
)

.

Case 1: If the initial condition G(α) → 0, as α → 0, then

C
D

w
α (θ) = D

w
αG(θ). (3.4)
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Thus the Caputo nbala derivative of order w ∈ (0, 1) coincide with the Riemann-Liouville nabla derivative.
Case 2: If w ∈ N, and applying the equation (3.1) in equation (3.2), then using the Lemma 2.9, we obtain

CDm
α G(θ) =Dm

α

(

G(θ) −
m−1
∑

v=0

(θ − α)v

Γ(v + 1)
G(α)

)

=D
m
α J

m
α G

(m)
∇ (θ)

=G
(m)
∇ (θ).

Thus the Caputo nabla derivative is coincide with the nabla derivative.

Remark 3.4. When the initial condition is given in terms of real order in any types of dynamic equation
involving impulses, the application of Caputo nabla derivative is mostly preferable over the Riemann-
Liouville derivative due to its physical interpretation see [6,20]. However in terms of integral order the
accuracy of Caputo nabla derivative and Riemann-Liouville nabla derivative are almost same.

4. Existence and uniqueness of impulsive fractional dynamic equation

The dynamic equation (1.1) can be compared with a model of population dynamics with a stop start
phenomena, where p(θ) is a population of a particular species of insect at a time θ. If we include a toxic
effect on that particular species, and we noticed the change of population which is presented by the
Caputo derivative operator CDwp(θ)(at the initial stage of time) of order w, with respect to time θ on
the interval IT = [0, T ] ∩ T. Now we consider the case where at certain moments θ1, θ2, θ3, · · · such that
0 < θ1 < θ2 <, · · ·, θm < θm+1 = T, limk→∞ θk = ∞, impulse effect act on the population "momentarily",
so that the population p(θ) varies by jump. And p(θ+

k ) and p(θ−
k ) present the population of the species

before and after the impulsive effect at the time θk.
Consider a set of all ld continuous function C(IT ,R) from IT to R. Set I0 = [0, θ1], and Ik = [θk, θk+1].

for each k = 1, 2, 3, · · ·, m.
Consider

PC(IT ,R) = {p : Ik → R, p ∈ C(IT ,R), and p(θ+
k ) and p(θ−

k ) exist with p(θ−
k ) = p(θk), k = 1, 2, 3, · · ·, m},

and

PC
1(IT ,R) = {p : Ik → R, p ∈ C1(IT ,R), k = 1, 2, 3, · · ·, m},

where PC
1(IT ,R) is the set of all function from Ik to R. which is ld continuously nabla differentiable

function.
The set PC(IT ,R) is a Banach space coupled with the norm ||p||PC = supθ∈IT

|p(θ)|.

Definition 4.1. A function p ∈ PC
1(IT ,R) is called a solution of the equation (1.1), if p satisfies the

equation (1.1) on IT involving the condition p(θ+
k ) − p(θ−

k ) = Ik(θk, p(θ−
k ) and p(0) = φ(T ).

Lemma 4.2. Consider a ld continuous function H : IT → R. Then the solution of the problem is











CDwp(θ) = H (θ), θ ∈ IT , θ 6= θk

p(θ+
k ) − p(θ−

k ) = Ik

(

θk, p(θ−
k

)

, k = 1, 2, 3, · · ·, m

p(0) = φ(p),

(4.1)

specified by the integral equation

p(θ)















φ(p) + 1
Γ(w)

∫ θ

0

(

θ − ρ(ζ)
)w−1

H (ζ)∇ζ, θ ∈ I0

φ(p) + 1
Γ(w)

∑k

i=1

∫ θi

θi−1

(

θi − ρ(ζ)
)w−1

H (ζ)∇ζ+
1

Γ(w)

∫ θ

θk

(

θ − ρ(ζ)
)w−1

H (ζ)∇ζ +
∑k

i=1 Ii

(

θi, p(θ−
i )

)

, θ ∈ Ik.

(4.2)
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Proof. If θ ∈ I0, then the solution of the equation (4.1) is given by

p(θ) = φ(p) +
1

Γ(w)

∫ θ

0

(

θ − ρ(ζ)
)w−1

H (ζ)∇ζ. (4.3)

For θ ∈ I1, the problem
{

CDwp(θ) = H (θ),

p(θ+
1 ) − p(θ−

1 ) = I1

(

θ1, p(θ−
1 )

)

,

hold the solution

p(θ) = p(θ+
1 ) +

1

Γ(w)

∫ θ

θ1

(

θ − ρ(ζ)
)w−1

H (ζ)∇ζ. (4.4)

Again,

p(θ+
1 ) − p(θ−

1 ) = I1

(

θ1, p(θ1)
)

, (4.5)

Applying equation (4.5) in equation (4.4) then

p(θ) = p(θ−
1 ) + I1

(

θ1, p(θ−
1 ) +

1

Γ(w)

∫ θ

θ1

(

θ − ρ(ζ)
)w−1

H (ζ)∇ζ,

which follows that

p(θ) =φ(p) + I1

(

θ1, p(θ−
1 )

)

+
1

Γ(w)

∫ θ

θ1

(

θ − ρ(ζ)
)w−1

H (ζ)∇ζ

+
1

Γ(w)

∫ θ

0

(

θ − ρ(ζ)
)w−1

H (ζ)∇ζ, θ ∈ I1.

Generalizing in this way, by using the principle of mathematical induction, for θ ∈ Ik, k = 1, 2, 3, · · ·, m
one can conclude that

p(θ) =φ(p) +
1

Γ(w)

∫ θ

θk

(

θ − ρ(ζ)
)w−1

H (ζ)∇ζ +

k
∑

i=1

1

Γ(w)

∫ θi

θi−1

(

θ − ρ(ζ)
)w−1

H (ζ)∇ζ

+

k
∑

i=1

Ii(θi, p(θi), k = 1, 2, 3, · · ·, m.

To establish the existence and uniqueness solution of the equation (1.1), we need to assume the following
conditions:
(A1) The mapping L : IT × R × R → R is a ld continuous and there must have constants K > 0 and
0 < G < 1 which satisfies

|L(θ, ζ1, ζ2) − L(θ, η1, η2)| ≤ K |ζ1 − η1| + G |ζ2 − η2|, ∀θ ∈ J,

ζi, ηi ∈ R for i = 1, 2.
(A2) There exist constants A > 0, F > 0 and 0 < E < 1, such that

|L(θ, ζ, η)| ≤ A + F |ζ| + E |η|, ∀ζ, η ∈ R.

(A3) The function Ik(θ, p) is continuous for all k = 1, 2, 3, · · ·, m and satisfies the following:
(I) There exist a positive constant Mk for k = 1, 2, 3, · · ·, m such that

|Ik(θ, p)| ≤ Mk, ∀θ ∈ Ik, p ∈ R.

(II) There exists a positive constants Lk, for k = 1, 2, 3, · · ·, m such that

|Ik(θ, p) − Ik(θ, h)| ≤ Lk|p − h|, ∀θ ∈ Ik, p, h ∈ R.

(A4) There must have a non negative increasing function µ : R+ → R
+ such that
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|φ(θ)| ≤ µ(|θ|) for every θ ∈ IT ,

and a positive constant H such that

|φ(θ) − φ(ζ)| ≤ H |θ − ζ| for θ, ζ ∈ IT .

The next theorem is based on the Banach contraction theorem [24]. �

Theorem 4.3. If all the conditions (A1) - (A4) and
∑m

i=1 Li + H + K T w(m+1)
(1−G )Γ(w+1) < 1 are hold,

then equation (1.1) must contain a solution on the interval IT .

Proof. Let CDwp(θ) = h(θ). Consider a set Π ⊆ PC(Ik,R), such that

Π = {p ∈ PC
1(Ik,R) : ||p||PC ≤ σ},

and an operator X : Π → Π such that

(Xp)(θ) = φ(p) +
1

Γ(w)

∫ θ

0

(

θ − ρ(ζ)
)w−1

L(θ, p(θ),C D
wp(θ))∇ζ,

for θ ∈ I0. And

(Xp)(θ) =φ(p) +
1

Γ(w)

k
∑

i=1

∫ θi

θi−1

(

θ − ρ(ζ)
)w−1

L(θ, p(θ), h(θ))∇ζ +

k
∑

i=1

Ii(θi, p(θ−
i ))

+
1

Γ(w)

∫ θ

θk

(

θ − ρ(ζ)
)w−1

L(θ, p(θ),C D
wp(θ))∇ζ,

for θ ∈ Ik, k = 1, 2, 3, ..., m.
Case 1: When θ ∈ Ik, then for any p ∈ Π, we get

|(Xp)(θ)| =|φ(p)| +
∣

∣

1

Γ(w)

k
∑

i=1

∫ θi

θi−1

(

θ − ρ(ζ)
)w−1

h(ζ)∇ζ
∣

∣

+
∣

∣

k
∑

i=1

Ik(θi, p(θ−
i ))

∣

∣ +
∣

∣

1

Γ(w)

∫ θ

θk

(

θ − ρ(ζ)
)w−1

h(ζ)∇ζ
∣

∣,

where h ∈ Π, θ ∈ IT , then from the Equation (1.1) we get h = L(θ, p, h). Hence

|h| =|L(θ, p, h)|

≤ A + F |p(θ)| + E |h(θ)|

≤
A + Fσ

1 − E
. (4.6)

Again taking the norm of PC(IT ,R), in (4.6) then

||h||PC ≤ α+Fσ
1−E

, where ||A ||PC = α.

Using the proposition 2.4, along with the condition of Case 1, we get

||Xp||PC = sup
θ∈JT

|Xp(θ)|

≤ µ|p| +

m
∑

i=1

Mi +
A + F |p|

(1 − E )Γ(w)

[

m
∑

i=1

∫ θi

θi−1

(θ − ζ)w−1dζ +

∫ θ

θk

(

θ − ζ
)w−1

dζ
]

≤ µσ +

m
∑

i=1

Mi +
T w(α + Fσ)(m + 1)

Γ(w + 1)(1 − E )

≤ σ, (4.7)
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where

σ =

∑m

i=1 Mi + (m+1)T wα

Γ(w+1)(1−E )

1 − µ + (m+1)T wF

Γ(w+1)(1−E )

.

Case 2: If θ ∈ I0, by the similar way one can obtain

||Xp||PC ≤ µσ +
T w

(

α + Fσ
)

(1 − E )Γ(w + 1)

≤ σ. (4.8)

Thus from (4.8), ||Xp||PC ≤ σ. Hence X(Π) is bounded. Again for p, q ∈ Π

||Xp − Xq||PC

= sup
θ∈Ik

|(Xp)(θ) − (Xq)(θ)|

≤
k

∑

i=1

∣

∣Ii(θi, p(θ−
i )) − Ii(θi, q(θ−

i ))
∣

∣ +
1

Γ(w)

∣

∣

∫ θ

θk

(

θ − ρ(ζ)
)w−1

(h(ζ) − g(ζ))∇ζ
∣

∣

+
1

Γ(w)

∣

∣

k
∑

i=1

∫ θi

θi−1

(

θ − ρ(ζ)
)w−1

(h(ζ) − g(ζ))∇ζ
∣

∣ + |φ(p) − φ(q)|, (4.9)

where g ∈ Π, then g(θ) = L(θ, q(θ), g(θ)), and for θ ∈ IT , one can get

|h(θ) − g(θ)| =
∣

∣L(θ, p(θ), h(θ)) − L(θ, q(θ), g(θ))
∣

∣

≤K |p(θ) − q(θ)| + G |h(θ) − g(θ)|

≤
K |p(θ) − q(θ)|

1 − G
. (4.10)

Taking the norm of PC(IT ,R), then (4.10) become

||h − g||PC ≤
K ||p − q||PC

1 − G
. (4.11)

Using (4.11) in (4.9), and applying the Proposition 2.4 then

||Xp − Xq||PC ≤

m
∑

i=1

Li|p(θ−
i ) − q(θ−

i )| +
K |p(ζ) − q(ζ)|

(1 − G )Γ(w)

∫ θ

θk

(θ − ζ
)w−1

dζ

+
K |p(ζ) − q(ζ)|

(1 − G )Γ(w)

m
∑

i=1

∫ θi

θi−1

(

θ − ζ
)w−1

dζ + H |p − q|

≤ ||p − q||PC

m
∑

i=1

Li +
K T w||p − q||PC

(1 − G )Γ(w + 1)
+

mK T w||p − q||PC

(1 − G )Γ(w + 1)

+ H ||p − q||PC

≤
(

m
∑

i=1

Li +
K T w(m + 1)

(1 − G )Γ(w + 1)
+ H

)

||p − q|PC. (4.12)

Similarly for θ ∈ I0

||Xp − Xq||PC ≤
(

H +
K T w

(1 − G )Γ(w + 1)

)

||p − q||PC. (4.13)
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Thus from (4.12) and (4.13), we obtain

||Xp − Xq||PC ≤ U ||p − q||PC,

where U =
∑m

i=1 Li + K T w(m+1)
(1−G )Γ(w+1) + H . Since U < 1, so the operator X : Π → Π is a contraction

operator hence it has a fixed point by Banach contraction theorem, which is the solution of the equation
(1.1).

The sufficient condition of the existence of solution of the equation (1.1) is based on the nonlinear
alternatives Leray-Schauder’s type fixed point theorem (Deinition 2.12). �

Theorem 4.4. If the assumptions (A1) − (A4) are satisfied and there exists a positive constant β such
that

µβ +

m
∑

i=1

Mi +
(m + 1)T w(A + Fβ)

Γ(w + 1)(1 − E )
< β, (4.14)

then Equation (1.1) has at least one solution in IT .

Proof. The proof of the theorem is presented in the following steps:
Step 1: The operator X : Π → Π is continuous
Let {pn} be a sequence of Π such that pn → p, then for each θ ∈ Ik, k = 1, 2, 3, · · ·, m

||Xpn − Xq||PC

= sup
θ∈Ik

|(Xpn)(θ) − (Xq)(θ)|

≤

m
∑

i=1

∣

∣

∣
Ii(θi, pn(θ−

i )) − Ii(θi, p(θ−
i ))

∣

∣

∣
+

∣

∣

∣

1

Γ(w)

∫ θ

θk

(

θ − ζ)
)w−1

(hn(ζ) − h(ζ))dζ
∣

∣

∣

+
1

Γ(w)

∣

∣

∣

m
∑

i=1

∫ θi

θi−1

(

θi − ζ
)w−1

(hn(ζ) − h(ζ)dζ
∣

∣

∣
+ |φ(pn) − φ(p)|, (4.15)

where hn ∈ Π, such that hn = L(θ, pn, hn) then for θ ∈ Ik one can get

|hn − h| = |L(θ, pn, hn) − L(θ, p, h)|

≤ K |pn − p| + G |hn − h|

≤
K |pn − p|

1 − G
. (4.16)

Taking the norm of PC(IT ,R), in (4.16) then

||hn − h||PC ≤
K

1 − G
||pn − p||PC. (4.17)

Using (4.17) in (4.15), then we obtain

||Xpn − Xq||PC ≤ ||pn − p||PC

(

m
∑

i=1

Li +
K T w(m + 1)

(1 − G )Γ(w + 1)
+ H

)

.

If pn → p as n → ∞, then ||Xpn − Xq||PC → 0. Hence the operator is continuous.
For θ ∈ I0, the proof is similiar.
Step 2: The operator X map Π to equicontinous set of PC(IT ,R)
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Let x1, x2 ∈ Ik, k = 1, 2, 3, · · ·, m, such that x1 < x2 then

||Xp(x2) − Xp(x1)||PC

= sup
θ∈Ik

∣

∣Xp(x2) − Xq(x1)
∣

∣

≤
∣

∣

1

Γ(w)

∫ x1

θk

(

(x2 − ρ(ζ))w−1 − (x1 − ρ(ζ)w−1)
)

h(ζ)∇ζ
∣

∣

+
∣

∣

1

Γ(w)

∫ x2

x1

(x2 − ρ(ζ))w−1h(ζ)∇ζ
∣

∣ +
∑

0<θk<x2−x1

∣

∣Iθk
(θk, p(θ−

k ))
∣

∣

<
∣

∣

∣

1

Γ(w)

∫ x1

θk

(

(x2 − ζ)w−1 − (x1 − ζ)w−1
)

h(ζ)dζ
∣

∣

∣
+

∣

∣

∣

1

Γ(w)

∫ x2

x1

(x2 − ζ)w−1h(ζ)dζ
∣

∣

∣

+
∑

0<θk<x2−x1

∣

∣Iθk
(θk, p(θ−

k ))
∣

∣

≤
A + Fσ

(1 − E )Γ(w)

(∣

∣

∣

∫ x1

θk

(

(x2 − ζ)w−1 − (x1 − ζ)w−1
)

dζ
∣

∣

∣
+

∣

∣

∣

1

Γ(w)

∫ x2

x1

(x2 − ζ)w−1dζ
∣

∣

∣

)

+
∑

0<θk<x2−x1

∣

∣Iθk
(θk, p(θ−

k ))
∣

∣

Since (x − ζ)w−1 is continuous and if x1 → x2, then ||Xp(x2) − Xp(x1)||PC → 0. Thus the operator X is
equicontinuous in Ik. Since the result at x1, x2 ∈ I0 is similar, so the proof is omitted.
Step 3: The operators X map Π to bounded set of PC(IT ,R).
From (4.7) it is clear that ||X(p)|| ≤ σ for σ ∈ R. As a consequences of the Step 1 to Step 3 together
with the theorem of Arzela-Ascoli, we arrived that the mapping X is continuous completely.
Step 4: For any λ ∈ (0, 1), the set K = {p ∈ PC(Ik,R) : p = λX(p), 0 < λ < 1} is bounded,

for θ ∈ Ik, k = 1, 2, 3, · · ·, m, we have

|p(θ)| = |λX(p)θ|

=
∣

∣

∣
λ

(

φ(p) +
1

Γ(w)

k
∑

i=1

∫ θi

θi−1

(

θi − ρ(ζ)
)w−1

h(ζ)∇ζ

+
1

Γ(w)

∫ θ

θk

(

θ − ρ(ζ)
)w−1

h(ζ)∇ζ +
k

∑

i=1

Ii(θi, p(θ−
i ))

)∣

∣

∣

≤ µ||p||PC +

n
∑

i=1

Mi +
(A + F ||p||PC)T w(m + 1)

Γ(w + 1)(1 − E )
.

Thus,

||p||PC

µ||p||PC +
∑n

i=1 Mi + (A +F ||p||PC)T w(m+1)
(1−E )Γ(w+1)

≤ 1.

From the equation (4.14), we get a positive constant β such that ||p||PC 6= β. Consider a set Ψ = {p ∈
PC(IT ,R) : ||p||PC < β}. Then the operator X : Ψ → PC(IT ,R) is continuous and completely continuous.
So there is no p ∈ ∂(Ψ) such that p = λX(p), λ ∈ (0, 1). Hence, the nonlinear alternatives of Leray-
Schauder’s type fixed point theorem gives that the operator X has a fixed point, which is the solution of
the Equation (1.1).

The result for θ ∈ I0 is almost same, so it is omitted. �
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5. Example

Example 5.1. Consider a impulsive fractional dynamic equation involving a non-local initial condition
on the time scale T = [0, 1

3 ] ∪ [ 1
2 , 1].



















CD
1

2 p(θ) =
e−3θ

(

2+|p(θ)|+|C
D

wp(θ)|
)

35e2θ

(

1+|p(θ)|
) , θ = [0, 1] ∩ T, θ 6= 1

3

p(1
3

+
) − p(1

3

−
) =

1+p( 1

3
)

10 , θ1 = 1
3

p(0) = p

5 .

(5.1)

We set

L(θ, p, q) =
e−3θ

(

2 + |p(θ)| + |q(θ)|)

35e2θ
(

1 + |p(θ)|)
(5.2)

Clearly, the right side of (5.2) is continuous for p, q ∈ R in the context of time scale. Again for all
θ ∈ [0, 1] ∩ T and h, g ∈ R, we get

|L(θ, p, q)| ≤
2 + |p(θ)| + |q(θ)|

35e2

≤
2

35e2
+

1

35e2
|p(θ)| +

1

35e2
|q(θ)|.

Then we get, A = 2
35e2 , F = 1

35e2 , E = 1
35e2 . Next

|L(θ, p, q) − L(θ, h, g)| ≤
1

35e2
|p − h| +

1

35e2
|q − g|,

|I1(θ, p) − I1(θ, q)| ≤
1

10
|p − h|, |φ(p) − φ(h)| ≤

1

5
|p − h|, |φ(p)| ≤

1

5
.

From here we get K = 1
35e2 , G = 1

35e2 , L1 = 1
10 , H = 1

5 . Thus, from the above data we can say that
the equation (5.1) satisfies all the conditions of A1 − A4.

Again, for m = 1 we get

L1 +
K T w(p + 1)

(1 − L )Γ(w + 1)
+ H ≤

1

10
+

1

5
+

2 1
35e2

(1 − 1
35e2 )Γ(1

2 + 1)

≤
3

10
+

2 1
35e2

(1 − 1
35e2 )Γ(1

2 + 1)

<1.

Thus, the conditions of the Theorem 4.3 are satisfied. Therefore we arrived in the conclusion that the
equation (5.1) has a unique solution.

6. Conclusion

In this manuscript we discussed the fractional dynamic equation by the Caputo nabla derivative
involving instantaneous impulses with non local initial condition, and the comparision of Caputo nabla
derivative and Riemann-Liouville nabla derivative have been discussed in the context of time scale. Later
we have given an example on the basis of all theoritical results on existence and uniqueness of the solution
in the time scale interval [0, 1] ∩ T, where T = [0, 1

3 ] ∪ [ 1
2 , 1]. The stability analysis of solution of the

equation (1.1) with different types of initial and boundarey conditions are our future work. The theory of
impulsive fractional dynamic equation has a potential application on the filed of mathematical analysis,
moreover it has a wide application in physics, field of engineering, and economics.
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