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Solving Bilevel Quasimonotone Variational Inequality Problem In Hilbert Spaces

D. O. Peter, A. A. Mebawondu∗, G. C. Ugwunnadi, P. Pillay and O. K. Narain

abstract: In this paper, we propose and study a Bilevel quasimonotone Variational Inequality Problem
(BVIP) in the framework of Hilbert space. We introduce a new modified inertial iterative technique with self-
adaptive step size for approximating a solution of the BVIP. In addition, we established a strong convergence
result of the proposed iterative technique with adaptive step-size conditions without prior knowledge of Lips-
chitz’s constant of the cost operators as well as the strongly monotonicity coefficient under some standard mild
assumptions. Finally, we provide some numerical experiments to demonstrate the efficiency of our proposed
methods in comparison with some recently announced results in the literature.
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1. Introduction

Let H be a real Hilbert space with the inner product 〈·, ·〉 and the induced norm ‖ · ‖, C a nonempty
closed convex subset of H and F : H → H be a nonlinear operator. The classical Variational Inequality
Problem (VIP) is formulated as:

Find x ∈ C such that 〈Fx, y − x〉 ≥ 0 ∀ y ∈ C. (1.1)

The notion of VIP was introduced independently by Stampacchia [36] and Fichera [13,14] for modeling
problems arising from mechanics and for solving Signorini problem. It is well-known that many problems
in economics, mathematical sciences, and mathematical physics can be formulated as VIP. We denote the
solution set of a VIP by Ω. Due to the fruitful applications of the VIP, many researchers in this area have
developed different iterative techniques to solve VIP (1.1). In particular, Goldsten in [20] introduced an
iterative technique defined as follows:

{

x1 ∈ C,

xn+1 = PC(xn − λFxn),
(1.2)

for all n ∈ N, where λ ∈ (0, 2α
L2 ), F is α-strongly monotone and L-Lipschitz continuous and PC is a metric

projection defined from H onto C. The author established that the iterative method (1.2) converges to the
solution set of VIP (1.1). However, it was observed that if F monotone and L-Lipschitzian continuous,
the iterative method (1.2) may not converge to the solution set of VIP (1.1), see [22] and the reference
therein for details. In addition, computing the value of λ may be very difficult or impossible. In the light
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of these draw back, Korpelevich in [24] introduced and studied the Extragradient Method (EM) iterative
technique defined as follows:











x1 ∈ C,

yn = PC(xn − λnFxn),

xn+1 = PC(xn − λnFyn),

(1.3)

for all n ≥ 1, where λn ∈ (0, 1
L

), F is monotone and L-Lipschitz continuous and PC is a metric projection
defined from H onto C. This method was able to provide an affirmative answer to the question of
weakening the cost operator, however, the computation of λn remains a challenge. More so, another set
back of this technique (1.3) is that it requires two projections onto the feasible set C per iteration, which
is costly when C is not a simple structure. Since the inception of EM, many authors have introduced,
modified and studied different EM in which the cost operator F is monotone and pseudomonotonicity.
For example, He et at. [23], Apostol et al. [2], He et al. [22], Ceng et al. [4], Ceng et al [5], Nadezhkina
and Takahashi [27] and many others. In addition, the notion of VIP (1.1) has also been extended and
generalized by many authors. For example, Mainge in [28] introduced and studied the notion of Bilevel
Variational Inequality Problems (BVIP). The BVIP is defined as follows:

Find x∗ ∈ Ω such that 〈Gx∗, x − x∗〉 ≥ 0 ∀ x ∈ Ω. (1.4)

where G : H → H is L-Lispschitz continuous and γ-strongly monotone. It is easy to see that the
BVIP (1.4) is a problem that is made up of the VIP (1.1) as a constraint. He proposed the following
extragradient technique:



















u0 ∈ C

vn = PC(un − λnFun)

tn = PC(un − λnFvn)

un+1 = tn − αnGtn,

(1.5)

where {λn} ⊂ [a, b] ∈

(

0, 1
L

)

and αn ⊂ (0, 1) such that limn→∞ αn = 0 and
∑∞

n=1 αn = +∞. It was

established that the sequence generated by {xn} converges strongly to a unique solution of problem BVIP
(1.4). It is easy to see that the iterative technique (1.5) has at least two setbacks, for example {λn} ⊂

[a, b] ⊂

(

0, 1
L

)

, and the double metric projection (PC). In order to overcome this setbacks, researchers

have introduced the Tseng type iterative technique, the projection contraction iterative technique and the
subgradient extragradient iterative technique that are self adaptive, see [35,37,38,39,42] and the reference
therein for details. In particular, Tan et al., [38] introduced and studied the following iterative technique;







































x0, x1 ∈ C,

wn = xn + θn(xn − xn−1),

yn = PC(wn − λnFwn),

Tn = {x ∈ H : 〈wn − λnFwn − yn, x − yn〉 ≤ 0},

zn = PTn
(wn − λnFyn),

xn+1 = zn − αnγGzn,

(1.6)

for all n ∈ N, and































x0, x1 ∈ C,

wn = xn + θn(xn − xn−1),

yn = PC(wn − λnFwn),

zn = yn − λn(F1wn − Fyn),

xn+1 = zn − αnγGzn,

(1.7)
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for all n ∈ N, where F is L-Lipschitz continuous, pseudomonotone and sequentially weakly continuous, G

is α-strongly monotone and L1-Lipschitz continuous. They established that the iterative techniques (1.2)
and (1.7) converge strongly to a unique solution of the BVIP (1.4) using some standard assumptions.
The question is still wide open, if some (all) of the mentioned iterative techniques can further be im-
proved. One of the ways in which these iterative techniques have been improved over the years is the
introduction of the inertial extrapolation technique. In 1964, Polyak in [32] introduced an inertial ex-
trapolation as an acceleration technique process for solving the smooth convex minimization problem.
Since then, this technique has been employed by research to improve their iterative techniques. The
inertial technique requires the first two initial terms of the iterative technique and the next iterate is
defined by making use of the previous two iterates. Since inception of the inertial extrapolation, many
authors have modified, extended and generalized the technique, see [15,16,35] and the references therein.
However, it has always been a question of interest, if the extrapolation technique can further be im-
proved. The importance of the BVIP cannot be overemphasized. The BVIP (1.4) has been applied to
different areas of mathematical sciences, engineering, physics and so on. For example,the BVIP (1.4) has
applications in equilibrium constraints, bilevel convex programming models, minimum-norm problems
with the solution set of variational inequalities, bilevel linear programming, image restoration and many
more see ( [1,12,18,19,26,40,41]) and the references therein. Due to these applications, many authors have
introduced different iterative techniques for solving the BVIP in the framework of Hilbert spaces (see,
[1,15,16,17,28,29,39] and the references therein). It is well-known that the underlying cost operators have
crucial roles to play in real applications of these iterative methods. In the light of this introducing an
iterative technique with weaker cost operators and better rate of convergence is highly sorted after. Hav-
ing consider the above discussed literatures and the references therein, it is natural to ask the following
question:

1. Can we construct an efficient inertial type iterative technique that does require the knowledge of
the Lipschitz constant during implementation of the algorithm?

2. Can we construct an iterative technique for a BVIP (1.4) in which the cost operators are quasi-
monotone and α-strongly monotone in the framework of infinite dimensional Hilbert spaces and
obtain strong convergence?

3. Can we further explore the iterative techniques (1.7) and (1.5), in which the cost operator is
quasimonotone and strongly monotone and the knowledge of the Lipschitz constant needed not to
be known during implementation?

The purpose of this work is to provide and affirmative answer to the above questions by introducing
a modified inertial iterative technique with self-adaptive step size for approximating the solution of
quasimonotone BVIP (1.4). In addition, we use a modified inertial technique to accelerate the rate of
convergence of our proposed methods. In addition, our numerical experiments justify that our method
is better than other methods in the literature for solving the BVIP (1.4).
The rest of this paper is organized as follows: In Section 2, we recall some useful definitions and results
that are relevant for our study. In Section 3, we present our proposed method. In Section 4, we establish
strong convergence of our method and in Section 5, we present some numerical experiments to show the
efficiency and applicability of our method in the framework of infinite dimensional Hilbert spaces. Lastly
in Section 6, we give the conclusion of the paper.

2. Preliminaries

In this section, we begin by recalling some known and useful results which are needed in the sequel. Let
H be a real Hilbert space. The set of fixed points of a nonlinear mapping T : H → H will be denoted
by F (T ), that is F (T ) = {x ∈ H : T x = x}. We denotes strong and weak convergence by "→" and "⇀",
respectively. For any x, y ∈ H and α ∈ [0, 1], it is well-known that

‖x − y‖2 = ‖x‖2 − 2〈x, y〉 + ‖y‖2. (2.1)
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‖x + y‖2 = ‖x‖2 + 2〈x, y〉 + ‖y‖2. (2.2)

‖x − y‖2 ≤ ‖x‖2 + 2〈y, x − y〉. (2.3)

‖αx + (1 − α)y‖2 = α‖x‖2 + (1 − α)‖y‖2 − α(1 − α)‖x − y‖2. (2.4)

Definition 2.1. Let T : H → H be an operator. Then T is called

(a) L-Lipschitz continuous if there exists L > 0 such that

‖T x − T y‖ ≤ L‖x − y‖,

for all x, y ∈ H. If L = 1, then T is called nonexpansive. If y ∈ F (T ), and

‖T x − y‖ ≤ ‖x − y‖,

for all x ∈ H. Then T is called quasinonexpansive.

(b) monotone if

〈T x − T y, x − y〉 ≥ 0, ∀x, y ∈ H ;

(c) pseudomonotone if

〈T x, y − x〉 ≥ 0 ⇒ 〈T y, y − x〉 ≥ 0, ∀x, y ∈ H ;

(d) α- strongly monotone if there exists α > 0, such that

〈T x − T y, x − y〉 ≥ α‖x − y‖2, ∀ x, y ∈ H ;

(e) quasimonotone

〈T x, x − y〉 > 0 ⇒ 〈T y, x − y〉 ≥ 0 ∀ x, y ∈ H ;

(f) sequentially weakly continuous if for each sequence {xn}, we obtain {xn} converges weakly to x

implies that T xn converges weakly to T x.

Remark 2.1. It is well-known that α-strongly monotone ⇒ monotone ⇒ pseudomonotone ⇒ quasi-
monotone. However, the converses are not generally true.

Let C be a nonempty, closed and convex subset of H. For any u ∈ H, there exists a unique point PCu ∈ C

such that
‖u − PCu‖ ≤ ‖u − y‖ ∀y ∈ C.

The operator PC is called the metric projection of H onto C. It is well-known that PC is a nonexpansive
mapping and that PC satisfies

〈x − y, PCx − PCy〉 ≥ ‖PCx − PCy‖2, (2.5)

for all x, y ∈ H. Furthermore, PC is characterized by the property

‖x − y‖2 ≥ ‖x − PCx‖2 + ‖y − PCx‖2

and

〈x − PCx, y − PCx〉 ≤ 0, (2.6)

for all x ∈ H and y ∈ C.
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Lemma 2.2. [21,43] Let C be a nonempty, closed and convex subset of a Hilbert space H and A : H → H

ba L-Lipschitzian and quasimonotone operator. Suppose that y ∈ C and for some p ∈ C, we have
〈Ay, p − y〉 ≥ 0, then at least on of the following hold

〈Ap, p − y〉 ≥ 0 or 〈Ay, q − y〉 ≤ 0

for all q ∈ C.

Lemma 2.3. [34] Let {an} be a sequence of positive real numbers, {αn} be a sequence of real numbers
in (0, 1) such that

∑∞
n=1 αn = ∞ and {dn} be a sequence of real numbers. Suppose that

an+1 ≤ (1 − αn)an + αndn, n ≥ 1.

If lim supk→∞ dnk
≤ 0 for all subsequences {ank

} of {an} satisfying the condition

lim inf
k→∞

{ank+1 − ank
} ≥ 0,

then, lim
k→∞

an = 0.

Lemma 2.4. [1] Let C be nonempty closed convex subset of a real Hilbert space H. For any x ∈ H and
z ∈ C, we have z = PCx if and only if 〈x − z, y − z〉 ≤ 0 ∀ y ∈ C.

Lemma 2.5. [1] Let H be a Hilbert space and F : H → H be a τ -strongly monotone and L-Lipschitz
continuous operator on H. Let α ∈ (0, 1) and γ ∈ (0, 2τ

L2 ). Then for any nonexpansive operator T : H → H,

we can associate T γ : H → H defined by T γx = (I − αγF )T x for all x ∈ H. Then, T γ is a contraction.
That is

‖T γx − T γy‖ ≤ (1 − αν)‖x − y‖

for all x, y ∈ H, where ν = 1 −
√

1 − γ(2τ − γL2) ∈ (0, 1).

3. Proposed Algorithm

In this section, we present our proposed method for solving a bilevel quasimonotone variational inequality
problem.
Assumption 1.

Condition A. Suppose

1. The feasible sets C is nonempty set, closed and convex subsets of the real Hilbert space H..

2. {Sn} is a sequence of nonexpansive mapping on H.

3. F : H → H is quasimonotone, sequentially weakly continuous an Lipschitz continuous with Lips-
chitz constant L > 0.

4. G : H → H is τ -strongly monotone and Lipschitz continuous with Lipschitz constant L1 > 0.

5. The solution set Φ := {x ∈ Ω : 〈Gx∗, x − x∗〉 ≥ 0 ∀ x ∈ Ω} is nonempty, where Ω is the solution of
the classical VIP (1.1).

Condition B.

1. {βn} ⊂ (0, 1), lim
n→∞

βn = 0 and
∑∞

n=0 βn = ∞.

2. α ∈ (0, 2τ
L2

1

), λ0 > 0, ν ∈ (0, 1) and choose the nonnegative real sequence {pn} such that
∑∞

n=1 pn <

∞.

We present the following iterative algorithm.
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Algorithm 1. Initialization Step:
Step 1: Choose x0, x1 ∈ H, given the iterates xn−1 and xn for all n ∈ N, choose θn such that

0 ≤ θn ≤ θ̄n, where

θ̄n =











min
{

n−1
n+β−1 , ǫn

‖xn−xn−1‖}

}

, if xn 6= xn−1

n−1
n+β−1 , otherwise,

(3.1)

with θ been a positive constant and {ǫn} is a positive sequence such that ǫn = ◦(βn).
Step 2. Set

wn = xn + θn(Snxn − Snxn−1).

Then, compute

yn = PC(wn − λnFwn), (3.2)

zn = yn + λn(Fwn − Fyn), (3.3)

λn+1 =











min
{ ν‖wn−yn‖

‖F wn−F yn‖ , λn + pn

}

, if Fwn 6= Fyn

λn + pn, otherwise.

(3.4)

Step 4. Compute

xn+1 = zn − βnαGzn (3.5)

4. Convergence Analysis

Lemma 4.1. The step-size λn+1 in Algorithm 1 is well defined.

Proof The proof that λn+1, is well defined follows similar approach as in Lemma 3.1 of [25], thus we
omit it.

Lemma 4.2. Let {xn} be a sequence generated by Algorithm 1 under Assumption 3. Then, {xn} is
bounded.

Proof Let p ∈ Φ. Since lim
n→∞

θn

βn
‖xn − xn−1‖ = 0, there exists N1 > 0 such that θn

βn
‖xn − xn−1‖ ≤ N1,

for all n ∈ N. Then using Algorithm 1, we have

‖wn − p‖ = ‖xn + θn(Snxn − Snxn−1) − p‖

≤ ‖xn − p‖ + θn‖Snxn − Snxn−1‖

≤ ‖xn − p‖ + βn

θn

βn

‖xn − xn−1‖

≤ ‖xn − p‖ + βnN1. (4.1)

Also, using Algorithm 1 and (2.2)

‖zn − p‖2 = ‖yn + λn(Fwn − Fyn) − p‖2

= ‖yn − λn(Fyn − Fwn) − p‖2

= ‖yn − p‖2 + λ2
n‖Fyn − Fwn‖2 − 2λn〈Fyn − Fwn, yn − p〉

= ‖yn − wn + wn − p‖2 + λ2
n‖Fyn − Fwn‖2 − 2λn〈Fyn − Fwn, yn − p〉

= ‖wn − p‖2 + ‖yn − wn‖2 + 2〈yn − wn, wn − p〉 + λ2
n‖Fyn − Fwn‖2 (4.2)

− 2λn〈Fyn − Fwn, yn − p〉

= ‖wn − p‖2 + ‖yn − wn‖2 − 2〈yn − wn, yn − wn〉 + 2〈yn − wn, yn − p〉

+ λ2
n‖Fyn − Fwn‖2 − 2λn〈Fyn − Fwn, yn − p〉. (4.3)
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Since yn = PC(wn − λnAwn) and p ∈ Φ ⊆ C, and by Lemma 2.4, we have

〈yn − wn + λnFwn, yn − p〉 ≤ 0.

It then follows that 〈yn − wn, yn − p〉 ≤ −λn〈Fwn, yn − p〉. Using the fact that yn ∈ C and p ∈ Φ, we
have 〈Fyn, yn − p〉 ≥ 0. Using the above facts and (3.4),we have (4.2) becomes

‖zn − p‖2 ≤ ‖wn − p‖2 − ‖yn − wn‖2 − 2λn〈Fwn, yn − p〉 + λ2
n‖Fyn − Fwn‖2 (4.4)

− 2λn〈Fyn − Fwn, yn − p〉

= ‖wn − p‖2 − ‖yn − wn‖2 + λ2
n‖Fyn − Fwn‖2 − 2λn〈Fyn, yn − p〉

≤ ‖wn − p‖2 − ‖yn − wn‖2 + λ2
n‖Fyn − Fwn‖2

≤ ‖wn − p‖2 − (1 −
λ2

nν2

λ2
n+1

)‖yn − wn‖2

≤ ‖wn − p‖2. (4.5)

It follows that

‖zn − p‖ ≤ ‖wn − p‖. (4.6)

In addition, using Algorithm 1, Lemma 2.5 and the fact that γ = 1−
√

1 − α(2τ − αL2
1) ∈ (0, 1), we have

‖xn+1 − p‖ = ‖zn − βnαGzn − p‖

= ‖(1 − βnαG)zn − (1 − βnαG)p − βnαGp‖

≤ (1 − γβn)‖zn − p‖ + βnα‖Gp‖

≤ (1 − γβn)‖wn − p‖ + βnα‖Gp‖

≤ (1 − γβn)[‖xn − p‖ + βnN1] + βnα‖F2p‖

≤ (1 − γβn)‖xn − p‖ + γβn[
N1 + α‖Gp‖

γ
]

≤ max{‖xn − p‖,
[N1 + α‖Gp‖

γ
}

... (4.7)

≤ max{‖x1 − p‖,
[N1 + α‖Gp‖

γ
}. (4.8)

Thus, we have that {xn} is bounded.

Lemma 4.3. Let {xn} be a sequence generated by Algorithm 1 under Assumption 3 and suppose that
there exists a subsequence {xnk

} of {xn} which converges weakly to x∗ ∈ H and lim
k→∞

‖wnk
− ynk

‖ = 0.

Then, x∗ ∈ Ω.

Proof Since ynk
= PC(wnk

− λnk
Fwnk

), then from the characteristic of the metric projection, we
have

〈wnk
− λnk

Fwnk
− ynk

, x − ynk
〉 ≤ 0 ∀ x ∈ C, (4.9)

which implies that

〈wnk
− ynk

, x − ynk
〉 − λnk

〈Fwnk
, x − ynk

〉 ≤ 0, (4.10)

which implies that

〈wnk
− ynk

, x − ynk
〉 ≤ λnk

〈Fwnk
, x − ynk

〉 (4.11)

= λnk
〈Fwnk

, wnk
− ynk

〉 + λnk
〈Fwnk

, x − wnk
〉. (4.12)
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Since λnk
> 0, we have

1

λnk

〈wnk
− ynk

, x − ynk
〉 + 〈Fwnk

, ynk
− wnk

〉 ≤ 〈Fwnk
, x − wnk

〉. (4.13)

Using our hypothesis and the fact that lim
k→∞

λnk
> 0, , we have

0 ≤ lim inf
k→∞

〈Fwnk
, x − wnk

〉 ≤ lim sup
k→∞

〈Fwnk
, x − wnk

〉. (4.14)

Now, observe that

〈Fynk
, x − ynk

〉 = 〈Fynk
, x − wnk

〉 + 〈Fynk
, wnk

− ynk
〉

= 〈Fynk
− Fwnk

, x − wnk
〉 + 〈Fwnk

, x − wnk
〉 + 〈Fynk

, wnk
− ynk

〉. (4.15)

Since F is Lischitz continuous on H and our hypothesis, we have

lim
k→∞

‖Fwnk
− Fynk

‖ ≤ L lim
k→∞

‖wnk
− ynk

‖ = 0. (4.16)

Combining (4.14), (4.15) and (4.16), we have

0 ≤ lim inf
k→∞

〈Fynk
, x − ynk

〉 ≤ lim sup
k→∞

〈Fynk
, x − ynk

〉. (4.17)

In what follows, we now establish that x∗ ∈ Ω. To start with, we consider the case in which
lim supk→∞〈Fynk

, x − ynk
〉 > 0 for all x ∈ C. Then there exists a subsequence {ynkm

} of sequence
{ynk

} such that lim supm→∞〈Fynkm
, x − ynkm

〉 > 0 for all x ∈ C. It follows that we can find N0 such
that

〈Fynkm
, x − ynkm

〉 > 0 ∀m > N0. (4.18)

Since A is quasimonotone, it follows that

〈Fx, x − ynkm
〉 > 0 ∀m > N0. (4.19)

Now observe that

‖wnkm
− xnkm

‖ = αnkm

θnkm

αnkm

‖Snkm
xnkm

− Snkm
xnkm −1‖ → 0 as m → ∞. (4.20)

Since, the subsequence {xnk
} of {xn} is weakly convergent to a point x∗ ∈ H. Hence, using the fact that

lim
n→∞

‖wnkm
− ynkm

‖ = 0, we have that {ynkm
} also converges to x∗. Now passing the limit as m → ∞ in

(4.19), we have

lim
m→∞

〈Fx, x − ynkm
〉 = 〈Fx, x − x∗〉 > 0. (4.21)

Hence, x∗ ∈ Ω.

Secondly, we consider the case in which lim supk→∞〈Fynk
, x − ynk

〉 = 0 for x ∈ C. Let {δk} be a
non-increasing positive sequence defined by

δk = |〈Fynk
, x − ynk

〉| +
1

k + 1
. (4.22)

By our hypothesis, it is easy to see that

lim
k→∞

δk = lim
k→∞

〈Fynk
, x − ynk

〉 + lim
k→∞

1

k + 1
= 0. (4.23)
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By our hypothesis and (4.22), we have

〈Fynk
, x − ynk

〉 + δk > 0 (4.24)

for each k ≥ 1, since {ynk
} ⊂ C, it implies that {Fynk

} is strictly non-zero and lim infk→∞ ‖Fynk
‖ =

N0 > 0. We therefore deduce that

‖Fynk
‖ >

N0

2
(4.25)

In addition, let {ǫnk
} be a sequence defined by ǫnk

=
F ynk

‖F ynk
‖2 . It implies that

〈Fynk
, ǫnk

〉 = 1. (4.26)

Combining (4.24) and (4.26), we have

〈Fynk
, x + δkǫnk

− ynk
〉 > 0. (4.27)

By quasimonotonicity of the operator F on H, we get that

〈F (x + δkǫnk
), x + δkǫnk

− ynk
〉 ≥ 0. (4.28)

Now, observe that

〈Fx, x + δkǫnk
− ynk

〉 = 〈Fx − F (x + δkǫnk
) + F (x + δkǫnk

), x + δkǫnk
− ynk

〉 (4.29)

= 〈Fx − F (x + δkǫnk
), x + δkǫnk

− ynk
〉 + 〈F (x + δkǫnk

), x + δkǫnk
− ynk

〉
(4.30)

Combining (4.28), (4.29) and applying the well known Cauchy Schwartz inequality, we have

〈Fx, x + δkǫnk
− ynk

〉 ≥ 〈Fx − F (x + δkǫnk
), x + δkǫnk

− yn〉 (4.31)

≥ −‖Fx − F (x + δkǫnk
)‖‖x + δkǫnk

− ynk
‖. (4.32)

Since F is Lipschitz continuous, we have

〈Fx, x + δkǫnk
− ynk

〉 + L‖δkǫnk
‖‖x + δkǫnk

− ynk
‖ ≥ 0 (4.33)

Combining (4.25) and (4.33) and using the definition of {ǫnk
}, we have

〈Fx, x + δkǫnk
− ynk

〉 +
2L

N0
δk‖x + δkǫnk

− ynk
‖ ≥ 0. (4.34)

Since, the subsequence {xnk
} of {xn} is weakly convergent to a point x∗ ∈ H. Hence, using the fact that

lim
n→∞

‖wnk
− ynk

‖ = 0, we have that {ynk
} also converges to x∗. Taking limit as k → ∞, since δk → 0,

we have

lim
k→∞

[

〈Fx, x + δkǫnk
− ynk

〉 +
2L

N0
δk‖x + δkǫnk

− ynk
‖

]

= 〈Fx, x − x∗〉 > 0. (4.35)

Hence x∗ ∈ Ω.

Theorem 4.4. Let {xn} be a sequence generated by Algorithm 1 under Assumption 3. Then, {xn}
converges strongly to p ∈ Φ.



10 1D. O. Peter, 1,2,3A. A. Mebawondu, 4,5G. C. UGWUNNADI, 1P. Pillay and 1O. K. Narain

Proof Let p ∈ Φ, observe that

‖wn − p‖2 = ‖xn + θn(Snxn − Snxn−1) − p‖2

= ‖xn − p‖2 + 2θn〈xn − p, Snxn − Snxn−1〉 + θ2
n‖Snxn − Snxn−1‖2

≤ ‖xn − p‖2 + 2θn‖xn − p‖‖xn − xn−1‖ + θ2
n‖xn − xn−1‖2

= ‖xn − p‖2 + θn‖xn − xn−1‖[2‖xn − p‖ + θn‖xn − xn−1‖]

= ‖xn − p‖2 + θn‖xn − xn−1‖[2‖xn − p‖ + βn

θn

βn

‖xn − xn−1‖]

≤ ‖xn − p‖2 + θn‖xn − xn−1‖[2‖xn − p‖ + βnN1]

≤ ‖xn − p‖2 + θn‖xn − xn−1‖N2, (4.36)

for some N2 > 0.

‖xn+1 − p‖2 = ‖zn − βnαGzn − p‖2

= ‖(1 − βnαG)zn − (1 − βnαG)p − βnαGp‖2

≤ ‖(1 − βnαG)zn − (1 − βnαG)p‖2 − 2βnα〈Gp, xn+1 − p〉

≤ (1 − γβn)2‖zn − p‖2 + 2βnα〈Gp, p − xn+1〉

≤ (1 − γβn)‖wn − p‖2 + 2βnα〈Gp, p − xn+1〉

≤ (1 − γβn)[‖xn − p‖2 + θn‖xn − xn−1‖N2] + 2βnα〈Gp, p − xn+1〉

= (1 − γβn)‖xn − p‖2 + γβn

[

θn

γβn

‖xn − xn−1‖N2 + 2
α

γ
〈Gp, p − xn+1〉

]

= (1 − γβn)‖xn − p‖2 + γβnΨn (4.37)

where Ψn = θn

γβn
‖xn −xn−1‖N2 +2 α

γ
〈Gp, p−xn+1〉. According to Lemma 2.3, to conclude our proof, it is

sufficient to establish that lim supk→∞ Ψn ≤ 0 for every subsequence {‖xnk
−p‖} of {‖xn −p‖} satisfying

the condition:

lim inf
k→∞

{‖xnk+1 − p‖ − ‖xnk
− p‖} ≥ 0. (4.38)

To establish that lim supk→∞ Ψnk
≤ 0, we suppose that for every subsequence {‖xnk

− p‖} of {‖xn − p‖}
such that (4.38) holds. Then,

lim inf
k→∞

{‖xnk+1 − p‖2 − ‖xnk
− p‖2}

= lim inf
k→∞

{(‖xnk+1 − p‖ − ‖xnk
− p‖)(‖xnk+1 − p‖ + ‖xnk

− p‖)} ≥ 0. (4.39)

It is easy to see from (4.37),

‖xn+1 − p‖2 ≤ ‖zn − p‖2 + 2βnα〈Gp, p − xn+1〉

≤ ‖wn − p‖2 − (1 −
λ2

nν2

λ2
n+1

)‖yn − wn‖2 + 2βnα〈Gp, p − xn+1〉

≤ ‖xn − p‖2 + θn‖xn − xn−1‖N2 − (1 −
λ2

nν2

λ2
n+1

)‖yn − wn‖2 + 2βnα〈Gp, p − xn+1〉, (4.40)
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which implies that

lim sup
k→∞

(

(1 −
λ2

nk
ν2

λ2
nk+1

)‖ynk
− wnk

‖2

)

≤ lim sup
k→∞

[

‖xnk
− p‖2 + βnk

θnk

βnk

‖xnk
− xnk−1‖N2 + 2βnk

α〈Gp, p − xnk+1〉 − ‖xnk+1 − p‖2

]

≤ − lim inf
k→∞

[‖xnk+1 − p‖2 − ‖xnk
− p‖2] ≤ 0.

Thus, we have

lim
k→∞

‖ynk
− wnk

‖ = 0. (4.41)

It is easy to see that, as k → ∞, we have

‖wnk
− xnk

‖ = θnk
||Snxnk

− Snxnk−1|| = βnk
·

θnk

βnk

||Snxnk
− Snxnk−1|| → 0. (4.42)

‖znk
− wnk

‖ ≤ ‖ynk
− wnk

‖ +
λnk

ν

λnk+1
‖ynk

− wnk
‖ → 0 as k → ∞. (4.43)

‖ynk
− xnk

‖ ≤ ‖ynk
− wnk

‖ + ‖wnk
− xnk

‖ → 0 as k → ∞. (4.44)

‖znk
− xnk

‖ ≤ ‖znk
− wnk

‖ + ‖wnk
− xnk

‖ → 0 as k → ∞. (4.45)

‖xnk+1 − znk
‖ ≤ ‖znk

− βnk
αGznk

− znk
‖ = βnk

‖αGznk
‖ → 0 as k → ∞. (4.46)

‖xnk+1 − xnk
‖ ≤ ‖xnk+1 − znk

‖ + ‖znk
− xnk

‖ → 0 as k → ∞. (4.47)

Now, since {xnk
} is bounded, then, there exists a subsequence {xnkj

} of {xnk
} such that {xnkj

} converges

weakly to x∗ ∈ H. In addition, using (4.41), and Lemma 4.3, we obtain that x∗ ∈ Φ. Furthermore, since
xnkj

converges weakly to x∗, we obtain that

lim sup
k→∞

〈Gp, p − xnk
〉 = lim

j→∞
〈Gp, p − xnkj

〉 = 〈Gp, p − x∗〉. (4.48)

Hence, since p is a unique solution of Φ, it follows that

lim sup
k→∞

〈Gp, p − xnk
〉 = 〈Gp, p − x∗〉 ≤ 0, (4.49)

we have obtain from (4.49) and (4.47)

lim sup
k→∞

〈Gp, p − xnk+1〉 ≤ 0. (4.50)

Using our assumption and (4.49), we have that lim
k→∞

Ψnk
= lim

k→∞

(

θnk

γβnk

‖xnk
− xnk−1‖N2 + 2 α

γ
〈Gp, p −

xnk+1〉

)

≤ 0. Thus, From Lemma 2.3, we have that lim
n→∞

‖xn − p‖ = 0.
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5. Numerical Example

In this section, we will give some numerical examples which will show the applicability and the efficiency
of our proposed iterative technique in comparison to Algorithm 1.7, and Algorithm 1.6.

Example 5.1. Let H = L2([0, 1]) be equipped with the inner product

〈x, y〉 =

∫ 1

0

x(t)y(t)dt ∀ x, y ∈ L2([0, 1]) and ‖x‖2 :=

∫ 1

0

|x(t)|2dt ∀x, y, ∈ L2([0, 1]).

Let F, G : L2([0, 1]) → L2([0, 1]) be defined by

Fx(t) = max{0, x(t)}, t ∈ [0, 1],

Gx(t) =
x(t)

2
, t ∈ [0, 1].

It is easy to see that F is 1-Lipschitz continuous and monotone, and G τ-strongly monotone. We used
this example due to Remark ?? so that we can compare. Let Sn : L2([0, 1]) → L2([0, 1]) be defined by

Snx(t) = sin x(t).

Let C be defined by C = {x ∈ L2 : 〈a, x〉 = b} where a 6= 0 and b = 2. Thus, we have

PC(x̄) = max

{

0,
b − 〈a, x̄〉

‖a‖2

}

a + x̄.

We choose βn = 2
200n+5 , θn = θ, α = 0.2, ν = 0.3, , λ0 = 1

3 , λn+1 = 100
(n+1)1.3 , ǫn = αn

n0.01 , for all n ∈ N.

Also if we consider ǫ = ‖xn − xn1
‖ ≤ 10−5 as the stopping criterion and choose the following as starting

points:

Case I: x0(t) = 2t2 + t + 2, x1(t) = t;

Case II: x0(t) = 2t2 + e2t + 1, x1(t) = 3t3 + 3;

Case III: x0(t) = t + 2, x1(t) = cos(t);

Table 1: Computation result for Example ??.

Algorithm 1 Algorithm 1.7 Algorithm 1.6
Case I No of Iter. 25 28 26

CPU time (sec) 0.0231 0.0345 0.0245
Case II No of Iter. 25 30 27

CPU time (sec) 0.0251 0.0321 0.0291
Case III No of Iter. 27 30 27

CPU time (sec) 0.0244 0.0358 0.0271

Example 5.2. Let H1 = H2 = l2(R) := {x = (x1, x2, x3, · · · ), xi ∈ R :
∑∞

i=1 |xi|
2 < ∞} and ‖x‖ =

(
∑∞

i=1 |xi|
2)

1

2 for all x ∈ l2(R). Suppose the operators F ; G : l2(R) → l2(R) are defined by

Gx − X − X0,

Fx = (5 − ‖x‖)x ∀ x ∈ l2(R).

It is easy to see that F ar quasimonotone, Lipschitzain continuous and weakly sequentially continuous
on l2(R), and G is τ -strongly monotone, see [25]. Let C = Q = {x ∈ l2(R) : ‖x‖ ≤ 3}. Clearly, C is
nonempty, closed and convex subsets of l2(R). Hence, we have

PC(x) =

{

x if ‖x‖ ≤ 3,
3x

‖x‖ , if otherwise.
(5.1)
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Figure 1: Example 5.1, Top Left: Case I; Top Right: Case II; Bottom Centered: case III.
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In addition, we define Sn, S : l2(R) → l2(R) are defined by Snx = (0, x1, x2, x3, · · · ) and
Sx = (0, x1

2 , x2

2 , · · · ). We choose βn = 2
200n+5 , θn = θ, α = 0.2, ν = 0.3, , λ0 = 1

3 , λn+1 = 100
(n+1)1.3 , ǫn =

αn

n0.01 , for all n ∈ N. Also if we consider ǫ = ‖xn − xn1
‖ ≤ 10−5 as the stopping criterion and choose the

following as starting points:

Case I: x0 = (2, 2, 2, · · · ), x1 = (0.5, 0.5, 0.5, · · · );

Case II: x0 = (1, 2, 3, 4, · · · ), x1 = (1, 1, 1, · · · );

Case III: x0 = (0.1, 0.2, 0.3, · · · ), x1 = (2, 4, 6, · · · ).

Table 2: Computation result for Example 5.2.

Algorithm 1 Algorithm 1 with-
out {Sn}

Case I No of Iter. 30 39
CPU time (sec) 0.0390 0.0709

Case II No of Iter. 20 44
CPU time (sec) 0.0212 0.0592

Case III No of Iter. 24 30
CPU time (sec) 0.0326 0.0581

6. Conclusion

A modified Tseng with an inertial extrapolation step is introduced and studied for solving the BVIP (1.4)
in infinite dimensional real Hilbert space when the cost operators are quasimonotone, and τ -strongly
monotone and Lipschitz continuous. In addition, we established that the proposed iterative method
converges strongly to the solution set of BVIP (1.4). Our method uses stepsizes that are generated at
each iteration by some simple computations, which allows it to be easily implemented without the prior
knowledge of the operator norm or the coefficient of an underlying operator. . In addition, we present
some examples and numerical experiment to show the efficiency and implementation of our method in
the framework of infinite and finite dimensional Hilbert spaces. We emphasize that one of the novelty of
this work is in the use of a weaker operator (quasimonotone), modified inertial term introduced and the
method of proof of the strong convergence of our iterative algorithm to the solution of problem (1.4).
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