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On the Nil Graph of Module Over Ring

Sanjoy Kalita1, Basngewhun Syngai

abstract: Let M be an unital left module over a ring R with unity. We define an undirected nil graphs for
the module M as a graph whose vertex set is M∗ = M − {0} and any two distinct vertices x and y, in these
graphs, are adjacent if and only if there exist r ∈ R such that r2(x + y) = 0 and r(x + y) 6= 0. In this paper,
we study the graph’s adjacency, diameter, radius, and eulerian and hamiltonian properties. We also defined
another nil graph Γ∗

N
(M), in which we reduced the vertex set to N(M∗), set of all non-zero nil elements of

the module, and keep the adjacency relation same as that of ΓN (M). We investigate the adjacency, diameter,
radius, eulerian and hamiltonian properties of the graph Γ∗

N
(Zpn ) and compare these properties among both

the graphs.
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1. Introduction and preliminaries

The graphs associated with various algebraic structures have gotten a lot of attention and importance
in the last few decades due to their two-way utilities. Their properties and theories help to characterize
each other. There are many graphs defined on groups, rings, and some other algebraic structures. Zero
divisor graph of ring defined by Beck [4] has been extensively studied by many authors including [1,2],
and has yielded numerous results and properties.

Chen [6] assigned a new kind of graph to rings which was further studied by many authors, including
[8,9,10] and later named as Nil-graph of a ring.

Ai-Hua Li and Qi-Sheng Li [8,9] studied a new kind of graph structure for non-reduced rings and
Von-Neumann regular rings. The undirected graph ΓN (R) is defined as the graph in which two nonzero
elements of R, x and y, are adjacent if and only if xy is a nil-element. If R is a von Neumann regular
ring or a commutative ring, then ΓN(R) is connected, the diameter of ΓN (R) is at most 3, and the girth
of ΓN (R) is not more than 4. Furthermore, if R is non-reduced, the girth of ΓN (R) is 3 or ∞. They also
demonstrated that the edge chromatic number of ΓN (R) is equal to the maximum degree of ΓN (R) for
a finite commutative ring R unless R is a nilpotent ring with even order.

In his paper, M. Behboodi [5] has generalized the concept of zero-divisors to modules over the com-
mutative ring with unity. He associated three undirected simple graphs to module M over the ring R
with unity and considered an annihilator Ix of a factor M/Rx, where he defined an element x ∈ R to be
a zero divisor if and only if IxIyR = 0 for some non-zero y ∈ R.

Safaeeyan et.al. [11] introduced a new generalization of the classic zero-divisor graph Γ(M). They
defined the zero-divisor graph for module M in [11], where M = R. Many results have been generalized
for modules that have been established for the zero divisor graph for the commutative rings.

Anderson and Badawi [1] introduced the total graph of commutative ring R, in which the ring elements
were assumed to be the total graph’s vertices, and three induced subgraphs were investigated. Later,
Atani and Habibi introduced and extended the study of the notion of the total torsion element graph of a
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module over a commutative ring in [3]. They considered all elements of M as vertices. Any two distinct
vertices m, n in the graph are adjacent if and only if m + n ∈ T (M), where T (M) is the set of torsion
elements of M(unitary) over a commutative ring R. This graph was denoted by T (Γ(M)).

In their paper "Generalization of nilpotency of ring elements to module elements", Ssevviiri and
Groenewald introduced the notion of nilpotency in module theory [12]. Using that notion and the
definition of nilpotent elements, we defined the Nil graph for a module.

We defined it as a nil graph of a module over a ring in this paper and investigated some properties
of the two types of nil graphs, ΓN (Zpn ) and Γ∗

N(Zpn ) based on the vertex set of the graph as an initial
study up to Zpn − module, and throughout our study we have considered R = M . In this paper, we
have studied some basic properties of these graphs such as adjacency, diameter, radius, eulerian and
hamiltonian properties.

A graph G is composed of two sets, V , a non-empty set of elements known as the set of vertices, and
E, a set of ordered or unordered pairs of distinct vertices known as the set of edges. The symbols V (G)
and E(G) are commonly used to represent the vertex-set and edge-set of G.

If an edge e in G connects two vertices u and v, edge e is said to be incident on each of the vertices,
and the two vertices are said to be adjacent. A vertex of a graph that is not adjacent to any other vertex
is called an isolated vertex, and a graph containing only isolated vertices is called a null graph. In the
graph G = (V, E), if each edge e ∈ E is associated with an ordered pair of vertices, then G is called a
directed graph. If each edge is associated with an unordered pair of vertices, then G is called an undirected
graph.

The degree of a vertex is the number of edges incident to it, with the exception that a loop at a vertex
contributes two to the degree of that vertex. A walk is an alternating sequence of vertices and edges that
starts and ends with a vertex such that each edge is incident on the vertices immediately preceding and
following it. A trail is a walk where all the edges or lines are distinct, and a path is a walk where all the
vertices are distinct. A simple graph in which the degree of every vertex is the same is called a regular
graph. The girth of G is the length of the shortest cycle in G, denoted by g(G). The circumference of
G is the length of the longest cycle in G denoted by c(G). The length of the shortest u − v path is the
distance between two vertices u and v in G, denoted by d(u, v). If there is no such path between u and
v then d(u, v) = ∞.

The length of the longest geodesic in a graph G is called diameter and is denoted by diam(G). In
a connected graph G, the eccentricity of a vertex v ∈ V is the maximum of the distances of v from all
other vertices. It is denoted by e(v) and can also be defined as follow e(v) = max{d(v, u)|∀ u ∈ V }. The
radius of a graph G is the minimum eccentricity of the vertices and is denoted by r(G). The centre of a
graph denoted by c(G) can be defined as C(G) = {v|e(v) = r(G), for some v ∈ G}. In a graph G, the
neighbourhood of a vertex v is the subgraph induced by all vertices adjacent to v and it will be denoted
by nh(v). A graph G is said to be an Euler graph or Eulerian if G has a closed walk that traverses
each line exactly once, goes through all vertices and ends at the starting vertex. A graph is said to be
a Hamiltonian graph if it consists of a cycle passing through all vertices of the graph and this cycle is
called a Hamiltonian cycle.

Definition 1.1. (Module over ring) A left R − module M over a ring R is an abelian group (M, +)
with respect to the operation ′+′ (called addition) and has a scalar product, i.e., R × M → M defined as
(r, x) ∈ R × M → r.x ∈ M , ∀r ∈ R and ∀x ∈ M which satisfies the following axioms

(i) r.(s.x) = (rs).x ; ∀r, s ∈ R and x ∈ M .

(ii) r.(x + y) = r.x + r.y ; ∀r ∈ R and x, y ∈ M .

(iii) (r + s).x = r.x + s.x ; ∀r, s ∈ R and x ∈ M .

(iv) If R has identity 1, then 1.x = x ; ∀x ∈ M .

Definition 1.2. (Nilpotent element of module) [12] An element m is said to be a nilpotent in the
module M over a ring R if there exist a ∈ R such that akm = 0 and a.m 6= 0 for some k ∈ N .

Let N(M∗) be a collection of all non-zero nilpotent elements of the module M over a ring R such that
N(M∗) = {m ∈ M∗ : ak.m = 0 but a.m 6= 0 for some k ∈ N} where M∗ = M − {0}.
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Also, let N c(M∗) be the complement of the set N(M∗), i.e., N c(M∗) = {x ∈ M∗ : x /∈ N(M∗)}.

Example 1.3. We consider R = Z8 = {0, 1, 2, 3, 4, 5, 6, 7} and M = R. Also considering M∗ =
{1, 2, 3, 4, 5, 6, 7}. For 1 ∈ M , 1 is a nilpotent, since there exist 2 ∈ R such that for some k ∈ N
(say k = 3), ak.m = 23.1 = 8 ≡ 0(mod 8) and 2.1 6= 0. Therefore, 1 ∈ M is a nilpotent element.
In a similar way, 2, 3, 5, 6, 7 ∈ M are nilpotent elements of M . Thus, N(M∗) = {1, 2, 3, 5, 6, 7} and
N c(M∗) = 4.

2. Nil Graph of Module over Ring

In this section we define two graph structures on the elements of the module based on the definitions
of nilpotent elements given by Ssevviiri and Groenewald [12]. We defined two nil graphs, one by taking
all the non-zero nilpotent elements and another by taking all the non-zero elements as the vertex set
respectively and restricted the index of r to 2 which give us a graph that is a subgraph of a nilpotent
graph.

Definition 2.1. (Nil Graph ΓN(M)) In Nil Graph ΓN (M), the set of all nonzero elements of M
is considered as the vertex set, and two vertices m1 and m2 are adjacent iff r2(m1 + m2) = 0 and
r(m1 + m2) 6= 0 for some r ∈ R.

Thus V (ΓN (M)) = M∗ and E(ΓN (M)) = {(m1, m2) : r2(m1 + m2) = 0 and r(m1 + m2) 6=
0 for some r ∈ R}.

Definition 2.2. (Nil Graph Γ∗
N (M)) The set of all nonzero nil elements of M is considered as the

vertex set in the Nil Graph Γ∗
N (M), and two vertices m1 and m2 are adjacent in Γ∗

N (M) iff there exists
r ∈ R such that r2(m1 + m2) = 0 and r(m1 + m2) 6= 0.

Thus V (Γ∗
N (M)) = N(M∗) and E(Γ∗

N (M)) = {(m1, m2) : r2(m1 + m2) = 0 and r(m1 + m2) 6=
0 for some r ∈ R}.

Example 2.3. Let R = Z4 = {0, 1, 2, 3} and M = R. Here, M∗ = M − {0} = {1, 2, 3, } and N(M∗) =
{1, 3}. Then the graph ΓN (Z4) is a path and Γ∗

N (Z4) is a totally disconnected graph as shown in the
Figure 1.

(a) (b)

Figure 1: (a) ΓN (Z4) Γ∗
N (Z4)

Example 2.4. Let R = Z8 = {0, 1, 2, 3, 4, 5, 6, 7} and M = R. Here, M∗ = M − {0} = {1, 2, 3, 4, 5, 6, 7}
and N(M∗) = {1, 2, 3, 5, 6, 7}. Then the graph ΓN (M) and Γ∗

N (M) are shown in the Figure 2.

Example 2.5. The graph ΓN(Z9) is connected but Γ∗
N (Z9) is disconnected, as shown in Figure 3.

3. Properties of Nil Graph ΓN (Zpn) and Γ∗
N (Zpn)

We have studied several characteristics of the graphs ΓN (Zpn ) and ΓN (Zpn ) in this section. The
diameter, girth, and radius of these graphs are discussed. The hamiltonian and eulerian qualities have
also been investigated for both the graphs.

Theorem 3.1. Γ∗
N (M) is subgraph of ΓN (M).
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(a) (b)

Figure 2: (a) ΓN (Z8) Γ∗
N (Z8)

(a) (b)

Figure 3: (a) ΓN (Z9) and (b) Γ∗
N (Z9)

Proof. We know that V (Γ∗
N (M)) = N(M∗) and V (ΓN (M)) = M∗ from defintion. It is obvious that for

any arbitrary module M , N(M∗) ⊂ M∗ ⇒ V (Γ∗
N (M)) ⊂ V (ΓN (M)).

Now, as the adjacency relation for both the graphs is defined in the same way, so E(Γ∗
N (M)) ⊂

E(ΓN (M)).
As an outcome, we can conclude that Γ∗

N (M) is a subgraph of ΓN(M) and Γ∗
N (M) is a subgraph

induced by all the nil elements of M∗. �

It is clear from the preceding examples that Γ∗
N (M) is a subgraph of ΓN (M)

Theorem 3.2. For both the graphs ΓN (Zpn) and ΓN (Zpn ), any two distinct vertices m1 and m2 are not
adjacent if and only if m1 + m2 ≡ 0(mod pn−1) where n ≥ 2.

Proof. By definitions 2.1 and 2.2, two distinct vertices m1 and m2 are adjacent if r2(m1 + m2) = 0 and
r(m1 + m2) 6= 0 for some r ∈ R.

If m1 + m2 ≡ 0(mod pn−1) then (m1 + m2) = apn−1 for some integer 1 ≤ a ≤ p.
Consider m1 and m2 to be two adjacent vertices in any of the nil graphs. Then there exist some

r ∈ Zpn such that r2(m1 + m2) = r2(a.pn−1) ≡ 0 (mod pn), which implies either a = sp or r = tp for
some integer s and t.

Case 1: If a = sp, we have r2(m1 + m2) = r2(a.pn−1) = r2(sp.pn−1) = r2spn ≡ 0(mod pn) and also
r(m1 + m2) = 0 as r(sppn−1) = 0.

Case 2: If r = tp, we have r2(m1 +m2) = (tp)2(a.pn−1) = 0 and also r(m1 +m2) = 0 as tp(a.pn−1) =
0.

Both the cases lead us to a contradiction. Hence m1 and m2 are not adjacent in both the associated
Nil graphs.

Conversely, let two distinct vertices m1 and m2 be non-adjacent in both the Nil graph, then we have
whenever r2(m1 + m2) = 0 then r(m1 + m2) = 0 for some r ∈ R.

Suppose m1 + m2 = spn−2 for some integer 1 ≤ s ≤ p, then as r ∈ Zpn must satisfy r(m1 + m2) = 0
thus r = tp2 for some integer t. Let r1 ∈ Zpn such that r1 = tp ⇒ r1(m1 + m2) = tp.spn−2 = tspn−1 6≡ 0
and r2

1(m1 + m2) = (tp)2.spn−2 = t2spn = 0.
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So, if m1 + m2 = spn−2 then there exists r1 ∈ Zpn such that r2
1(m1 + m2) = 0 and r1(m1 + m2) 6= 0

which is a contradiction as m1 and m2 are non-adjacent.
Therefore m1 + m2 6= spi where 1 ≤ i ≤ n − 2 ⇒ m1 + m2 = spn−1 for some integer 1 ≤ s ≤ p, i.e.,

m1 + m2 ≡ 0(mod pn−1). �

Example 3.3. Consider the two nil graphs Γ(Z9) and Γ∗
N (Z9) in Figure 3, we observe the following:

In ΓN (Z9) and Γ∗
N (Z9), we observed that 1 is not adjacent to 2, 5 and 8; 4 is not adjacent to 2, 5

and 8; and 7 is not adjacent to 2, 5 and 8 in both the nil graphs. The reason is that 1 + 2 = 1 + 5 =
1 + 8 = 4 + 2 = 4 + 5 = 4 + 8 = 7 + 2 = 7 + 5 = 7 + 8 ≡ 0(mod 3). Also 3 and 6 are not adjacent in
ΓN(Z32 ) as 3 + 6 ≡ 0(mod 3).

Theorem 3.4. For prime p and positive integer n

(i) Γ∗
N (Zpn ) is connected for all p ≥ 3.

(ii) ΓN (Zpn ) is connected for p ≥ 2 and n > 1.

Proof. (i) Consider the two distinct vertices m1, m2 ∈ V (Γ∗
N (Zpn )) such that m1 and m2 are not adjacent.

To prove that Γ∗
N (Zpn ) is connected we require to show that there is always a path from m1 to m2. As

m1 and m2 are not adjacent then m1 + m2 must be a multiple of pn−1, i.e., m1 + m2 = apn−1 where
1 ≤ a ≤ p ⇒ m2 = apn−1 − m1.

Let us consider V
′

(m1) = {(apn−1 − m1) ∈ V (Γ∗
N (Zpn )) : 1 ≤ a ≤ p}

and V
′

(m2) = {(bpn−1 − m2) ∈ V (Γ∗
N (Zpn )) : 1 ≤ b ≤ p}.

Let nh(m1) = {m
′

1 : m
′

1 adj m1} and nh(m2) = {m
′

2 : m
′

2 adj m2} be the neighbourhoods of m1

and m2 respectively.
Then for each i = 1, 2,
|nh(mi)| = |V (Γ∗

N (Zpn))| − |V
′

(mi)| − 1

= (pn − p) − p − 1 = pn − 2p − 1 >
|V (Γ∗

N (Zpn ))|

2 = (pn−p)
2 since p ≥ 3.

This implies that, nh(m1) ∩ nh(m2) 6= φ, i.e., there exist at least one vertex m
′

∈ nh(m1) ∩ nh(m2)
that is adjacent to both m1 and m2. Hence, we have a path m1 − m

′

− m2 and this shows that Γ∗
N (Zpn )

is connected.
(ii) We already know that Γ∗

N (Zpn) ⊂ ΓN (Zpn ), and Γ∗
N (Zpn) is connected for p ≥ 3. So, we can show

that the elements from the set N c(M∗) are adjacent to atleast one of the elements from the set N(M∗)
then ΓN (Zpn) will be connected for p ≥ 3.

For any m
′

∈ N c(M∗) we can find at least one m ∈ N(M∗) so that m
′

+ m 6≡ 0(mod pn−1). Thus the
elements of N c(M∗) are adjacent to the elements of N(M∗) in ΓN(Zpn ) and is connected for p ≥ 3. For
ΓN(Z4) and ΓN (Z9) we can easily check that the two graphs are connected. Thus ΓN(Zpn ) is connected
for p ≥ 2 and n > 1. �

(a) (b)

Figure 4: (a) ΓN (Z27) and (b) Γ∗
N (Z16)
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Example 3.5. Let us take examples of nil graphs, say ΓN (Z27) and ΓN (Z16) as shown in Figure Figure
4.

In ΓN (Z27)(Figure 4(a)), let us take m1 = 1 and m2 = 17. We have deg(1) = 20 ≥ |V (ΓN (Z27))|
2 = 13

and deg(17) = 20 ≥ |V (ΓN (Z27))|
2 = 13 and nh(1) ∩ nh(17) = {2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 15, 16, 20, 21, 22,

23, 24, 25} 6= φ. Hence, we can easily have a path from 1 to 17. Similarly we can show it for every pair
of vertices of ΓN (Z27) giving that ΓN (Z27) is connected.

In Γ∗
N (Z16)(Figure 4(b)), we have 8 as the only non-nilpotent element of Z16 and we observe that 8

is adjacent to all the other nilpotent elements in the Nil graph Γ∗
N(Z16). Hence Γ∗

N (Z16) is connected.

Theorem 3.6. Let p be a prime then the Nil Graph Γ∗
N (Zpn ) is regular for all p ≥ 3 and n ≥ 2.

Proof. In Theorem 3.4, we have seen that, for any vertex v ∈ Γ∗
N (Zpn), the degree of v is deg(v) =

|nh(v)| = pn − 2p − 1. Thus for each p, deg(v) is constant for all v ∈ Γ∗
N (Zpn ). Hence Γ∗

N (Zpn ) is a
regular graph of degree pn − 2p − 1. �

Theorem 3.7. For Nil Graph Γ∗
N (Z2n ), where n ≥ 3, the vertices having the highest degree are of the

form 2n−2 and 3.2n−2 and all the other vertices have degree 1 less than the highest.

Proof. We know a vertex m1 in Γ∗
N (Z2n) is not adjacent to vertices of the form of qp(n−1) − m1 for some

1 ≤ q ≤ p and there are p vertices of such form. The vertex 2n−2 is not adjacent to vertices of the form
q.2n−1 − 2n−2 where 1 ≤ q ≤ p ⇒ vertex 2n−2 is not adjacent to p number of vertices where p = 2, but
for q = 1, 1.2n−1 − 2n−2 = 2n−2(1.2 − 1) = 2n−2

⇒ 2n−2 is not adjacent to itself.

For q = 2, 2.2n−1 − 2n−2 = 2n−2(2.2 − 1) = 2n−2.3

⇒ 2n−2.3 is not adjacent to 2n−2.3

For q ≥ 3, q.2n−1 − 2n−2 6∈ V (Γ∗
N (Z2n ))

Thus, besides themselves, vertices 2n−2 and 2n−2.3 are not adjacent to each other.

So, deg(2n−2) = deg(2n−2.3) = N(M∗)−1−1 = (2n −2)−1−1 = 2n −4. Whereas from Theorem 3.4,
we see that any other vertex is not adjacent to itself and to p vertices and hence, deg(m) = N(M∗)−p−1 =
(2n − 2) − 2 − 1 = 2n − 5. �

Theorem 3.8. For connected ΓN (Zpn) and Γ∗
N (Zpn),

Diam(ΓN (Zpn )) = Diam(Γ∗
N (Zpn)) = 2.

Proof. In both graphs, ΓN (Zpn ) and Γ∗
N (Zpn ), there exists at least one vertex u for each vertex v, such

that v + u ≡ 0(mod pn−1) and v and u are not adjacent. It is sufficient to show that there is always one
vertex adjacent to both of non-adjacent vertices.

For Γ∗
N (Zpn ): Let m1 and m2 be any two non-adjacent vertices in Γ∗

N (Zpn) and let nh(m1) and
nh(m2) be the set of vertices of the neighbourhood of m1 and m2 respectively. In Theorem 3.4 we see
that nh(m1) ∩ nh(m2) 6= φ, i.e., there exist at least one vertex m

′

∈ nh(m1) ∩ nh(m2) such that m1 and
m2 both adjacent to m

′

. Hence, the geodesic of any two non-adjacent vertices is 2.

For ΓN (Zpn ): Clearly from Theorem 3.4, we see that for any two non-adjacent vertices say m
′

1 and

m
′

2 in ΓN (Zpn) there is always at least one vertex m′ which is a common vertex to both m
′

1 and m
′

2.

Hence the geodesic of m
′

1 and m
′

2 is 2.

Thus, we have shown that the geodesic of both graphs Γ∗
N (Zpn ) and ΓN (Zpn ) is either 1 or 2. This

implies that the longest geodesic has a length of 2 and thus has a diameter of 2. �

Corollary 3.9. Diameter of nil graph Γ∗
N (Zp2 ) = ∞ for p = 2 and p = 3.

Theorem 3.10. Radius of ΓN(Z2n ) is always 1.
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Proof. The only non-nilpotent element in ΓN (Z2n ) is 2n−1 because non-nilpotent elements of the module
Zpn are all multiples of pn−1, and the only multiple of 2n−1 that is strictly less than pn is 2n−1 itself.

By definition, V (ΓN (Z2n )) = M∗ = N(M∗) ∪ N c(M∗), and because 2n−1 is the only non-nilpotent
element, the remaining vertices are all nilpotent elements. Also in Theorem 3.7 we have seen that a
non-nilpotent element is always adjacent to all the nilpotent elements. That means 2n−1 ∈ V (ΓN (Z2n ))
is adjacent to all the other remaining vertices. Hence, the maximum distance from 2n−1 to any other
vertex m ∈ ΓN (Z2n) is 1, i.e., e(2n−1) = max{d(2n−1, m) : ∀m ∈ V (ΓN (Z2n ))} = 1 For any two
non adjacent vertices u and v ∈ N(M∗) are connected through the path u − 2n−1 − v. So eccentricity
v ∈ N(M∗) is 1 or 2. Thus the minimum eccentricity of the graph ΓN (Z2n ) is 1 and so r(ΓN (Z2n)) = 1,
where n ≥ 2. �

Corollary 3.11. The vertex 2n−1 has the highest degree in ΓN (Z2n).

Corollary 3.12. The graph centre of ΓN (Z2n ) is the non-nilpotent element 2n−1.

Theorem 3.13. The radius of all the connected graph ΓN (Zpn ) is 2 for p ≥ 3.

Proof. The vertex set V (ΓN (Zpn)) consists of all the nilpotent element of the module Zpn . For any
arbitrary vertex m1 ∈ V (ΓN (Zpn )) there exist at least one m2 ∈ V (ΓN (Zpn )) of the form m2 = qpn−1−m1

for some 1 ≤ q ≤ p, then e(m1) = max{d(m1, m2) : ∀m2 ∈ V (ΓN (Zpn ))} = 2.
We have V (ΓN (Zpn)) = N(M∗) ∪ N c(M∗).
As Γ(Zpn) is an induced subgraph of ΓN (Zpn )
⇒ any edge e ∈ E(ΓN (Zpn ))
⇒ e ∈ E(ΓN (Zpn )) and the maximum possible distance between two nilpotent elements m1 and m2

is 2 ∀m1, m2 ∈ V (ΓN (Zpn)).
Now we need to show two things, firstly the maximum possible distance between a nilpotent element

and a non-nilpotent element is also 2. Secondly the maximum possible distance between two distinct
non-nilpotent elements m

′

1, m
′

2 ∈ N c(M∗) is also 2.
We know that a non-nilpotent element m

′

∈ N c(M∗) is always adjacent to all m ∈ N(M∗), so the
d(m′, m) = 1 but we need to show that the maximum possible distance is 2.

Now we know that m is not adjacent to vertices of the form qpn−1 − m and are adjacent to the
remaining vertices which is not of the form qpn−1 − m for 1 ≤ q ≤ p.

Let A = {a ∈ N(M∗) : a = (qpn−1 − m), for 1 ≤ q ≤ p}
B = {b ∈ N(M∗) : b 6= (qpn−1 − m), for 1 ≤ q ≤ p} − N c(M∗)
|B| = |V (ΓN (Zpn ))| − |A| − |N c(M∗)| = (pn − 1) − p − (p − 1) > 0 ∀p ≥ 3

Hence there exists at least one b ∈ B such that m is adjacent to b. Choosing the path m − b − m
′

we
have the maximum possible distance between nilpotent element m and non-nilpotent element m

′

is 2.
From Theorem 3.4 it is clear that for any two distinct non-nilpotent elements m

′

1 and m
′

2 ∈ N c(M∗)
there exists at least one m1 ∈ N(M∗) such that m

′

1 adj m1 and also m
′

2 adj m1. Hence, we always
have a path m

′

1 − m1 − m
′

2 from m
′

1 to m
′

2. Thus, the maximum possible distance between two non-
nilpotent elements is also 2. We conclude that the eccentricity of any arbitrary v ∈ V (ΓN (Zpn)) is
e(v) = max{d(v, u) : ∀u ∈ V (ΓN (Zpn))} = 2 where v ∈ N(M∗) ∪ N c(M∗).

We have min{e(m1) : ∀m1 ∈ V (ΓN (Zpn ))} = 2 ⇒ r(ΓN (Zpn)) = 2. �

Theorem 3.14. If Γ∗
N (Zpn ) is connected nil-graph then r(Γ∗

N (Zpn )) = 2.

Proof. For connected graphs, we know that the eccentricity of a vertex m1 is given by
e(m1) = max{d(m1, m2) : ∀m2 ∈ V (Γ∗

N (Zpn ))} where d(m1, m2) is the length of the shortest path be-
tween m1 to m2, m1 6= m2. Let m1 be an arbitrary vertex in Γ∗

N (Zpn ). We know that the vertices m1 and
qp(n−1)−m1 ∈ V (Γ∗

N (Zpn )) are not adjacent for alteast one integer q, 1 ≤ q ≤ p and let m2 ∈ V (Γ∗
N (Zpn ))

be one such vertex. From theorem 3.4, we see that there exist at least one m
′

∈ V (Γ∗
N (Zpn)) such that

m1 − m
′

− m2 is a path. Thus, we see that the d(m1, m2) = 2 and the eccentricity of any vertex
m1 ∈ V (Γ∗

N (Zpn )) is always 2. Since m1 is arbitrary we have min{e(m1) : ∀m1 ∈ Γ∗
N (Zpn )} = 2. Thus,

the radius of the graph is also 2. �



8 S. Kalita, B. Syngai

Corollary 3.15. Radius of nil graph Γ∗
N(Zp2 ) = ∞ for p = 2 and p = 3.

Corollary 3.16. For p ≥ 3 the graph centre of the graphs ΓN (Zpn ) is the vertex set.

This is because the eccentricity of each vertex is 2 which is equal to the radius of that graph ΓN (Zpn ).

Corollary 3.17. The graph center of all the connected Nil Graph Γ∗
N (Zpn ) is the vertex set.

This is because the eccentricity of any vertex is always 2 which is equal to the radius of that graph
Γ∗

N(M).

Lemma 3.18. (Dirac theorem) If G is a graph with n vertices, where n ≥ 3 and deg(v) ≥ n/2 for every
vertex of G, then G is Hamiltonian.

Theorem 3.19. The graphs ΓN (Zpn) is Hamiltonian for all pn > 22.

Proof. As Γ∗
N (Zpn ) is an induced subgraph of ΓN (Zpn)

⇒ any edge e ∈ E(Γ∗
N (Zpn )), then e ∈ E(ΓN (Zpn )) and for any vertices m1 ∈ V (Γ∗

N (Zpn )), then
m1 ∈ V (ΓN (Zpn )).

From Theorem 3.4, we have whenever m1 ∈ V (Γ∗
N (Zpn)), deg(m1) ≥

|V (Γ∗

N (Zpn ))|

2 and also whenever

m1 ∈ V (ΓN (Zpn )),
|V (ΓN (Zpn ))|

2 since ΓN (Zpn) has additional non-nilpotent vertices but every non-
nilpotent vertex is adjacent to all the other nilpotent vertices, i.e., with every one additional non-nilpotent
vertex in ΓN (Zpn ) there is an increase in the degree of m1 by one.

For m
′

∈ N c(M∗) ⊂ V (ΓN (Zpn)), its degree is obviously greater than
|V (ΓN (Zpn ))|

2 .
Hence by lemma 3.18, we conclude that ΓN (Zpn ) is Hamiltonian for all pn > 22. �

Note: The graph ΓN (Z22 )is not Hamiltonian as it is a path (see figure 1(a)).

Theorem 3.20. Every connected graph Γ∗
N (Zpn ) is a Hamiltonian graph for p ≥ 2 and n > 1.

Proof. From Theorem 3.4, we see that for all connected graphs Γ∗
N (Zpn ), deg(v) ≥

|V (Γ∗

N (Zpn ))|
2 for all

v ∈ Γ∗
N (Zpn ). Now by Lemma 3.18 the graph Γ∗

N (Zpn )) is a Hamiltonian graph. �

Example 3.21. The Hamiltonian cycles of ΓN (Z8) and Γ∗
N (Z16) are highlighted in Figure 5.

(a) (b)

Figure 5: Hamiltonian cycle in (a) ΓN (Z8) and (b) Γ∗
N (Z16)

Theorem 3.22. If p be an odd prime, then all the connected Nil Graphs of Γ∗
N (Zpn) are Eulerian.

Proof. From Theorem 3.6, we can see that the graph Γ∗
N(Zpn ), p ≥ 3 is a connected regular graph of

degree (pn − 2p − 1) which is even for every p ≥ 3. Hence, Γ∗
N (Zpn ) is eulerian. �

Theorem 3.23. The graph ΓN (Zpn) is Eulerian for all odd prime p.
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Proof. We know that p is odd for all p ≥ 3, and that module Zpn always contains p − 1 non-nilpotent
elements.

We can see from Theorem 3.22, that the graph Γ∗
N (Zpn) is eulerian for all p ≥ 3. Also Theorem

3.1 we see that that Γ∗
N(Zpn) is an induced subgraph of ΓN (Zpn). Now, ΓN (Zpn) has an additional

p − 1 non-nilpotent elements and are adjacent to all the nil elements. Thus the degree of the vertex
m ∈ ΓN (M) is even if m ∈ N(M∗). Let m

′

∈ N c(M∗), then deg(m
′

) = numbers of nilpotent elements
in ΓN (M) = (pn − 1) − (p − 1) = even.

Thus, all the vertices of graph ΓN (M) have an even degree. Hence, ΓN (M) is eulerian. �

Example 3.24. The two properties given in theorem 3.22 and theorem 3.23 can be observed in the
following graphs ΓN (Z33 ) and Γ∗

N (Z52 ) shown in Figure 6 and any nil graph ΓN(Zpn ) and Γ∗
N (Zpn ).

(a) (b)

Figure 6: (a) ΓN (Z16) and (b) Γ∗
N (Z25)

Corollary 3.25. The nil graphs Γ∗
N (Zp2 ) for p = 2 and p = 3 are neither Hamiltonian nor Eulerian.
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