
Bol. Soc. Paran. Mat. (3s.) v. 2025 (43) : 1–27.
©SPM – E-ISSN-2175-1188 ISSN-0037-8712
SPM: www.spm.uem.br/bspm doi:10.5269/bspm.65082

Spectra of M-generalized corona of graphs constrained by vertex subsets ∗

Rajendran Rajkumar† and Murugesan Gayathri

abstract: In this paper, we define a new type of corona operation which generalizes almost all the variants of
corona of graphs defined in the literature. As particular cases of this construction, we define several variants
of corona of graphs and some new unary graph operations. We determine the generalized characteristic
polynomial of this constructed graph. Consequently, we derive the characteristic polynomials of the adjacency
matrix and Laplacian matrix of the graphs constructed by the newly defined, and almost all the existing
variants of corona of graphs. As applications of these results, we construct infinite families of integral graphs
and cospectral graphs.
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1. Introduction

1.1. Basic definitions and notations

All the graphs considered in this paper are finite and simple. Let G be a graph with vertex set
V (G) = {v1, v2, . . . , vn} and edge set E(G) = {e1, e2, . . . , em}. The adjacency matrix of G, denoted
by A(G) = [aij ], is the n × n matrix defined as aij = 1, if i ̸= j and vi and vj are adjacent in G;
0, otherwise. The vertex-edge incident matrix of G is the n × m matrix, denoted by B(G) = [bij ], is
defined as bij = 1, if vi is incident with ej ; 0, otherwise. The degree matrix of G, denoted by D(G), is the
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diagonal matrix diag(d1, d2, . . . , dn), where di denotes the degree of vi in G. The Laplacian matrix of G is
L(G) = D(G)−A(G) and the signless Laplacian matrix of G is Q(G) = D(G)+A(G). The characteristic
polynomial of A(G) (resp. L(G) and Q(G)) is denoted by PG(x) (resp. LG(x) and QG(x)), and the
multi set of eigenvalues of A(G) (resp. L(G) and Q(G)) is said to be the A−spectrum (resp. L−spectrum
and Q−spectrum) of G. The A−spectrum of G is denoted by λi(G) (i = 1, 2, . . . n) and L−spectrum
of G is denoted by µi(G) (i = 1, 2, . . . n). We shall assume that λ1(G) ≥ λ2(G) ≥ . . . ≥ λn(G), and
0 = µ1(G) ≤ µ2(G) ≤ . . . ≤ µn(G).

Two graphs are said to be A−cospectral (resp. L−cospectral and Q−cospectral) if they have same
A−spectrum (resp. L−spectrum andQ−spectrum). A graphG is said to be A−integral (resp. L−integral,
Q−integral ) if all the eigenvalues of A(G) (resp. L(G), Q(G)) are integers.

In [12], Cvetković et al. introduced the generalized characteristic polynomial ϕG(x, β) of G, which is
defined as ϕG(x, β) = |xI−(A(G)−βD(G))|. Notice that PG(x), LG(x) and QG(x) are equal to ϕG(x, 0),
(−1)nϕG(−x, 1) and ϕG(x,−1), respectively.

The complete graph on n vertices is denoted by Kn and the complete bipartite graph whose vertex
set partition having m and n vertices is denoted by Km,n. The complement graph of G is denoted by G.
For a vertex v of G, the neighbourhood of v, denoted by NG(v), is the set of all vertices in G that are
adjacent to v, and the closed neighbourhood of v is NG(v) ∪ {v}. Jn×m denotes the matrix of size n×m
in which all the entries are 1. We denote Jn×n by Jn.

Mn(R) denotes the set of all n × n real matrices. Let Rn×m(s) denote the set of all n × m real
matrices M such that the sum of the entries in each row of M are equal to s. Let Cn×m(c) denote the
set of all n × m real matrices M such that the sum of the entries in each column of M are equal to c.
Let RCn×m(s, c) denote the set of all n ×m matrices such that M ∈ Rn×m(s) and M ∈ Cn×m(c). Let
ci(M) denote the sum of the entries in the i−th column of the matrix M . For a subset S of an ordered
set A = {a1, a2, . . . , an}, the indicator vector of S (with respect to A) is a vector rS = (r1, r2, . . . , rn) in
which ri = 1 or 0, according as ai ∈ S or ai /∈ S. We denote by RS := diag(r1, r2, . . . , rn).

1.2. Spectra of graphs constructed by graph operations

The study of various spectra of graphs is an active research topic in spectral graph theory as several
structural properties a graph can be explored through the knowledge of its spectra. Moreover, there are
numerous applications of the study of spectra of graphs in various branches of science such as quantum
physics, chemistry, computer science, etc. have been found (see [4,8,12,13,14]).

Due to this significance, finding the spectrum of a graph is an inevitable problem in spectral graph
theory. In this direction, a natural question arise is “to what extent the spectrum of a given graph can
be expressed in terms of the spectrum of some other graphs?”. In this point of view, to construct graphs
from the given graphs, several graph operations were defined in the literature such as the union, the
complement, the subdivision, the Cartesian product, the Kronecker product, the NEPS, the corona, the
rooted product, the edge-rooted product, the join, deletion of a vertex, insertion/deletion of an edge and
the graph operations mentioned below. We refer the reader to [7,13,19,36,38,39,41] and the references
therein for the results on the spectra of these graphs. These shows the necessity and importance of
defining graph operations in spectral graph theoretic point of view.

Now, we recall the definition of some unary graph operations which are used in this paper. The
subdivision graph S(G) of G is the graph obtained by inserting a new vertex into every edge of G. The
R−graph R(G) of G is the graph obtained by taking one copy of S(G) and joining two vertices of G if
and only if they are adjacent in G. The Q−graph Q(G) of G is the graph obtained by taking one copy
of S(G), and joining the new vertices which lie on the adjacent edges of G. The total graph T (G) of G
is the graph whose vertex set is V (G) ∪ E(G), with two vertices of T (G) are adjacent if and only if the
corresponding elements are adjacent or incident in G. The duplication graph Du(G) of G is the graph
obtained by taking new vertices corresponding to each vertex of G and joining the new vertex to the
vertices in G which are adjacent to the corresponding vertex in G of the new vertex and deleting the
edges of G [40]. The set of new vertices in S(G), R(G), Q(G) and T (G) are commonly denoted by I(G).

1.2.1. Corona of graphs and its variants. The corona of graphs is another well-known graph operation
that has received a lot of attention from researchers. In 1970, Frucht and Harary introduced this graph
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operation to construct a graph whose automorphism group is the wreath product of the automorphism
group of their components [16].

Let G be a graph with n vertices and m edges. Let H and Hi (i = 1, 2, . . . , n (or m)) be graphs. The
corona of G and H is obtained by taking one copy of G and n copies of H and joining the i−th vertex of
G to all the vertices of the i−th copy of H for i = 1, 2, . . . , n. In the same paper, the following variant of
corona of graphs was defined. The cluster of G and H, denoted by G{H} is the graph obtained by taking
one copy of G and n copies of H and joining the i−th vertex of G to the root vertex of the i−th copy of
H for i = 1, 2, . . . , n. In 2007, Barik et al. [5] investigated the spectral properties of the corona of graphs.
They determined the A−spectrum (resp. L−spectrum) of the corona of G and H for any graph G and
a regular graph H (resp. for any graph G and H), in terms of the A−spectrum (resp. L−spectrum) of
G and H. Since then several variants of the corona of graphs have been introduced and their spectra
were studied by many researchers. The definitions of all the variants of corona of graphs defined in the
literature are given below for the convenience of the reader.

In 2010, Y. Hou and W- C. Shiu [22] introduced the edge corona of graphs: The edge corona of G
and H is the graph obtained by taking one copy of G and m copies of H and joining the end vertices of
the i−th edge of G to all the vertices of the i−th copy of H for i = 1, 2, . . . ,m. In 2011, G. Indulal [23]
defined the following variant of corona of graphs. The neighbourhood corona of G and H is the graph
obtained by taking one copy of G and n copies of H and joining the vertices in the neighbourhood of
the i−th vertex of G to all the vertices of the i−th copy of H for i = 1, 2, . . . , n. In the same year, C.
McLeman and Eris McNicholas [35] computed the A−spectrum of the corona of any pair of graphs using
a new graph invariant called the coronal value.

In 2013, the following four variants of corona were introduced: the first two are due to X. Liu and
P. Lu [25] and the rest are due to P.L. Lu and Y.F. Miao [30]. The subdivision vertex corona of G and
H is the graph obtained by taking one copy of S(G) and n copies of H and joining the i−th vertex of
V (G) to all the vertices of the i−th copy of H for i = 1, 2, . . . , n. The subdivision edge corona of G and
H is the graph obtained by taking one copy of S(G) and m copies of H and joining the i−th vertex of
I(G) to all the vertices of the i−th copy of H for i = 1, 2, . . . ,m. The subdivision vertex neighbourhood
corona of G and H is the graph obtained by taking one copy of S(G) and n copies of H and joining the
vertices in the neighbourhood of the i−th vertex of V (G) to all the vertices of the i−th copy of H for
i = 1, 2, . . . , n. The subdivision edge neighbourhood corona of G and H is the graph obtained by taking
one copy of S(G) and m copies of H and joining the i−th vertex of I(G) to all the vertices of the i−th
copy of H for i = 1, 2, . . . ,m.

In 2014, P. L. Lu and Y. F. Miao [32] introduced the following two variants of corona of graphs.
The corona-vertex of subdivision graph of G and H is the graph obtained by taking one copy of G and
n copies of S(H) and joining the i−th vertex of G to all the vertices of the i−th copy of V (H) for
i = 1, 2, . . . , n. The corona-edge of subdivision graph of G and H is the graph obtained by taking one
copy of G and n copies of S(H) and joining the i−th vertex of G to all the vertices of the i−th copy of
I(H) for i = 1, 2, . . . , n.

The variants of corona of graphs defined in 2015: In [24], J. Lan et al. defined four graphs using
R−graphs namely, the R−vertex corona, the R−edge corona, the R−vertex neighbourhood corona and the
R−edge neighbourhood corona of G and H in which they replaced the S(G) by R(G) in the definitions of
the subdivision vertex corona, the subdivision edge corona, the subdivision vertex neighbourhood corona
and the subdivision edge neighbourhood corona, respectively. C. Adiga et al. [1] defined the C−graph
C(G) (the N−graph N(G)) which is the corona of G and K1 (the neighbourhood corona of G and K1).
By using these graphs, they defined the C−vertex neighbourhood corona and the N−vertex corona of G
and H in which they replaced S(G) by C(G), N(G), respectively in the definitions of the subdivision
vertex corona and the subdivision vertex neighbourhood corona, respectively. Further, they defined the
C−edge corona and the N−edge corona of G and H, in which they replaced S(G) by C(G), N(G),
respectively in the definition of the subdivision edge corona.

The variants of corona of graphs defined in 2016: X. Q. Zhu et al. defined the total corona of G and
H [43], in which they replaced the subdivision graph of G by the total graph of G in the definition of
the subdivision vertex corona. F. Laali et al. [15] defined the generalized corona of graphs, in which they
replaced the graphs H by Hi’s in the definition of the corona of G and H. S. Caixia et al. [9] defined



4 R. Rajkumar and M. Gayathri

the following graph. The subdivision vertex-edge corona of graphs G, H1 and H2 is the graph obtained
by taking one copy of S(G), n copies of H1 and m copies of H2 and joining the i−th vertex of V (G) to
all the vertices of H1 and joining the j−th vertex of of I(G) to all the vertices of H2 for i = 1, 2, . . . , n
and j = 1, 2, . . . ,m. In [6] (see also [7]), S. Barik and G. Sahoo defined the subdivision double corona
of graphs, which is same as the definition of the subdivision vertex-edge corona of graphs. Also, there
in, they defined the following graphs. The subdivision double neighbourhood corona of G, H1 and H2

is the graph obtained by taking one copy of S(G), n copies of H1 and m copies of H2 and joining the
new vertices in the neighbourhood of the i−th vertex of of V (G) to all the vertices of H1 and joining
vertices in the neighbourhood of the j−th vertex of I(G) to all the vertices of H2 for i = 1, 2, . . . , n and
j = 1, 2, . . . ,m. Similarly, they defined the R−graph (Q−graph, total graph, respectively) double corona
of G, H1 and H2 and the R−graph (Q−graph, total graph, respectively) double neighbourhood corona of
G, H1 and H2.

The variants of corona of graphs introduced in 2017: Y. Luo and W. Yan [34] defined the generalized
edge corona of graphs, in which they replaced the m copies of H by H1, H2, . . . ,Hm in the definition of
edge corona of graphs. P. L. Lu and Y. M. Wu [33] defined the generalized subdivision-vertex corona of
graphs, in which they replaced the m copies of H by H1, H2, . . . ,Hm in the definition subdivision vertex
corona of G and H. C. Adiga et al. [2] defined the following two variants of corona operations. The
extended neighborhood corona of G and H is the graph obtained by taking the neighborhood corona of
G and H and joining each vertex of the i−th copy of H to every vertex of j−th copy of H provided the
i−th and the j−th vertices are adjacent in G. The extended corona of G and H is the graph obtained
by taking the corona of G and H and joining each vertex of the i−th copy of H to every vertex of the
j−th copy of H provided the i−th and the j−th vertices are adjacent in G.

The variants of corona of graphs introduced in 2018: P. Lu et al. [31] defined the generalized
subdivision-edge corona of graphs, in which they replaced the m copies of H by H1, H2, . . . ,Hm in the
definition of subdivision edge corona of G and H. Q. Liu and Z. Zhang [28] also defined the generalized
subdivision-vertex corona of graphs as in [31]. C. Adiga et al. [3] defined the duplication vertex corona,
the duplication edge corona of G and H, the duplication vertex neighbourhood corona, in which they
replaced S(G) by Du(G) in the definitions of the subdivision vertex corona, the subdivision edge corona,
the subdivision vertex neighbourhood corona, respectively. W. Wen et al. [42] defined the following
graphs. The subdivision vertex-edge neighbourhood vertex-corona (short for SVEV- corona) of G with H1

and H2 is the graph consisting of S(G), |V (G)| copies of H1 and |I(G)| copies of H2, all vertex-disjoint,
and joining the neighbours of the i−th vertex of V (G) to every vertex in the i−th copy of H1 and the
j−th vertex of I(G) to each vertex in the j−th copy of H2 for i = 1, 2, . . . , n and j = 1, 2, . . . ,m. The
subdivision vertex-edge neighbourhood edge-corona (short for SVEE- corona) of G with H1 and H2 is the
graph consisting of S(G), |V (G)| copies of H1 and |I(G)| copies of H2 and joining the neighbours of the
i−th vertex of I(G) to every vertex in the i−th copy of H1 and j−th vertex of V (G) to each vertex
in the j−th copy of H2 for i = 1, 2, . . . ,m and j = 1, 2, . . . , n. Q. Liu [29] defined the the generalized
R−vertex ( resp. edge) corona of graphs, in which they replaced the m copies of H by H1, H2, . . . ,Hn

(resp. H1, H2, . . . ,Hm) in the definition of the R−vertex (resp. edge) corona of G and H.

In [37], the authors defined the generalized corona of graphs constrained by vertex subsets as follows:
Let G be a graph with V (G) = {v1, v2, . . . , vn} and E(G) = {e1, e2, . . . , em}. Let Hn = (H1, H2, . . . ,Hn)
be a sequence of graphs. Let T = (T1, T2, . . . , Tn) be a sequence of sets, where Ti ⊆ V (Hi) for i =
1, 2, . . . , n. Then the generalized corona of G and Hn constrained by T is the graph obtained by taking one
copy of G, H1, H2, . . . ,Hn, and joining the vertex vi to all the vertices in Ti for i = 1, 2, . . . , n. In [17], the
authors defined some more variants of the neighbourhood corona of graphs, namely, the subdivision (resp.
R−graph, Q−graph, total) neighbourhood corona of graphs constrained by vertex subsets, the R−graph
(resp. Q−graph, total) semi-edge neighbourhood corona of graphs constrained by vertex subsets, the
R−graph (resp. total) semi-vertex neighbourhood corona of graphs constrained by vertex subsets. Let G
be a graph with V (G) = {v1, v2, . . . , vn} and E(G) = {e1, e2, . . . , em}. Let Hn = (H1, H2, . . . ,Hn) and
H′

m = (H ′
1, H

′
2, . . . ,H

′
m) be two sequences of graphs. Let T = (T1, T2, . . . , Tn) and T ′ = (T ′

1, T
′
2, . . . , T

′
m)

be two sequences of sets, where Ti ⊆ V (Hi) and T ′
j ⊆ V (H ′

j) for i = 1, 2, . . . , n and j = 1, 2, . . . ,m. Let
I(G) = {u1, u2, . . . , um}. Then the subdivision (resp. R−graph, Q−graph, total) neighbourhood corona of
G with Hn and H′

m constrained by T and T ′, simply we call it as S-N corona (resp. R-N corona, Q-N
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corona, T -N corona) of G with Hn and H′
m constrained by T and T ′, is defined as the graph obtained

by taking one copy of S(G) (resp. R(G), Q(G), T (G)), H1, H2, . . . ,Hn, H
′
1, H

′
2, . . . ,H

′
m, and joining all

the vertices in Ti to the vertices in NS(G)(vi) (resp. NR(G)(vi), NQ(G)(vi), NT (G)(vi)), and joining all the
vertices in T ′

j to the vertices in NS(G)(uj) (resp. NR(G)(uj), NQ(G)(uj), NT (G)(uj)), for i = 1, 2, . . . , n
and j = 1, 2, . . . ,m. The R−graph (resp. Q−graph, total) semi-edge neighbourhood corona of G with
Hn and H′

m constrained by T and T ′, simply we call it as R−SEN corona (resp. Q−SEN corona,
T−SEN corona), is defined as the graph obtained by taking one copy of R(G) (resp. Q(G), T (G)),
H1, H2, . . . ,Hn, H

′
1, H

′
2, . . . ,H

′
m, and joining all the vertices in Ti to the vertices in NR(G)(vi) ∩ I(G)

(resp. NQ(G)(vi) ∩ I(G), NT (G)(vi) ∩ I(G)), and joining all the vertices in T ′
j to the end vertices of ej

for i = 1, 2, . . . , n and j = 1, 2, . . . ,m. The R−graph (resp. total) semi-vertex neighbourhood corona of G
with Hn and H′

m constrained by T and T ′, simply we call it as R−SVN corona (resp. T−SVN corona), is
defined as the graph obtained by taking one copy of R(G) (resp. T (G)), H1, H2, . . . ,Hn, H

′
1, H

′
2, . . . ,H

′
m,

and joining all the vertices in Ti to the vertices in NR(G)(vi)∩V (G) (resp. NT (G)(vi)∩V (G)), vi ∈ V (G),
and joining all the vertices in T ′

j to the end vertices of ej for i = 1, 2, . . . , n and j = 1, 2, . . . ,m.

1.3. Scope of the paper

In view of the variants of corona of graphs summarized above, it is natural to arise the following
questions:

(1) Is it possible to define a new graph operation which includes all (or almost all) the corona operations
mentioned above as particular cases?

(2) Is it possible to deduce various spectra of the variants of corona of graphs mentioned above from the
determination of the corresponding spectra of newly defined graph operation?

While looking for the answer to the above questions, we arrive at the definition of a new graph operation,
which we call “M−generalized corona of graphs constrained by vertex subsets”. This is not only a
generalization of the existing corona operations but also leads to the definition of many more variants of
corona of graphs. This paper is a part of [18].

The rest of the paper is arranged as follows: In Section 2, we define the M−generalized corona of
graphs constrained by vertex subsets. We show that this construction generalizes all the variants of
corona of graphs mentioned above, except the extended neighbourhood corona and the extended corona.
As particular cases of this construction, we get some more variants of corona of graphs and some new
unary graph operations.

In Section 3, we obtain the generalized characteristic polynomial of the M−generalized corona of
graphs constrained by vertex subsets expressed in terms of the characteristic polynomial of the matrices
related to the constituent graphs and their coronals constrained by the corresponding vertex subsets.
Moreover, we determine the characteristic polynomials of the adjacency and the Laplacian matrices of
this graph and obtain the A−spectra and the L−spectra of the graphs defined in Section 2 as well as for
almost all the variants of corona of graphs mentioned in Sub-subsection 1.2.1. Also, we determine the
A−spectra and the L−spectra of some classes of M−generalized corona of graphs.

In Section 4, as applications of these results, we obtain some infinite family of A−integral (L−integral)
graphs and A−cospectral (L−cospectral) graphs.

2. M−generalized corona of graphs constrained by vertex subsets

In this section, we define a new type of corona operation and show that this generalizes almost all the
corona graph operations defined in the literature.

Definition 2.1 Let G be a graph with V (G) = {v1, v2, . . . , vn}. Let Hk = (H1, H2, . . . ,Hk) be a
sequence of k graphs and T = (T1, T2, . . . , Tk) be a sequence of sets, where Tj ⊆ V (Hj), for j = 1, 2, . . . , k.
Let M = [mij ] be a 0− 1 matrix of size n× k. Then the M -generalized corona of G and Hk constrained
by T , denoted by G⊛̃[M :T ]Hk, is the graph obtained by taking one copy of G, H1, H2, . . . ,Hk and joining
the vertex vi to all the vertices in Tj if and only if mij = 1 for i = 1, 2, . . . , n and j = 1, 2, . . . , k. We call
the matrix M as the corona generating matrix of the graph G⊛̃[M :T ]Hk.
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We denote the graph G⊛̃[M :T ]Hk simply as

– G⊛̃MHk, if Tj = V (Hj) for j = 1, 2, . . . , k and call it as the M−generalized corona of G and Hk;

– G⊛̃[M :T ]H, if Hj = H for j = 1, 2, . . . , k and call it as the M−generalized corona of G and H
constrained by T ;

– G⊛̃MH, if Hj = H and Tj = V (Hj) for j = 1, 2, . . . , k and call it as the M−generalized corona of
G and H.

Example 2.1 Consider the graphs G,H1, H2, H3, H4 as shown in Figure 1(a), 1(b), 1(c), 1(d) and 1(e),
respectively. Let H4 = (H1, H2, H3, H4) and T = (T1, T2, T3, T4), where T1 = {u3, u4}, T2 = {v1, v2, v3},
T3 = {w1, w6, w8}, T4 = {t2} and

M =



0 0 0 1
0 0 0 1
0 0 1 1
0 1 0 0
1 1 0 0
1 0 0 0
0 0 0 0


The vertices colored with yellow represent the elements in Tj (j = 1, 2, 3, 4). Then the graph G⊛̃[M :T ]H4

is as shown in Figure 1(f).
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Figure 1: The graphs (a) G, (b) H1, (c) H2, (d) H3, (e) H4 and (f) G⊛̃[M :T ]H4
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Example 2.2 Any bipartite graph can be viewed as a M−generalized corona of some graphs. For if G
is a bipartite graph with bipartition (X,Y ) with |X| = m and |Y | = n. Then its adjacency matrix is of
the form

A(G) =

[
0 W

WT 0

]
,

where W is a 0− 1 matrix of size m× n. Then G is the same as the graph Km⊛̃WK1.

In Table 1, we show that the definitions of all the variants of corona of graphs mentioned in Subsec-
tion 1.2.1, except the extended corona and the extended neighbourhood corona of G and H are particular
cases of Definition 2.1 by suitably taking k, the graphs G, Hj , the subsets Tj and the matrix M .

Table 1: Variants of corona of graphs defined in the literature as
particular cases of the M−generalized corona of G and Hk con-
strained by T

S.
No

Name of the
corona operation

G k Hj Tj M

1. Corona of G and H G n H V (H) In

2.
Generalized corona of
G and H1, H2, . . . ,
Hn

G n Hj V (Hj) In

3. Cluster of G and H G n H
{the root
vertex
of H}

In

4.
Edge corona of G and
H

G m H V (H) B(G)

5.
Generalized edge
corona of G and
H1, H2, . . . ,Hn

G m Hj V (Hj) B(G)

6.
Neighbourhood
corona of G and H

G n H V (H) A(G)

7.
Subdivision vertex
corona of G and H

S(G) n H V (H)
[
In
0

]

8.

Generalized sub-
division vertex
corona of G and
H1, H2, . . . ,Hn

S(G) n Hj V (Hj)
[
In
0

]

9.
Subdivision edge
corona of G and H

S(G) m H V (H)
[
0
Im

]
10.

Generalized subdivi-
sion edge corona of G
and H1, H2, . . . ,Hn

S(G) m Hj V (Hj)
[
0
Im

]

11.
Subdivision ver-
tex neighbourhood
corona of G and H

S(G) n H V (H)
[

0
B(G)T

]

12.
Subdivision edge
neighbourhood
corona of G and H

S(G) m H V (H)
[
B(G)
0

]
13.

R−vertex corona of
G and H

R(G) n H V (H)
[
In
0

]
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14.
GeneralizedR−vertex
corona of G and
H1, H2, . . . ,Hn

R(G) n Hj V (Hj)
[
In
0

]
15.

R−edge corona of G
and H

R(G) m H V (H)
[
0
Im

]
16.

Generalized R−edge
corona of G and
H1, H2, . . . ,Hn

R(G) m Hj V (Hj)
[
0
Im

]

17.
R−vertex neighbour-
hood corona of G and
H

R(G) n H V (H)
[
A(G)
B(G)T

]

18.
R−edge neighbour-
hood corona of G and
H

R(G) m H V (H)
[
B(G)
0

]
19.

N−vertex corona of
G and H

N(G) n H V (H)
[
In
0

]
20.

C−vertex neighbour-
hood corona of G and
H

C(G) n H V (H)
[
A(G)
0

]
21.

N−edge corona of G
and H

N(G) n H V (H)
[
B(G)
0

]
22.

C−edge corona of G
and H

C(G) n H V (H)
[
B(G)
0

]
23.

Total corona of G and
H

T (G) n H V (H)
[
In
0

]
24.

Duplication vertex
corona of G and H

Du(G) n H V (H)
[
In
0

]
25.

Duplication ver-
tex neighbourhood
corona of G and H

Du(G) n H V (H)
[
A(G)
0

]

26.
Duplication vertex
edge corona of G and
H

Du(G) n H V (H)
[
B(G)
0

]

27.
Corona-vertex of sub-
division graph of G
and H

G n S(H) V (H) In

28.
Corona-edge of sub-
division graph of G
and H

G n S(H) I(H) In

29.

Subdivision (resp.
R−graph, Q−graph,
total) double corona
of G and H1, H2

S(G)
(resp.
R(G),
Q(G),
T (G))

n+m
H1 for j = 1, 2, . . . , n;

H2 for j = n+1, . . . , n+m.
V (Hj) In+m

30.

Subdivision (resp.
R−graph, Q−graph,
total) double neigh-
bourhood corona of
G and H1, H2

S(G)
(resp.
R(G),
Q(G),
T (G))

n+m
H1 for j = 1, 2, . . . , n;

H2 for j = n+1, . . . , n+m.
V (Hj) A(S(G))
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31.
SVEV corona of G
with H1 and H2

S(G) n+m
H1 for j = 1, 2, . . . , n;

H2 for j = n+1, . . . , n+m.
V (Hj)

[
0 0

B(G)T Im

]
32.

SVEE corona of G
with H1 and H2

S(G) n+m
H2 for j = 1, 2, . . . , n;

H1 for j = n+1, . . . , n+m.
V (Hj)

[
In B(G)
0 0

]
33.

Generalized corona
of G and Hn con-
strained by T

G n Hj Tj In

34.

S-N corona (resp.
R-N corona, Q-N
corona, T -N corona)
of G with Hn and
H′

m constrained by T
and T ′

S(G)
(resp.
R(G),
Q(G),
T (G))

n+m
Hi for i = 1, 2, . . . , n;
H ′

s for s = 1, 2, . . . ,m.
Tj

A(S(G))
(resp.

A(R(G)),
A(Q(G)),
A(T (G)))

35.

R−SEN corona
(resp. Q−SEN
corona, T−SEN
corona) of G with Hn

and H′
m constrained

by T and T ′

R(G)
(resp.
Q(G),
T (G))

n+m
Hi for i = 1, 2, . . . , n;
H ′

s for s = 1, 2, . . . ,m.
Tj A(S(G))

36.

R−SVN corona (resp.
T−SVN corona) of G
with Hn and H′

m con-
strained by T and T ′

R(G)
(resp.
T (G))

n+m
Hi for i = 1, 2, . . . , n;
H ′

s for s = 1, 2, . . . ,m.
Tj

[
A(G) B(G)

0 0

]

2.1. Some more new variants of corona of graphs

As particular cases of Definition 2.1, we get some more variants of corona of graphs, which are
described in Table 2. In addition to the assumptions in Definition 2.1, we assume that m = |E(G)| and
m′ = |E(G)|.

Table 2: Some new variants of corona of graphs obtained as partic-
ular cases of the M−generalized corona of G and Hk constrained
by T

S. No G k M Description for M
Name of the corona
operation

1. G n A(G)
joining every vertex in the neighbor-
hood of the vertex vi of G to every ver-
tex in Ti for i = 1, 2, . . . , n

Generalized neigh-
bourhood corona of G
and Hn constrained by
T

2. G n In +A(G)
joining every vertex in the closed neigh-
borhood of the vertex vi of G to every
vertex in Ti for i = 1, 2, . . . , n

Closed neighbourhood
corona of G and Hn

constrained by T

3. G n Jn − In

joining every vertex of G other than the
vertex vi to every vertex in Ti for i =
1, 2, . . . , n

Vertex complemented
corona of G and Hn

constrained by T

4. G n Jn −A(G)
joining every vertex in the neighbor-
hood of the vertex vi in G to every ver-
tex in Ti for i = 1, 2, . . . , n

Neighbourhood com-
plemented corona of G
and Hn constrained by
T
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5. G n Jn − In −A(G)
joining every vertex in the closed neigh-
borhood of the vertex vi in G to every
vertex in Ti for i = 1, 2, . . . , n

Closed neighbourhood
complemented corona
of G and Hn con-
strained by T

6. G m B(G)
joining two end vertices of the edge
ei of G to every vertex in Ti for i =
1, 2, . . . ,m

Generalized edge
corona of G and Hm

constrained by T of G
and Hm constrained
by T

7. G m Jn×m −B(G)
joining the vertices of G other than the
two end vertices of the edge ei of G to
every vertex in Ti for i = 1, 2, . . . ,m

Edge complemented
corona of G and Hm

constrained by T

8. G m′ B(G)
joining two end vertices of the edge
ei of G to every vertex in Ti for i =
1, 2, . . . ,m′

Nonadjacent vertices
corona of G and Hm′

constrained by T

9. G m′ Jn×m′ −B(G)
joining the vertices of G other than the
two end vertices of the edge ei of G to
every vertex in Ti for i = 1, 2, . . . ,m′

Nonadjacent ver-
tices complemented
corona of G and Hm′

constrained by T

10. Kn n A(G)

joining every vertex in the neighbor-
hood of the vertex vi of G to every ver-
tex in Ti for i = 1, 2, . . . , n and deleting
all the edges in G

Duplicate neighbour-
hood corona of G and
Hn constrained by T

11. Kn n A(G) + In

joining every vertex in the closed neigh-
borhood of the vertex vi of G to every
vertex in Ti for i = 1, 2, . . . , n and delet-
ing all the edges in G

Duplicate closed neigh-
bourhood corona of G
and Hn constrained by
T

12. Kn m Jn×m −B(G)

joining two end vertices of the edge
ei of G to every vertex in Ti for i =
1, 2, . . . ,m and deleting all the edges in
G

Duplicate edge corona
of G and Hm con-
strained by T

13. Kn m Jn×m −B(G)

joining the vertices of G other than the
two end vertices of the edge ei of G to
every vertex in Ti for i = 1, 2, . . . ,m
and deleting all the edges in G

Duplicate edge com-
plemented corona of G
andHm constrained by
T

Taking all Hjs as K1 in the definitions of corona operations of graphs given in Table 2, we get some
existing unary graph operations such as subdivision graph, R−graph, duplicate graph, C−graph and
N−graph, and some new unary graph operations as mentioned in Table 3.

Table 3: Some (existing and new) unary graph operations defined
using the M−generalized corona operation

S.
No

Definition Name of the graph Notation

1. Corona of G and K1 C−graph of G C(G)

2. Neighbourhood corona of G and K1 N−graph of G N(G)

3. Closed neighbourhood corona of G and K1 N−graph of G N(G)

4. Vertex complemented corona of G and K1 V C−graph of G V C(G)
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5. Neighbourhood complemented corona of G and K1 NC−graph of G NC(G)

6. Closed neighbourhood complemented corona of G andK1 NC−graph of G NC(G)

7. Duplicate neighbourhood corona of G and K1 Duplicate graph of G Du(G)

8. Duplicate closed neighbourhood corona of G and K1 DN−graph of G DN(G)

9. Edge corona of G and K1 R−graph of G R(G)

10. Edge complemented corona of G and K1 EC−graph of G EC(G)

11. Duplicate edge corona of G and K1 Subdivision graph of G S(G)

12. Duplicate edge complemented corona of G and K1 DEC−graph of G DEC(G)

13. Non-adjacent vertices corona of G and K1 NV−graph of G NV (G)

14. Non-adjacent vertices complemented corona of G and K1 NV C−graph of G NV C(G)

3. Spectra of M−generalized corona of graphs constrained by vertex subsets

In this section, we compute the generalized characteristic polynomial of the M−generalized corona
of graphs G and Hk constrained by vertex subsets T . By using this, we obtain the adjacency and the
Laplacian spectrum of the graph G⊛̃[M :T ]Hk, for some special graphs G, His and some special subsets
Tis. Also, we obtain the adjacency and the Laplacian spectrum of the variants of corona of graphs defined
in Section 2.

First, we give some additional definitions, notations, and results that are used in the rest of this paper.
C. McLeman and E. McNicholas introduced the coronal of a graph as follows:

Definition 3.1 ( [35]) Let H be a graph with n vertices. The coronal ΓH(x) of H is defined as the sum
of the entries of the matrix (xI −A(H))−1. Note that this can be calculated as

ΓH(x) = J1×n(xIn −A(H))−1Jn×1.

S.Y. Cui and G. X. Tian generalized the preceding definition as follows:

Definition 3.2 ( [10]) Let G be a graph with n vertices and M be a graph matrix of G. The M−coronal
of G, denoted by ΓM (x), is defined as the sum of the entries of the matrix (xIn −M)−1, that is

ΓM (x) = J1×n(xIn −M)−1Jn×1.

The authors introduced the coronal of a matrix constrained by an index set as follows:

Definition 3.3 ( [37]) Let M ∈ Mn(R) and α ⊆ {1, 2, . . . , n} be an index set. Then the coronal of M
constrained by α, denoted by Γα

M (x), is defined as the sum of all entries in the the principal submatrix
formed by α. This can be calculated by

Γα
M (x) = rα(xIn −M)−1rTα .

Remark 3.1 (1) If α = {1, 2, . . . , n}, then we denote Γα
M (x) simply by ΓM (x) and we call this simply

as the coronal of M . Notice that ΓM (x) = Jn×1(xIn −M)−1J1×n.

(2) If H is a graph with V (H) = {u1, u2, . . . , un} and T ⊆ V (H), then we simply denote ΓT
A(H)(x) by

ΓT
H(x).

The following observations will be used later without mentioning them explicitly.

Observation 3.1 Γα
−M (x) = −Γα

M (−x) and Γα
M+cIn

(x) = Γα
M (x− c).
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The following results are used in the subsequent sections.

Proposition 3.1 ( [10, proposition 2]) If M ∈ Rn×n(t), then ΓM (x) =
n

x− t
.

Theorem 3.1 ( [4]) Let A be an n× n matrix partitioned as

A =

[
A1 A2

A3 A4

]
,

where A1, A4 are square matrices. If A1, A4 are invertible, then

|A| = |A4||A1 −A2A
−1
4 A3| = |A1||A4 −A3A

−1
1 A2|.

Assumptions 3.1 In the rest of this paper, we assume the following, unless we specifically mention
otherwise: G is a graph with V (G) = {v1, v2, . . . , vn}. Hk = (H1, H2, . . . ,Hk) is a sequence of k graphs
with V (Hj) = {uj1, uj2, . . . , ujnj

}. T = (T1, T2, . . . , Tk) is a sequence of sets, where Tj ⊆ V (Hj) with
|Tj | = tj , and rj is the indicator vector of Tj for j = 1, 2, . . . , k. M = [mij ] is a 0− 1 matrix of size n× k.

In the following, we obtain the generalized characteristic polynomial of G⊛̃[M :T ]Hk, which is one of
the main result of this paper.

Theorem 3.2 The generalized characteristic polynomial of G⊛̃[M :T ]Hk is

ϕG⊛̃[M:T ]Hk
(x, β) =


k∏

j=1

∣∣xInj −Hj

∣∣×
∣∣xIn −A(G) + βD(G) + βN −MUMT

∣∣ ,
where Hj = A(Hj)− βD(Hj)− βcj(M)RTj , j = 1, 2, . . . , k,

N = diag

 k∑
j=1

m1jtj ,

k∑
j=1

m2jtj , . . . ,

k∑
j=1

mnjtj

,

and

U =


ΓT1

H1
(x) 0 · · · 0

0 ΓT2

H2
(x) · · · 0

...
...

. . .
...

0 0 · · · ΓTk

Hk
(x)

.
Proof: We arrange the rows and columns of the adjacency matrix of G⊛̃[M :T ]Hk by the vertices of

G,H1, H2, . . . ,Hk, respectively. Let p =

k∑
i=1

ni. Then the adjacency matrix of G⊛̃[M :T ]Hk is

A(G⊛̃[M :T ]Hk) =

[
A(G) C
CT E

]
,

where

E =


A(H1) 0 · · · 0

0 A(H2) · · · 0
...

...
. . .

...
0 0 · · · A(Hk)


p×p

,

C =


m11r1 m12r2 · · · m1krk
m21r1 m22r2 · · · m2krk

...
...

. . .
...

mn1r1 mn2r2 · · · mnkrk


n×p

= M


r1 0 · · · 0
0 r2 · · · 0
...

...
. . .

...
0 0 · · · rk

 .
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Also,

D(G⊛̃[M :T ]Hk) =

[
D(G) +N 0

0 E′

]
,

where

E′ =


D(H1) + c1(M)RT1

0 · · · 0
0 D(H2) + c2(M)RT2

· · · 0
...

...
. . .

...
0 0 · · · D(Hk) + ck(M)RTk


p×p

.

Then by using Theorem 3.1, we have

ΦG⊛̃[M:T ]Hk
(x, β) =

∣∣∣∣xIn −A(G) + βD(G) + βN −C
−CT xIp − E + βE′

∣∣∣∣
= |xIp − E + βE′| ×

∣∣xIn −A(G) + βD(G) + βN − C(xIp − E + βE′)−1CT
∣∣ . (3.1)

It is not hard to see that

|xIp − E + βE′| =
k∏

j=1

∣∣xInj
−A(Hj) + βD(Hj) + βcj(M)RTj

∣∣ .
Also,

C(xIp − E + βE′)−1CT = M


r1 0 · · · 0
0 r2 · · · 0
...

...
. . .

...
0 0 · · · rk

 (xIp − E + βE′)−1


r1

T 0 · · · 0
0 r2

T · · · 0
...

...
. . .

...
0 0 · · · rk

T

MT

= M


ΓT1

H1
(x) 0 · · · 0

0 ΓT2

H2
(x) · · · 0

...
...

. . .
...

0 0 · · · ΓTk

Hk
(x)

MT .

Substituting these values in (3.1) we get the result. 2

3.1. A–spectrum and L–spectrum of M−generalized corona of graphs constrained by vertex
subsets

Theorem 3.3 (1) The characteristic polynomial of the adjacency matrix of G⊛̃[M :T ]Hk is
k∏

j=1

PHj
(x)

×
∣∣xIn −A(G)−MU1M

T
∣∣ ,

(2) The characteristic polynomial of the Laplacian matrix of G⊛̃[M :T ]Hk is
k∏

j=1

∣∣xInj
− L(Hj)− cj(M)RTj

∣∣×
∣∣xIn − L(G)−N −MU2M

T
∣∣ ,

where N is as in Theorem 3.2,

U1 =


ΓT1

H1
(x) 0 · · · 0

0 ΓT2

H2
(x) · · · 0

...
...

. . .
...

0 0 · · · ΓTk

Hk
(x)

,
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and

U2 =


ΓT1

L(H1)+c1(M)RT1
(x) 0 · · · 0

0 ΓT2

L(H2)+c2(M)RT2
(x) · · · 0

...
...

. . .
...

0 0 · · · ΓTk

L(Hk)+ck(M)RTk
(x)

 .

Proof:

(1) Taking β = 0 in Theorem 3.2, we obtain the result. Notice that here Hj = A(Hj) and so Γ
Tj

Hj
(x) =

Γ
Tj

Hj
(x) for j = 1, 2, . . . , k.

(2) For β = 1, Hj = −(L(Hj) + cj(M)RTj
), j = 1, 2, . . . , k. By applying these in Theorem 3.2, we get,

LG⊛̃[M:T ]Hk
(x) = (−1)n+p


k∏

j=1

∣∣−xInj
+ L(Hj) + cj(M)RTj

∣∣
×
∣∣−xIn + L(G) +N −MUMT

∣∣
=


k∏

j=1

∣∣xInj
− L(Hj)− cj(M)RTj

∣∣×
∣∣xIn − L(G)−N +MUMT

∣∣ ,
where p =

∑k
j=1 nj and U = diag

(
ΓT1

H1
(−x),ΓT2

H2
(−x), . . . ,ΓTk

Hk
(−x)

)
.

Since, Γ
Tj

Hj
(−x) = −ΓT1

L(Hj)+cj(M)RTj
(x), for j = 1, 2, . . . , k, we have

U = −diag
(
ΓT1

L(H1)+c1(M)RT1
(x), . . . ,ΓTk

L(Hk)+ck(M)RTk
(x)

)
= −U2.

So the proof follows.

2

To express the characteristic polynomial of the adjacency matrix and the Laplacian matrix of the
M−generalized corona of G and Hk constrained by T more explicitly for some special corona generating
matrices M , we define and formulate the following:

Definition 3.4 Let A1, A2, . . . , Am ∈ Mn(R). Then λ1, λ2, . . . , λm ∈ R are said to be co-eigenvalues of
A1, A2, . . . , Am, if there exists a vector X ∈ Rn such that AiX = λiX for i = 1, 2, . . . ,m.

The following are some easy observations that will be used later.

Observation 3.2 (1) If A1, A2 ∈ Mn(R), then for each eigenvalue λ1 of A1, there need not exist an
eigenvalue λ2 such that λ1, λ2 are co-eigenvalues of A1, A2.

(2) If A1, A2, . . . , Am ∈ Mn(R) are symmetric and commutes with each other, then for each eigenvalue
λ1 of A1, [21, Proposition 2.3.2] ensures the existence of λ2, λ3, . . . , λm such that λ1, λ2, . . . , λm are
co-eigenvalues of A1, A2, . . . , Am.

(3) If λ is an eigenvalue of A ∈ Mn(R), then λ, 1 are co-eigenvalues of A, In.

(4) Let A ∈ Mn(R) and f(x) ∈ R[x]. If λ is an eigenvalue of A, then λ, f(λ) are co-eigenvalues of A,
f(A).

(5) If G is an r−regular graph with n vertices, then λi(G), µi(G) are co-eigenvalues of A(G), L(G), where
µi(G) = r − λi(G), for each i = 1, 2, . . . , n.
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(6) If f(x), g(x) ∈ R[x] and λ1, λ2 are co-eigenvalues of A1, A2 ∈ Mn(R), then f(λ1), g(λ2) are co-
eigenvalues of f(A1), g(A2). In particular, if G is an r−regular graph, M ∈ Mn(R) and λ(G), λ(M)
are co-eigenvalues of A(G), M , then r − λ(G), λ(M) are co-eigenvalues of L(G), M .

(7) If f(x), g(x) ∈ R[x] and λ1, λ2 are co-eigenvalues of A1, A2 ∈ Mn(R), then λ1, f(λ1) + g(λ2) are
co-eigenvalues of A1, f(A1) + g(A2).

(8) If λ1, λ2 are co-eigenvalues of A1, A2 ∈ Mn(R), then λ1 + λ2 is an eigenvalue of A1 +A2; λ1λ2 is an
eigenvalue of A1A2.

Lemma 3.1 If M ∈ RCn×n(s, s), then s, n are co-eigenvalues of M , Jn. Also, λ, 0 are co-eigenvalues of
M , Jn, where λ is an eigenvalue of M corresponding to an eigenvector X such that X, Jn×1 are linearly
independent.

Proof: Notice that MJn×1 = sJn×1, since M ∈ Rn×n(s). Also, JnJn×1 = nJn×1. So, we have s, n
are co-eigenvalues of M , Jn. Since M ∈ RCn×n(s, s), M commutes with Jn. So, by [21, Proposition
2.3.2], there exists orthonormal vectors x1, x2, . . . , xn, which are eigenvectors of both M and Jn. Since
n is an eigenvalue of Jn with eigenvector Jn×1 whose multiplicity is 1, we have xi = kJn×1, for some
i = 1, 2, . . . , n and some k ∈ R. Without loss of generality, we assume that x1 = Jn×1. Let λ be the
eigenvalue of M corresponding to the eigenvector xj , j = 2, 3, . . . , n. Then xj is also an eigenvector of
Jn corresponding to the eigenvalue 0. Consequently, we have λ, 0 are co-eigenvalues of M , Jn. 2

The next result follows from the fact that L(G) ∈ RCn×n(0, 0), for any graph G and A(G) ∈
RCn×n(r, r), for an r−regular graph G.

Corollary 3.1 (1) If G is a graph with n vertices, then the pair 0, n and for each i = 2, 3, . . . , n the
pairs µi(G), 0 are co-eigenvalues of L(G), Jn;

(2) If G is r−regular, then the pair r, n and for each i = 2, 3, . . . , n, the pairs λi(G), 0, are co-eigenvalues
of A(G), Jn.

Next, we find the characteristic polynomial of the adjacency and the Laplacian matrices of the
M−generalized corona of G and Hk constrained by T under some special constraints.

Corollary 3.2 (1) If ΓT1

H1
(x) = ΓT2

H2
(x) = · · · = ΓTk

Hk
(x) and A(G) commutes with MMT , then the

characteristic polynomial of the adjacency matrix of G⊛̃[M :T ]Hk is
k∏

j=1

PHj
(x)

×

{
n∏

i=1

(
x− λi(G)− ΓT1

H1
(x)λi(MMT )

)}
,

where λi(G), λi(MMT ) are co-eigenvalues of A(G), MMT for each i = 1, 2, . . . , n.

(2) If M ∈ Rn×k(s) is such that MMT commutes with L(G), |T1| = |T2| = . . . = |Tk| = t and
ΓT1

L(H1)+c1(M)RT1
(x) = ΓT2

L(H2)+c2(M)RT2
(x) = · · · = ΓTk

L(Hk)+ck(M)RTk
(x), then the characteristic poly-

nomial of the Laplacian matrix of G⊛̃[M :T ]Hk is
k∏

j=1

∣∣xInj − L(Hj)− cj(M)RTj

∣∣×

{
n∏

i=1

(
x− ts− µi(G)− ΓT1

L(H1)+c1(M)RT1
(x)λi(MMT )

)}
,

where µi(G), λi(MMT ) are co-eigenvalues of L(G), MMT for each i = 1, 2, . . . , n.

Proof:
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(1) Since ΓT1

H1
(x) = ΓT2

H2
(x) = · · · = ΓTk

Hk
(x), we have U1 = ΓT1

H1
(x)Ik. Applying these in Theorem 3.3(1),

we get

PG⊛̃[M:T ]Hk
(x) =


k∏

j=1

PHj (x)

×
∣∣∣xIn −A(G)− ΓT1

H1
(x)MMT

∣∣∣ .
Since A(G) commutes with MMT , for each λi(G), i = 1, 2, . . . , n, there exists λi(MMT ) such
that λi(G), λi(MMT ) are co-eigenvalues of A(G) and MMT . So, the proof follows from Observa-
tion 3.2(8).

(2) Since |T1| = |T2| = . . . = |Tk| = t and M ∈ Rn×k(s), we have
∑k

j=1 mijtj = t
∑k

j=1 mij = ts

for i = 1, 2, . . . , n and so N = tsIn. Since ΓT1

L(H1)+c1(M)RT1
(x) = ΓT2

L(H2)+c2(M)RT2
(x) = · · · =

ΓTk

L(Hk)+ck(M)RTk
(x), we have U2 = ΓT1

L(H1)+c1(M)RT1
(x)Ik. Applying these in Theorem 3.3, we get

LG⊛̃[M:T ]Hk
(x)

=


k∏

j=1

∣∣xInj
− L(Hj)− cj(M)RTj

∣∣×
∣∣∣xIn − L(G)− tsIn − ΓT1

L(H1)+c1(M)RT1
(x)MMT

∣∣∣ .
Since L(G) commutes with MMT , for each µi(G), i = 1, 2, . . . , n, there exists λi(MMT ) such
that µi(G), λi(MMT ) are co-eigenvalues of L(G) and MMT . So, the proof follows from Obser-
vation 3.2(8).

2

3.1.1. The characteristic polynomial of M−generalized corona for some special classes of graphs G and
subsets T . Now, we consider some special classes of graphs G and subsets T in Definition 2.1. Since
A(Kn) (which is the zero matrix) commutes with every matrix, by using Corollary 3.2, we get the
following result.

Corollary 3.3 (1) If ΓT1

H1
(x) = ΓT2

H2
(x) = · · · = ΓTk

Hk
(x), then the characteristic polynomial of the adja-

cency matrix of Kn⊛̃[M :T ]Hk is
k∏

j=1

PHj
(x)

×

{
n∏

i=1

(
x− ΓT1

H1
(x)λi(MMT )

)}
.

(2) If M ∈ Rn×k(s), |T1| = |T2| = . . . = |Tk| = t and ΓT1

L(H1)+c1(M)RT1
(x) = ΓT2

L(H2)+c2(M)RT2
(x) = · · · =

ΓTk

L(Hk)+ck(M)RTk
(x), then the characteristic polynomial of the Laplacian matrix of Kn⊛̃[M :T ]Hk is

k∏
j=1

∣∣xInj
− L(Hj)− cj(M)RTj

∣∣×

{
n∏

i=1

(
x− ts− ΓT1

L(H1)+c1(M)RT1
(x)λi(MMT )

)}
.

In the next result, we obtain the characteristic polynomial of Kn⊛̃[M :T ]Hk for some matrices M .

Corollary 3.4 If M ∈ RCn×k(s, c), then we have the following:

(1) If ΓT1

H1
(x) = ΓT2

H2
(x) = · · · = ΓTk

Hk
(x), then the characteristic polynomial of the adjacency matrix of

Kn⊛̃[M :T ]Hk is

(
x− n+ 1− csΓT1

H1
(x)

)
×


k∏

j=1

PHj
(x)

×

{
n∏

i=2

(
x+ 1− ΓT1

H1
(x)λi(MMT )

)}
.
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(2) If |T1| = |T2| = . . . = |Tk| = t and ΓT1

L(H1)+cRT1
(x) = ΓT2

L(H2)+cRT2
(x) = · · · = ΓTk

L(Hk)+cRTk
(x), then

the characteristic polynomial of the Laplacian matrix of Kn⊛̃[M :T ]Hk is

(
x− ts− csΓT1

L(H1)+cRT1
(x)

)
×


k∏

j=1

∣∣xIn2 − L(Hj)− cRTj

∣∣
×

{
n∏

i=2

(
x− n− ts− ΓT1

L(H1)+cRT1
(x)λi(MMT )

)}
.

Proof: Notice that A(Kn) = Jn − In and L(Kn) = nIn − Jn. Since M ∈ RCn×n(s, c), we have
MMT ∈ RCn×n(cs, cs). So by using Lemma 3.1 and Observation 3.2(6), for each i = 2, 3, . . . , n, we have
cs, n− 1 and λi(MMT ),−1 are co-eigenvalues of MMT , A(Kn), respectively; cs, 0 and λi(MMT ), n are
co-eigenvalues of MMT , L(Kn), respectively. So, the result follows from Corollary 3.2. 2

Lemma 3.2 Let G be a spanning r−regular subgraph of Kp,p. Then we have the following:

(1) The co-eigenvalues of A(G), A(Kp,p) are: r, p; −r,−p and λi(G), 0 for i = 1, 2, . . . , 2p;

(2) The co-eigenvalues of L(G), L(Kp,p) are: 0, 0; 2r, 2p and µi(G), p for i = 1, 2, . . . , 2p.

Proof:

(1) Notice that the spectrum of Kp,p is p, 02p−2,−p. Since G is an r−regular spanning subgraph of Kp,p,
it is a r−regular bipartite graph. By [21, Proposition 2.3.6], A(Kp,p) and A(G) commutes with each
other. So, by [21, Proposition 2.3.2], there exists orthonormal eigenvectors x1, x2, . . . , x2p, which
are eigenvectors of both A(G) and A(Kp,p). Since G (resp. Kp,p) is r−regular ( resp. p−regular),
we have x1 = J2p×1. By [4, Proof of Lemma 3.13], −r (resp. −p) is also an eigenvalue of A(G)
(resp. A(Kp,p)) corresponding to the eigenvector x2p = [J1×p − J1×p]

T . Then xi is an eigenvector
corresponding to λi(G) for some i = 2, 3, . . . , 2p − 1. But for each j = 2, 3, . . . , 2p − 1, xi is an
eigenvector of A(Kp,p) corresponding to 0. So the result follows.

(2) Since G is r−regular, the result follows from Observation 3.2(6) and part (1) of this lemma.

2

By using Lemma 3.2 in Corollary 3.2, we get the following results.

Corollary 3.5 Let G be a spanning r−regular subgraph of Kp,p and let M = A(G). Then we have the
following:

(1) If ΓT1

H1
(x) = ΓT2

H2
(x) = · · · = Γ

T2p

H2p
(x), then the characteristic polynomial of the adjacency matrix of

Kp,p⊛̃[M :T ]H2p is

(
x− p− r2ΓT1

H1
(x)

)(
x+ p− r2ΓT1

H1
(x)

)
×


2p∏
j=1

PHj
(x)

×

{
2p−1∏
i=2

(
x− λi(G)2ΓT1

H1
(x)

)}
.

(2) If ΓT1

L(H1)+c1(M)RT1
(x) = ΓT2

L(H2)+c2(M)RT2
(x) = · · · = Γ

T2p

L(H2p)+c2p(M)RT2p
(x) and |T1| = |T2| = · · · =

|T2p| = t, then the characteristic polynomial of the Laplacian matrix of Kp,p⊛̃[M :T ]H2p is(
x− tr − p− r2ΓT1

L(H1)+rRT1
(x)

)(
x− tr − 2p− 4r2ΓT1

L(H1)+rRT1
(x)

)

×


2p∏
j=1

∣∣xInj
− L(Hj)− rRTj

∣∣×

{
2p−1∏
i=2

(
x− tr − p− λi(G)2ΓT1

H1
(x)

)}
.
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Corollary 3.6 Let G be a spanning r−regular subgraph of Kp,p and let M = A(Kp,p). Then we have
the following:

(1) If ΓT1

H1
(x) = ΓT2

H2
(x) = · · · = Γ

T2p

H2p
(x), then the characteristic polynomial of the adjacency matrix of

G⊛̃[M :T ]H2p is

x2p−2
(
x− r − p2ΓT1

H1
(x)

)(
x+ r − p2ΓT1

H1
(x)

)
×


2p∏
j=1

PHj (x)

×

{
2p−1∏
i=2

(x− λi(G))

}
.

(2) If ΓT1

L(H1)+c1(M)RT1
(x) = ΓT2

L(H2)+c2(M)RT2
(x) = · · · = Γ

T2p

L(Hk)+ck(M)RT2p
(x) and |T1| = |T2| = . . . =

|T2p| = t, then the characteristic polynomial of the Laplacian matrix of G⊛̃[M :T ]H2p is(
x− tp− r − p2ΓT1

L(H1)+pRT1
(x)

)(
x− tp− 2r − 4p2ΓT1

L(H1)+pRT1
(x)

)

×

{
2p−1∏
i=2

(x− tr − µi(G))

}
×


2p∏
j=1

∣∣xInj − L(Hj)− pRTj

∣∣ .

In the following results, we obtain the A−spectrum and the L−spectrum of the graph G⊛̃MHk for
some families of graphs Hi and G.

Corollary 3.7 Let Hk = (H1, H2, . . . ,Hk) be a sequence of graphs with n2 vertices. Then we have the
following:

(1) If Hj (j = 1, 2, . . . , k) are r2-regular and A(G) commutes with MMT , then the A−spectrum of
G⊛̃MHk is

(i) r2 with multiplicity k − n;

(ii) λl(Hj) for j = 1, 2, . . . , k and l = 2, 3, . . . , n2;

(iii)
1

2

(
r2 + λi(G)±

√
(r2 − λi(G))2 + 4n2λi(MMT )

)
for i = 1, 2, . . . , n.

(2) If M ∈ RCn×k(s, c) is such that MMT commutes with L(G), then the L−spectrum of G⊛̃MHk is

(i) c with multiplicity k − n;

(ii) c+ µl(Hj) for j = 1, 2, . . . , k and l = 2, 3, . . . , n2;

(iii)
1

2

(
c+ sn2 + µi(G)±

√
{c− sn2 − µi(G)}2 + 4n2λi(MMT )

)
for i = 1, 2, . . . , n.

Proof:

(1) By Proposition 3.1, we have ΓHj
(x) =

n2

x− r2
for j = 1, 2, . . . , k and so the proof follows from

Corollary 3.2(1).

(2) Since Tj = V (Hj), we have RTj
= In2

. So by using Proposition 3.1, we have ΓL(Hj)+cRTj
(x) =

n2

x− c
for j = 1, 2, . . . , k. By applying these values in Corollary 3.2(2), we get the result.

2



Spectra of M-generalized corona of graphs constrained by vertex subsets 19

3.1.2. A−spectra and L−spectra of new variants of corona of graphs. First, we determine the eigenvalues
of MMT for the corona generating matrices M given in Table 2. Let G be an r−regular graph and
m′ = E(G). Notice that for each of the matrix M given in Table 2, M ∈ RCn×n(s, c) for some integers c
and s. This implies that MMT ∈ RCn×n(cs, cs). So, by using Observations 3.2(3)-(4), Lemma 3.1 and
Observation 3.2(8), we obtain the entries λi(MMT ) as mentioned in the last column of Table 4.

Table 4: The eigenvalues of MMT for various matrices M listed in
Table 2.

S.
No

M c s MMT λi(MMT )

1. A(G) r r A(G)2 λi(G)2 for i = 1, 2, . . . , n

2. In +A(G) r + 1 r + 1 {In +A(G)}2 (λi(G) + 1)2 for i = 1, 2, . . . , n

3. Jn − In n− 1 n− 1 {Jn − In}2
(n− 1)2 for i = 1;
1 for i = 2, 3, . . . , n.

4. Jn −A(G) n− r n− r {Jn −A(G)}2 (n− r)2 for i = 1;
λi(G)2 for i = 2, 3, . . . , n.

5. Jn−In−A(G) n− r−1 n− r−1 {Jn −A(G)− In}2
(n− r − 1)2 for i = 1;
(λi(G) + 1)2 for i = 2, 3, . . . , n

6. B(G) 2 r rIn +A(G) r + λi(G) for i = 1, 2, . . . , n

7. Jn×m −B(G) n− 2 m− r (m−2r)Jn+rIn+A(G)
(m− 2r)n+ 2r for i = 1;
r + λi(G) for i = 2, 3, . . . , n

8. B(G) 2 n− r−1 Jn+(n−r−2)In−A(G)
2n− 2r − 2 for i = 1;
n − r − λi(G) − 2 for i =
2, 3, . . . , n

9. Jn×m′−B(G) n− 2
m′−n+
r + 1

(m′ − 2n+2r+3)Jn +
(n− r − 2)In −A(G)

nm′−(2n−2)(n−r−1) for i = 1;
n − r − λi(G) − 2 for i =
2, 3, . . . , n

In the next result, we obtain the characteristic polynomial of the adjacency and the Laplacian matrices
of the graphs defined in Table 2.

Corollary 3.8 If G is r−regular, then we have the following:

(1) If ΓT1

H1
(x) = ΓT2

H2
(x) = · · · = ΓTk

Hk
(x), then the characteristic polynomial of the adjacency matrices

of the graphs obtained from the corona operations defined in Definitions (1)–(9) in Table 2 can be
obtained from Corollary 3.2 by substituting λi(MMT ), i = 1, 2, . . . , n as in Table 4, for suitable
corona generating matrices M . (for Definitions (1)–(3) in Table 2, the result holds for any graph G).

(2) If ΓT1

L(H1)+c1(M)RT1
(x) = ΓT2

L(H2)+c2(M)RT2
(x) = · · · = ΓTk

L(Hk)+ck(M)RTk
(x) and |T1| = |T2| = . . . =

|Tk| = t, then the characteristic polynomial of the Laplacian matrices of the graphs obtained from
the corona operations defined in Definitions (1)–(10) in Table 2 can be obtained from Corollary 3.2
by substituting λi(MMT ), i = 1, 2, . . . , n as in Table 4, for suitable corona generating matrices M .
(For Definitions (4) in Table 2, the result holds for any graph G).

Proof:

(1) If M is either A(G) or A(G)+In, then MMT commutes with A(G). So, by using Observation 3.2(4),
we have λi(G), λi(MMT ) are co-eigenvalues of A(G),MMT for each i = 1, 2, . . . , n.

For the remaining corona generating matrices M listed in Table 4, MMT commutes with A(G), when
G is regular. So, by using Corollary 3.1(1) and Observation 3.2(7), we have λi(G), λi(MMT ) are
co-eigenvalues of A(G), MMT , where λi(MMT ) are as mentioned in Table 4, for each i = 1, 2, . . . , n.
So the proof follows.
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(2) If M = Jn − In, then M ∈ RCn×n(n − 1, n − 1) and MMT commutes with L(G). So, by using
Corollary 3.1(2) and Observation 3.2(7), we have µi(G), λi(MMT ) are co-eigenvalues of L(G), MMT ,
where λi(MMT ) are as mentioned in Table 4, for each i = 1, 2, . . . , n.

For the remaining corona generating matrices M listed in Table 2, MMT commutes with L(G), if G
is regular. So by using the proof of part (1) and Observation 3.2(6), we have µi(G), λi(MMT ) are
co-eigenvalues of L(G), MMT , where λi(MMT ) are as mentioned in Table 4, for each i = 1, 2, . . . , n.
So the proof follows.

2

In the following result, we obtain the characteristic polynomials of the adjacency and the Laplacian
matrices of the graphs obtained by the corona operations defined in Definitions (11)–(14) in Table 2.

Corollary 3.9 Let G be an r−regular graph. Then we have the following:

(1) If ΓT1

H1
(x) = ΓT2

H2
(x) = · · · = ΓTk

Hk
(x), then the characteristic polynomial of the adjacency matrices

of the graphs obtained from the corona operations defined in Definitions (11)–(14) in Table 2 can
be obtained from Corollary 3.3 by suitably substituting the corona generating matrices M and using
Table 4. (for Definitions (11) and (12), the result holds for any graph G).

(2) If ΓT1

L(H1)+c1(M)RT1
(x) = ΓT2

L(H2)+c2(M)RT2
(x) = · · · = ΓTk

L(Hk)+ck(M)RTk
(x) and |T1| = |T2| = . . . =

|Tk| = t, then the characteristic polynomial of the Laplacian matrices of the graphs obtained from the
corona operations defined in Definitions (11)–(14) in Table 2 can be obtained from Corollary 3.3 by
suitably substituting the corona generating matrices M and using Table 4.

Note 1 If G is r−regular, then we can obtain the A−spectra and the L−spectra of the graphs defined in
Table 3 by taking Hj = K1 for j = 1, 2, . . . , k and suitable corona generating matrices M and the graph
G in Corollary 3.7 (For Definitions (1)–(3), the result holds for any graph G).

3.1.3. A−spectra and L−spectra of variants of corona of graphs defined in the literature. In this sub-
section, we determine the characteristic polynomials of the adjacency and the Laplacian matrices / the
A−spectra and L−spectra of the graphs mentioned in Table 1 by using the results we have proved so far
in this section.

In [7], S. Barik et al. described the A−spectra of the subdivision (resp. R−graph, Q−graph, total)
double corona of the regular graphs G, H1 and H2. In the next result, we deduce the characteristic
polynomials of these graphs for regular graphs G and arbitrary graphs H1, H2 .

Corollary 3.10 Let G be an r−regular graph with n vertices and m
(
= 1

2nr
)
edges. Let H1 and H2

be graphs with h vertices. Then the characteristic polynomial of the adjacency matrix of the subdivision
(resp. R−graph, Q−graph, total) double corona of G, H1 and H2 is

{x− ΓH(x) + 2k1}m−n ×

{
n∏

i=1

(
x2 − {ΓH1

(x) + ΓH2
(x) + k1λi(G)− 2k2}x

+(ΓH1
(x) + k1λi(G))(ΓH2

(x)− 2k2)− νi(G))} ,

where k1 = k2 = 0 (resp. k1 = 1, k2 = 0; k1 = 0, k2 = 1; k1 = k2 = 1).

Proof: Taking suitable entities, which are given in Table 1 and substituting them in Theorem 3.3 and
then by using Theorem 3.1, we obtain the result. 2

P. L. Lu and Y. M. Wu [33] studied the Laplacian and signless Laplacian spectrum of the generalized
subdivision vertex corona of graphs. P. L. Lu et al. [31] studied the signless Laplacian spectrum of the
generalized subdivision edge corona of graphs. Q. Liu and Z. Zhang [28] studied the normalized Laplacian
spectrum of the generalized subdivision edge corona of graphs. Subsequently, Q. Liu [29] obtained the
Kirchhoff index of the generalized R−vertex (resp. R−edge) corona of graphs. In the following result,
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we determine the characteristic polynomials of the adjacency and the Laplacian matrices of these graphs
by taking suitable entities, which are given in Table 1 and substituting them in Theorem 3.3 and then
using Theorem 3.1.

Corollary 3.11 Let G be an r−regular graph with n vertices and m
(
= 1

2nr
)
edges. Let H1, H2, . . . ,Hk,

be graphs with h vertices, where k = n or m. Then we have the following:

(1) If ΓH1
(x) = ΓH2

(x) = · · · = ΓHn
(x), then the characteristic polynomial of the adjacency matrix

of the generalized subdivision vertex (resp. subdivision edge, R− vertex, R−edge) corona of G and
H1, H2, . . . ,Hk, where k = n or m is

{x− k3ΓH2(x)}
m−n ×

{
n∏

i=1

(
x2 − {k1λi(G) + k2ΓH1(x) + k3ΓH2(x)}x

+k3ΓH2
(x) {k1λi(G) + k2ΓH1

(x)} − νi(G))} ,

where k1 = 0, k2 = 1, k3 = 0 (resp. k1 = 0, k2 = 0, k3 = 1; k1 = 1, k2 = 1, k3 = 0; k1 = 1, k2 = 0,
k3 = 1 ).

(2) The characteristic polynomial of the Laplacian matrix of the generalized subdivision vertex (resp.
R−vertex) corona of G and H1, H2, . . . ,Hn is

{x− 2}m−n

(x− 1)n
×

{
n∏

i=1

LHi
(x− 1)

}

×

{
n∏

i=1

(
x3 − {h+ r + 3 + k1µi(G)}x2 + {2h+ r + 2 + k2µi(G)}x− k3µi(G)

)}
,

where k1 = 0, k2 = 1, k3 = 1 (resp. k1 = 1, k2 = 4, k3 = 3).

(3) The characteristic polynomial of the Laplacian matrix of the generalized subdivision vertex (resp.
R−vertex) corona of G and H1, H2, . . . ,Hn is{

x2 − (h+ 3)x+ 2
}m−n

(x− 1)m
×

{
m∏
i=1

LHi
(x− 1)

}

×

{
n∏

i=1

(
x3 − {s+ k1µi(G)}x2 + {r(h+ 1) + k2µi(G) + 2}x− k3µi(G)

)}
,

where s = h+ r + 3, k1 = 0, k2 = 1, k3 = 1 (resp. k1 = 1, k2 = h+ 4, k3 = 3).

In [42], F. Wen et al. computed the normalized Laplacian spectra of the SVEV-corona and the
SVEE-corona of G and H. In the next results, we find the characteristic polynomial of the adjacency
and the Laplacian matrices of the SVEV-corona and the SVEE-corona of G with H1 and H2.

Corollary 3.12 Let G be an r−regular graph with n vertices and m
(
= 1

2nr
)
edges. Let H1 and H2 be

graphs with h1 and h2 vertices, respectively. Then we have the following: .

(1) The characteristic polynomial of the adjacency matrix of the SVEV-corona (resp. SVEE-corona) of
G with H1 and H2 is

{PH1
(x)}n × {PH2

(x)}m × {x− k1ΓH2
(x)}m−n ×

{
n∏

i=1

(
x2 − {νi(G)ΓH1

(x) + ΓH2
(x)}x− νi(G)

)}
,

where k1 = 1 (resp. k1 = 0).
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(2) The characteristic polynomial of the Laplacian matrix of the SVEV-corona of G with H1 and H2 is(
x2 − (2h1 + h2 + 3)x+ 2

)m−n

(x− r)n(x− 1)m
× {LH1

(x− r)}n × {LH2
(x− 1)}m

×

{
n∏

i=1

(
x3 − k1x

2 + {k2µi(G) + k3}x− (h1 − 1)µi(G)
)}

,

where k1 = 2h1 + h2 + r + 3, k2 = h1 + 1, k3 = 2k2 + r(h2 + 1).

(3) The characteristic polynomial of the Laplacian matrix of the SVEE-corona of G with H1 and H2 is

(x− 2)
m−n

(x− 1)n
× ‘ {LH1(x− 1)}n × {LH2(x− 2)}m

×

{
n∏

i=1

(
x3 − k1x

2 + {k2µi(G) + k3}x− (h1 − 1)µi(G)
)}

,

where k1 = rh1 + h2 + r + 3, k2 = h1 + 1, k3 = rk2 + 2(h2 + 1).

Proof:

(1) Taking M =

[
0 0

B(G)T Im

]
and U1 =

[
ΓH1

(x)In 0
0 ΓH2(x)Im

]
, we have

MU1M
T =

[
0 0
0 ΓH1(x)B(G)TB(G) + ΓH2(x)Im

]
.

Now,∣∣xIn+m −A(S(G))−MU1M
T
∣∣

=

∣∣∣∣ xIn −B(G)
−B(G)T xIm − ΓH1

(x)B(G)TB(G)− ΓH2
(x)Im

∣∣∣∣
= xn ×

∣∣∣∣xIm − ΓH1
(x)B(G)TB(G)− ΓH2

(x)Im − 1

x
B(G)TB(G)

∣∣∣∣
= xn−m ×

∣∣x2Im −
(
ΓH1(x)B(G)TB(G) + ΓH2(x)Im

)
x−B(G)TB(G)

∣∣
= xn−m ×

∣∣(x2 − xΓH2
(x)

)
Im − (xΓH1

(x) + 1)B(G)TB(G)
∣∣

= xn−m ×
(
x2 − xΓH2

(x)
)m−n ×

∣∣(x2 − xΓH2
(x)

)
In − (xΓH1

(x) + 1)B(G)B(G)T
∣∣

= (x− ΓH2(x))
m−n ×

∣∣(x2 − xΓH2(x)
)
In − (xΓH1(x) + 1)B(G)B(G)T

∣∣
= (x− ΓH2

(x))
m−n ×

{
n∏

i=1

(
x2 − {νi(G)ΓH1

(x) + ΓH2
(x)}x− νi(G)

)}
Then by using Theorem 3.3, we obtain the characteristic polynomial of the adjacency matrix of
SVEV-corona of G with H1 and H2.

Similarly, by taking M =

[
In B(G)
0 0

]
and U1 =

[
ΓH2

(x)In 0
0 ΓH1

(x)Im

]
, we can obtain the charac-

teristic polynomial of the adjacency matrix of SVEE-corona of G with H1 and H2.

(2) Take N =

[
0 0
0 (2h1 + h2)Im

]
and s1 = 2h1 + h2 + 2. Then∣∣xIn+m − L(S(G))−N −MU2M

T
∣∣

=

∣∣∣∣(x− r)In −B(G)
−B(G)T (x− s1)Im − ΓL(H1)+rIn(x)B(G)TB(G)− ΓL(H2)+Im(x)Im

∣∣∣∣ .
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Then by using Theorems 3.1 and 3.3, and using the fact that ΓL(H1)+rIn(x) =
h1

x− r
and

ΓL(H2)+Im(x) =
h2

x− 1
, we obtain the result.

(3) Proof is similar to the proof of part (2).

2

Remark 3.2 Almost all the results related to the characteristic polynomials of the adjacency and the
Laplacian matrices of the variants of corona of graphs listed in Table 1 can be easily deduced from our
results:

(1) We can deduce the characteristic polynomials of the adjacency and the Laplacian matrices of the
generalized corona of G and Hn constrained by T (cf. [38, Theorems 3.1, 4.1]) and the generalized
corona of G and H1, H2, . . . ,Hn (cf. [15, Theorems 3.1, 4.1]), by taking suitable entities as in
Table 1 and applying these in Theorem 3.3. Also, we can deduce the characteristic polynomials
of the adjacency and the Laplacian matrices of the corona of G and H (cf. [35, Theorem 2], [27,
Theorem 3.1]) and the cluster of G and H (cf. [38, Corollary 4.6]), by taking suitable entities as
in Table 1 and applying these in Corollary 3.2. Further, we can deduce the A−spectrum (resp. the
L−spectrum) of the corona of G and H (cf. [5, Theorems 3.1 (resp. Theorems 3.2)]), by taking
suitable entities as in Table 1 and applying these in Corollary 3.7.

(2) We can deduce the characteristic polynomial of the Laplacian matrix (resp. adjacency matrix) of
the generalized edge corona of G and H1, H2, . . . , Hm, where G is r1−regular, H1, H2, . . . , Hm are
graphs with h vertices (resp. H1, H2, . . . ,Hm are r2−regular with h vertices) (cf. [34, Theorem 2
(resp. Theorem 4)]), by taking suitable entities as in Table 1 and applying these in Corollary 3.7.
In a similar way, we can deduce the characteristic polynomial of the adjacency (resp. Laplacian)
matrix of the edge corona of G and H, where G and H are regular (resp. arbitrary graph H) (cf.
[22, Theorem 2.3] (resp. [22, Theorem 2.4] and [27, Theorem 4.1])).

(3) We can deduce the characteristic polynomials of the adjacency and the Laplacian amtrices of the
neighbourhood corona of G and H, (cf. [26, Theorems 2.3, 2.4]), by taking suitable entities as in
Table 1 and applying these in Corollary 3.8. Also, we can deduce the A−spectra (resp. L−spectra)
of the neighbourhood corona of G and H, where G and H are regular (resp. arbitrary graph H) (cf.
[23, Theorem 2.1 (resp. Theorem 3.1)]), by taking suitable entities as in Table 1 and applying these
in Corollary 3.7.

(4) We can deduce the characteristic polynomials of the adjacency and the Laplacian matrices of the sub-
division vertex corona of G and H (cf. [30, Theorems 2.1, 2.7]), the subdivision vertex neighbourhood
corona of G and H (cf. [25, Theorems 2.1, 2.5 ]), the subdivision edge neighbourhood corona of G
and H (cf. [25, Theorems 3.1, 3.5]), the R−vertex corona of G and H(cf. [24, Theorems 3.1, 3.2]),
the R−edge corona of G and H (cf. [24, Theorems 4.1, 4.2]), the R−vertex neighbourhood corona
of G and H (cf. [24, Theorems 5.1, 5.2 ]), the R−edge neighbourhood corona of G and H (cf. [24,
Theorems 6.1, 6.2]), the N−vertex corona of G and H (cf. [1, Theroems 3.1, 3.2]), the N−vertex
corona of G and H (cf. [1, Theorems 3.1, 3.2]), the C−vertex neighbourhood corona of G and H (cf.
[1, Theorems 3.4, 3.5]), the C−edge corona of G and H (cf. [1, Theorems 4.1, 4.2]), the N−edge
corona of G and H (cf. [1, Theorems 4.4, 4.5]), the total corona of G and H (cf. [43, Theorems 2.1,
2.2 ]), the duplication corona of G and H (cf. [3, Theorems 3.1, 3.4]), the duplication neighbourhood
corona of G and H (cf. [3, Theorems 4.1, 4.4]), the duplication edge corona of G and H (cf. [3,
Theorems 5.1, 5.4]), by taking suitable entities as in Table 1 and applying these in Theorem 3.3, and
by using Theorem 3.1.

(5) If G is a graph with n1 vertices and H is an r2−regular graph with n2 vertices and m2(=
1
2n2r2)

edges, then it is not hard to obtain that Γ
V (H)
S(H) (x) =

n2x

x2 − 2r2
and Γ

I(H)
S(H)(x) =

m2x

x2 − 2r2
. By using
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these facts and taking the entities as in Table 1 and applying these in Corollary 3.2, we can deduce
the characteristic polynomials of the adjacency and the Laplacian matrices of the corona-vertex
subdivision graph of G and H, and the corona-edge subdivision graph of G and H [32].

(6) To obtain the characteristic polynomials of the adjacency and the Laplacian matrices of the S-
N corona (resp. R-N corona, Q-N corona, T -N corona, R−SEN corona, Q−SEN corona, T−SEN
corona, R−SVN corona, T−SVN corona) ofG withHn andH′

m constrained by T and T ′, substituting
the entities as in Table 1 in Theorem 3.3. Then we can obtain an equation similar to equation (3) in
[17]. Then by continuing the similar procedure as in [17, Theorem 2.2], we can obtain the results.

4. Applications

4.1. Integral graphs

Corollary 4.1 Let G be an A−integral graph with n1 vertices. Then the neighbourhood corona of G and
Kn2 is A−integral if and only if n2 = s(s+ 1), where s ∈ N.

Proof: Using Corollary 3.7, the A−spectrum of the neighbourhood corona of G and Kn2 is

(i) 0 with multiplicity n1(n2 − 1),

(ii)
λj(G)

2

(
1±

√
4n2 + 1

)
for j = 1, 2, . . . , n1.

So, the neighbourhood corona of G and Kn2
is integral

⇔
√
4n2 + 1 is a non-negative integer

⇔ 4n2 + 1 = t2for some integer t

⇔ n2 =
1

4
(t2 − 1).

Since n2 is an integer, t must be odd, that is, t = (2s+1), s = 1, 2, . . . and so n2 = s(s+1), s = 1, 2, . . . 2

In the next result, we construct infinitely many families of A−integral and L−integral bipartite graphs
by using Corollary 3.7.

Corollary 4.2 (1) If M is a 0 − 1 matrix such that all the eigenvalues of MMT are perfect squares
and n2 is a perfect square, then the graph Kn1

⊛̃MKn2
is A−integral. In particular, if M is a 0− 1

symmetric matrix such that all of its eigenvalues are integers and and n2 is a perfect square, then
the graph Kn1

⊛̃MKn2
is A−integral.

(2) If M ∈ RCn×k(r, r) is a 0− 1 matrix such that all the eigenvalues of MMT are perfect squares, then
the graph Kn⊛̃MK1 is L−integral. In particular, if M ∈ Rn×n(r) is a 0− 1 symmetric matrix such
that all of its eigenvalues are integers, then the graph Kn⊛̃MK1 is L−integral.

4.2. Cospectral graphs

Corollary 3.2 shows that, if all the coronals of Hj ’s constrained by their corresponding subsets Tj ’s
are equal, then the A−spectrum of G⊛̃[M :T ]Hk is the same regardless of the order of Hj ’s in Hk.

Corollary 4.3 Let Hk = (H1, H2, . . . ,Hk) be a sequence of k graphs and T = (T1, T2, . . . , Tk), where
Tj ⊆ V (Hj), j = 1, 2, . . . , k. let M be a 0−1 matrix of size n×k such that MMT commutes with A(G). Let
θ be a permutation on {1, 2, . . . , k}. Let H′

k = (Hθ(1), Hθ(2), . . . ,Hθ(k)) and T = (Tθ(1), Tθ(2), . . . , Tθ(k)).
Then we have the following:

(1) If ΓT1

H1
(x) = ΓT2

H2
(x) = · · · = ΓTk

Hk
(x), then G⊛̃[M :T ]Hk and G⊛̃[M :T ′]H′

k are A−cospectral.

(2) If M ∈ Rn×k(s), |T1| = |T2| = . . . = |Tk| = t and ΓT1

L(H1)+c1(M)RT1
(x) = ΓT2

L(H2)+c2(M)RT2
(x) = · · · =

ΓTk

L(Hk)+ck(M)RTk
(x), then G⊛̃[M :T ]Hk and G⊛̃[M :T ′]H′

k are L−cospectral.
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Proof:

(1) By Corollary 3.2(1),

PG⊛̃[M:T ]Hk
(x) =


k∏

j=1

PHj
(x)

×

{
n∏

i=1

(
x− λi(G)− ΓT1

H1
(x)λi(MMT )

)}

=


k∏

j=1

PHj (x)

×

{
n∏

i=1

(
x− λi(G)− Γ

Tθ(1)

Hθ(1)
(x)λi(MMT )

)}
= PG⊛̃[M:T ′]H′

k
(x).

(2) Proof is similar to the proof of part (1).

2

In the following result, we show that, if we replace the graph Hj by some A−cospectral graph H ′
j

whose coronal is same as the coronal of Hj , for each j = 1, 2, . . . , k, then the A−spectrum of G⊛̃[M :T ]Hk

remains unchanged.

Corollary 4.4 Let Hk = (H1, H2, . . . ,Hk) and H′
k = (H ′

1, H
′
2, . . . ,H

′
k) be two sequences of k graphs.

Let T = (T1, T2, . . . , Tk) and T ′ = (T ′
1, T

′
2, . . . , T

′
k), where Tj ⊆ V (Hj), T

′
j ⊆ V (H ′

j), for j = 1, 2, . . . , k be

such that Hj and H ′
j are A−cospectral and Γ

Tj

Hj
(x) = Γ

T ′
j

H′
j
(x), for j = 1, 2, . . . , k. Then G⊛̃[M :T ]Hk and

G⊛̃[M :T ′]H′
k are A−cospectral.

Proof: Since PHj
(x) = PH′

j
(x) and Γ

Tj

Hj
(x) = Γ

T ′
j

H′
j
(x), for j = 1, 2, . . . , k, so by Theorem 3.3, we get the

result. 2

The following two results directly follows from Theorem 3.3.

Corollary 4.5 If G and G′ are A−cospectral graphs with n vertices and m edges and M is any one of
the corona generating matrices mentioned in Table 2, then the graphs G⊛̃[M :T ]Hk and G′⊛̃[M :T ]Hk are
A−cospectral.

Corollary 4.6 If M is one of the corona generating matrices mentioned in Table 2, then we have the
following:

(1) Let Hk = (H1, H2, . . . ,Hk) and H′
k = (H ′

1, H
′
2, . . . ,H

′
k) be two sequence of k graphs such that Hj and

H ′
j for j = 1, 2, . . . , k are L−cospectral. Then G⊛̃MHk and G⊛̃MH′

k are L−cospectral.

(2) If G and G′ are L−cospectral graphs, then G⊛̃MHk and G′⊛̃MHk are L−cospectral.

5. Concluding remarks

One of the main contribution of this paper is that it devised a method of computing the generalized
characteristic polynomial of the M−generalized corona of graphs constrained by vertex subsets by using
the corona generating matrix M (ref. Theorem 3.3) and as a consequence it simplifies the repetitive
process of determining the characteristic polynomials of the adjacency and the Laplacian matrices of all
the existing corona (except extended corona and extended neighbourhood corona) as well as the newly
defined corona of graphs, since these corona of graphs are particular cases of the M−generalized corona
of graphs constrained by vertex subsets by taking suitable M .

We can derive the characteristic polynomial of the signless Laplacian matrix of the graph G⊛̃[M :T ]Hk,
by an analogous method used in the proof of Theorem 3.3. So the results proved in the Section 3 can
be proved analogously for the signless Laplacian matrix of these graphs (with an additional constraint in
Corollary 3.7 by assuming G is regular).
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The number of spanning trees and the Kirchhoff index of variants of corona of graphs defined in Defi-
nitions (1)–(13) in Table 2 can be obtained from Corollary 3.7 by substituting suitable corona generating
matrices M and using the entities given in Table 4.

The determination of the characteristic polynomials of the other graph matrices such as normalized
Laplacian matrix and distance matrix of the variants of corona of graphs introduced in this paper are
further research problems in this direction.

In [20], authors introduced a more generalized construction of graphs which includes the construction
of M−generalized corona of graphs constrained by vertex subsets, the extended corona of graphs, and
the extended neighbourhood corona of graphs, and studied its spectral properties.
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