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Conformal Bi-Slant £L-Riemannian Submersion: A Note in Contact Geometry
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ABSTRACT: This study explores conformal bi-slant £---Riemannian submersion where the total manifold is
a contact metric manifold, more specifically a Sasakian manifold. To illustrate this study, few non-trivial
examples are discussed. Meanwhile, we addressed the conditions for integrability of anti-invariant and slant
distributions and determine the conditions for the map that must be met in order to be totally geodesic.
Furthermore, some decomposition theorems for the fibres as well as for the total space are discussed.
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1. Introduction

Isometric immersion and Riemannian submersion, which is a double-fold concept of isometric im-

mersion, are the two fundamental maps in Riemannian geometry. Riemannian submersion was induced
by B. O’Neill [23] in 1966. Many authors have studied the Riemannian submersion from various per-
spectives like Riemannian submersion [23], slant submersion ([10], [30]), contact complex submersion
[18], semi-invariant submersion [29], h-semi-invariant submersion [25] etc. Riemannian submersions have
applications in physics and mathematics, such as in supergravity and superstring theories [20, 22], Kaluza-
Klein theory ([19], [22]), and the Yang Mills theory ([8], [34]). Also, Frejlich and Dunn et al. ([11], [14])
obtained submersions of Lie algebra.
Fuglede [15] and Ishihara [21], studied the horizontally conformal maps as special case of Riemannian
submersions with A = 1. Meanwhile, Akyol and Sahin defined conformal anti-invariant submersions [5],
conformal semi-invariant submersions [6], conformal slant submersion [4], and conformal semi-slant sub-
mersions [2]. Also, a variety of researchers have examined the geometry of conformal submersions ([17],
[23]). Prasad et al. [26] investigated Quasi bi-slant submersion of Kenmotsu manifold whereas Sezin [32]
studied bi-slant submersions from contact manifold with taking £ as horizontal vector field.

As a generalization of conformal slant,conformal [4], conformal semi-slant [3] and conformal hemi-
slant submersions [27], we consider conformal bi-slant ¢*-Riemannian submersion with total space, a
Sasakian manifold, where the vector field ¢ is considered in horizontal space of the submersion. The
paper has the following structure. Section 2 presents the fundamental information and definitions of
contact metric manifolds, particularly Sasakian manifolds with properties relevant to this paper. Section
3 presents all of main results of this study. We define the conformal bi-slant fl—Riemannian submersion.
Along with some basic findings, we explore the condition of integrability for distributions and totally
geodesicness. We prove Decomposition theorems for the total space and the fibres as well.
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Throughout paper, we will use some abbreviations as follows:

Riemannian Manifold RM

Riemannian Manifolds RMs
Sasakian Manifold SM
Sasakian Manifolds SMs

conformal bi-slant-¢* submersion CBSS

2. Preliminaries

A (2n+ 1)-dimensional manifold M which having an almost contact structures (¢, &, n), where a (1, 1)
tensor field ¢, a vector field £ and a 1-form 7 satisfying

¢*=—T+n@E ¢€=0,nod=0, n(¢) =1 (2.1)

where [ is the identity tensor. If N @ dn ® £ = 0, with Nijenhuis tensor N related to ¢ then almost
contact structure turns into normal. There is also a Riemannian metric g which holds

9(8U, V) = g(U, V) — n(U)n(V),n(U) = g(U,§). (2.2)

Then (¢, &, n, g)-structure is called an almost contact metric structure. A normal contact metric structure
is called a Sasakian structure, which satisfies

(Vug)V = g(U,V)§ —n(V)U (2.3)
where V is the Levi-Civita connection of g. From above formula, we have for Sasakian manifold (SM)
V€ = —¢U. (2.4)

Now, we provide a definition for conformal submersion and discuss some useful results that help us
to achieve our main results.

Definition 2.1. A smooth map ¢ from (Mi,g1) onto (Ma, g2) where My and My are Riemannian man-
ifolds (RMs) with my1 and mqo be the dimensions of manifolds respectively, is called horizontally weakly
conformal or semi-conformal at p € My if, either

i. dp, =0 or
ii. dy, is surjective and there always have a number Q(p) # 0 satisfying
92(dp, U, dp, V) = Q(p)g1(U, V)
for U,V € T'(ker(dy))*.

In this case, we label a point p satisfying type (i) as a critical point and rank of dy, is 0 at this
point and type (ii) as a regular point at which the rank of dip,, is ma. Also, the number Q(p) is called

the square dilation. Its square root \/A(p) = /€ (p) is called the dilation. If the map ¢ is horizontally
weakly conformal at each point on Mj, it is referred to as horizontally weakly or semi-conformal on Mj.
If ¢ has no critical point, it is said to be a (horizontally) conformal submersion.

Let ¢ : My — My be a submersion. A vector field X on M; is called a basic vector field if
X € I'((ker ¢, )*) and @p-related with a vector field X on Ms i.e ¢, (X(q)) = Xp(q) for ¢ € M .

The formulas provide the two (1,2) tensor fields T and A are

T(El, EQ) = TEl EQ - J'CVVE1VE2 + VVVEl }CEQ (25)
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.A(El, EQ) = -AEl Ey = VVJ{ElfHEQ + Q'CVJ{E1VE2 (2.6)

for FEq,E;5 € F(TMl)
Note that a Riemannian submersion ¢ : M7 — Ms has totally geodesic fibers if and only if T vanishes
identically. From equations 2.5 and 2.6, we can deduce

Vo, Vi =Ty, Vi + VWV, Vi (2.7)
VUle = TUle + g'vale (2.8)
VXlUl ZAX1U1+VVX1U1 (2.9)
VX1Y1 = J‘CVlel +.AX1Y1 (2.10)

for any Uy, V4 € T'(kerF,) and X1,Y; € ['(kerF, ) .
It is clear that T and A are skew-symmetric, i.e.,

9(AxE1, Er) = —g(E1, AxE2), 9(TvEL, E2) = —g(E1, TyE») (2.11)

for all Ey,Ey € T,M;. The following results holds for the particular case where ¢ is horizontally
conformal.

Proposition 2.2. Let ¢ : M1 — My be horizontally conformal submersion with dilation A\ and X,Y €
I'((kerp,)?t), then

AxY = (VX Y] = X201 (X, ¥) G (7)) (2.12)

N =

where gradient of function denoted by G.
The second fundamental form of smooth map ¢ given by the formula

and the map be totally geodesic if (V,)(X,Y) = 0 for all X,Y € I'(T, M) where V and V¢ are Levi-
Civita and pullback connections.

Lemma 2.3. Let My and My be RMs and @ be horizontal conformal submersion. Then, for any vector
fields X1,Y; € T((kerp,)*) and Uy, Vy € T(kery,), we have

(1) (Vo.)(X1,Y1) = Xa(InA)p, (Y1) + Yi(InA)e, (X1) — g(X1, Y1) . (grad Ind),
(i) (Ve )(U1,V1) = =, (Tv, V1),
(iii) (V,)(X1,U1) = =9, (Vx,U1) = —p.(Ax, U1).
3. Conformal bi-slant fl-Riemannian submersions

Definition 3.1. Consider ¢ is a conformal submersion from a SM (M, $,&,m,91) onto RM (Ma, g2).
Then @ is defined a conformal bi-slant &*-Riemannian submersion (CBSS) if pf and DY are slant

distributions with corresponding slant angles 01 and 02, such that kerp, = DY ® D. If 01,05 are neither
equal to 0 nor 3, then ¢ is proper.

If m and n are dimension of Df and Dg respectively, then we can say

i If m=0andfy= 5 then ¢ is a conformal anti-invariant submersion,

it Ifm,n#0,60; =0and s = 7 then ¢ is a conformal semi-invariant submersion.
iii If m,n#0,0; =0and 0< 6, < 5 then ¢ is a conformal semi-slant submersion.

iv If m,n #0, 0, = 5 and 0 < 0y < 5 then ¢ is a conformal hemi-slant submersion.
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Note that R?"*! denote a SM with the structure (¢, &,7,g) defined as
o3 (v i)+ 22 ) = 30 (v i)
n = % <dz — éyldaﬁl) €= 2%
g=n®n+i§(dxi®dxi+dyi®dyi),
where (z',... 2", y',...,y", z) are the cartesian coordinates.

Now, taking into account the definition above, we can provide the following examples:.

Example 3.2. Let F : (R ggo) — (R, ggs) be a conformal submersion defined by

F(3317%27%37%4,y17yz,y37y4,Z)

. T2+ T4 .
=78 (cos axy — sin axs, ,sin Bys + cos Bya, y1, 2

V2

then
1

ker I\, =<V} = sin adxy + cos adxsz, Vo = 7 (Oxy — Oxy)

V3 = cos fOy3 — sin S0y4, Vi = Oy2 > and

1
(kerF*)L =< Hy| = cosadxy — sinadxsz, Hy = ﬁ (0o + Ox4)

H3 = sin 30ys + cos B0y, Hy = Oy1, Hs = { = 0z >

Thus, the submersion F is conformal bi-slant fl—Riemannian submersion with Dy = (Vq, V3) with
T
4

slant angle 0, such that cosf, = sin(f — «) and Dy = (Va, Vi) with the slant angle 0y =

Example 3.3. Let F : (RY, ggo) — (R, grs) such that

5 z1 4+ V31 .
(331,332,3337%4791,y27y37y4,Z)=€ 9 ,SIn Xz + CoS x4, Y1, Y2, 2 | -

Then it follows that
Dy =<V, = % (\/§5x1 —a@) , V3 = 0yz >,
Dy = span (Vo = cos adxs — sin adzyg, Vi = Oys) and
(kerF*)L =< H = %(8%1 + \/58%2),1{2 = sin adx3 + cos adxy,
Hs =0y, Hy = 0ys, Hs = £ =0z > .

Hence, F is a conformal bi-slant {i -Riamannian submersion with the slant angles 6, = 3 and 0 = a,

respectively and \ = eVs.
Let us consider ¢ is CBSS from SM (M, ¢,&,m,g1) onto a RM (Ma, g2), with taking U € kere,, we
(3.1)

can write
U=P~PU+ P~U
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where PU € I'(D?) and P,U € T'(DY).
Also, for U € I'(keryp,)
oU =460+ (U (3.2)

where 60U € I'(kery,) and (U € T'((kery,)*). For X € T'((kerp,)*), we have
pX =X+ X (3.3)
where tX € I'(kery,) and fX € I'((kerp,)*).
The horizontal distribution (kerp, )" is decomposed as
(kere,)" = (D} & (D} @ p (3.4)
where p = ¢u @ £ such that p is distribution which is complementary to CD? @ CDQ in (kerp,)™ .

Theorem 3.4. Let o : (M1,¢,§,1,91) — (Ma,g2) be CBSS from SM onto a RM with slant angles 6,
and 05. Then we have -
6*U; = — cos® 6,1, (3.5)

6*Uy = — cos? 03Uy (3.6)
for Uy € T(DY) and Uy € T(DY).

Theorem 3.5. Let o be the CBSS from the SM (M1, $,€,m,91) onto a RM (Ma, g2) with slant angles 6,
and 05. Then

(i) the distribution Dia is integrable if and only if
A292((Vp ) (U, CV), 0. (W) =1 (Ty¢oU — Ty(aV, W)
+ g1 (Tw¢V — Ty (U, 6W)
(i) the distribution Dg is integrable if and only if
A7292((Vp)(U,CV), 0.0V) =01 (T2¢0W — Tiw(dZ < U)
+ g1(TwCZ — Tz¢W, 6U)

for U,V € I(D?) and Z,W € T(DY).

Proof. (i). For any vector fields U,V € I'(D{) and W € I'(D§) and on using equations (2.2), (2.3) and
from (3.2), we have
91([U, V], W) = g1(Vy0*U, W — g1(Vv6°V, W)
— 91(VuCoV, W) + g1 (Vy(U, W)
+ 91(VucV, oW) — 91(Vv(U, oW).

Considering Theorem 3.4, we have
sin? 0,91 ([U, V], W) = —g1(Vu¢SV, W) + g1 (Vy (U, W)
+ 91(VuCV, ¢W) — g1(Vv(U, oW).
On using equation (2.8), we obtained
sin? 0191 ([U, V], W) = g1 (Tv¢oU — Ty¢dV, W)

— 91 (TuCV — Ty(U, 0W)
+ 91 (HVyCV — HVy(U, (W).
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Now considering Lemma 2.3 and equation (2.13), we yields

sin? 0191 ([U, V], W) = g1 (Ty¢SU — TyCsV, W)
= 91(TuCV — Ty (U, 0W)
—A7%02((V) (U, (V) 0, CW)
+A7%02((Vp,) (V. CU), 0, (W)

For part (i7) the calculation is same as (7). O

Theorem 3.6. Let  be the CBSS from the SM (M, $,&,m,g1) onto a RM (Ma, g2) with slant angles 6,
and 0y. Then the distribution DY defines totally geodesic foliation if and only if

A202((Ve,)(CV, V), 90.CZ) = g1(TuCV, 6Z) — g1(Tu(sV, Z) (3.7)
and

A 292(VEp,CU, ,CV) =sin® 0191 ([U,X], V) + g1 (Ax (U, V)
+ 91(G(In X),X) g1 (CU, (V)
+ g1(G(In ), CU)g1 (X, ¢V) (3.8)
- 01(G(In N),¢V)g:1(X, ¢U)
— g1(AxCU, §V)

G
G

for U,V e (DY), Z e T(DY) and X € ((kerg,)b).
Proof. for U,V € I'(DY) and Z € I'(D§) with using equation (2.2), (2.3) and (3.2), we have
91([U, V), 2)) = 91(VuCV, 6Z) = g1(Vu(dV, Z) — 2 (Vui*V, Z).
From Theorem 3.4, we can write
sin® 0191 (VuV, Z) = —g1(VuCV, Z) + g1(Vu(V, ¢7Z)
On using (2.8), we have

sin® 0191 (VuV, Z) = g1(TuCV, 0Z) — g1(Tu¢sV,Z)

+ 91(HVuCV,(Z). ]

Considering equation (2.13) and Lemma 2.3, we obtain

sin® 01g1(VuV, Z) = g1(TuCV, 0Z) — g1(Tu(oV, Z)]
—A%0((Ve.)(CV, 1), ¢.(2)

which is the equation first in Theorem 3.6.
On the other hand, U,V € T'(D;) and X € I'(kery,)* with using (2.2), (2.3) and (3.2), we can write

91(VuV.X) = —g1([U,X], V) + g1 (¢VxdU, V) — g1 (VxCU, ¢V).
Considering Theorem 3.4, we obtained
sin” 6191 (VuV, X) = —g1([U, V], X) + g1(Vx(OU, V) — g1(Vx(U, ¢V).
On using equation (2.10), we have

sin? 011 (VyV, X) = sin? 0,91 ([U, X], V) + g1 (Ax (U, V)
— 01 (‘AXCHL 6V) - )\_292 (SD*VXCHL SD*CU)
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Using Lemma 2.3, we yields

sin? 0191 (VyV, X) = sin® 0191 ([U, X], V) + g1 (AxCU, V)
— A" %g2(VEp.CU, 9,CV)
+ 91(G(In \), X)g1(¢U, ¢V)
+ 91(G(In A), CU)g1 (X, CV)
= g1(G(In A), ¢V)g1(X, ¢U)
— g1(Ax(U, 5V)

~—~

This completes the proof of the Theorem. 1

Theorem 3.7. Let  be the CBSS from the SM (M1, $,&,m,91) onto a RM (Ma, g2) with slant angles 6,
and 0y. Then the distribution DY defines totally geodesic foliation if and only if

A 202((Ve,) (CZ, W), ¢,CU) = —g1(Tw(dZ, U) + g1(Tw(Z, 6U) (3.9)
and

>‘_292(V§QP*CWa SD*CZ) = Si1’12 9291([W7 X]v Z) + 91 (‘AXC(SW’ Z)
+91(G(InA), X)g1(CW, (Z)

+91(G(In A), (W) g1 (X, CZ) (3.10)
— g1 (AXCW, (SZ)

for Z,W € T'(D§),U € T(D?) and X € ((kerp,)t).

Proof. The proof of this Theorem is same as Theorem 3.6. O

Theorem 3.8. Let ¢ be the CBSS from the SM (My,¢,£,1m,91) onto a RM (Ma, g2) with slant angles
01 and 03. Then vertical distribution (kery,) is locally Riemannian product My X My if and only
1 2

if equation (3.7)-(3.10) holds where My 5 and My s are integral manifolds of distributions DY and DY
1 2
respectively.

Theorem 3.9. Let ¢ be the CBSS from the SM (M1, $,€,m,91) onto a RM (Ma, g2) with slant angles 6,
and Oy. Then horizontal distribution ((ker,)*:) defines totally geodesic foliation if and only if

A 292(VEP,CU, o, fY) = — g1 (AxCU, tY) — n(Y)g1(¢X, U)
+ A 2g2(G(In N), X)g1 (CU, fY)

+ 91(G(In N, CU)g1 (X, fY)

—g1(G(ln N), fY)g1 (X, CD) (3.11)

+ 91(G(In\), X) g1 (C6U, Y)

+ 91(G(In \), ¢oU) g1 (X, £Y)

—g1(G(In N\),Y)¢1 (X, ¢5U)

= A 202(VE9,. (U, 0,Y).

- I I
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A 292(VEQ.CV, 0, fY) = —g1(AxCV, 1Y) — n(Y)g1 (¢X, V)
+A72g2(G(In A), X) g1 (CV, fY)

+91(G(In ), (V)g1 (X, fY)

—g1(G(InA), fY)g1 (X, (V) (3.12)

+ 91(G(In A), X)g1(COV, Y)

+ g1(G(In X), ¢6V)g1 (X, fY)

= 91(G(In A), Y)g1(X, (6V)

= A2 02(VE9,. oV, 0,Y).

- I

for X,Y € T((kerp,)*),U € T(D?) and V € T(DY).
Proof. for X,Y € I((kerg,)+) and U € T(D?) with using (2.2), (2.3) and (3.2), we have
91(VxY,U) = g1(Vx¢dU,Y) — g1(Vx(U, Y) — n(Y)g1(¢X, U).
Taking account the fact from Theorem 3.4, we can write
sin? 91g1(VXY, U)
= —91(Vx(U,Y) — g1(Vx(U,Y) — n(Y)g1(¢X, U).
From (2.10), we can obtained
sin? 0,91 (VxY,U) = —g1 (AxCU, tY) — n(Y)g1 (X, U)

— A 292(0, Vx(U, 0, fY)

— A g2(, Vx(IU, 9, Y).
Considering equation Lemma 2.3, we have

sin® 0191 (VxY, U) = —g1 (AxCU, tY) — n(Y)g1(¢X, U)

—A92(VEe. (U, 0, fY)

+ A %g2(G(In N), X) g1 (CU, £Y)

+ 91(G(In \), CU)ga (X, fY)

—91(G(In A), fY)g1(X,¢U)

+ 91(G(In \), X)g1(¢oU, Y)

+ 91(G(In \), C0U)g1 (X, fY)

—g1(G(In N\),Y)g1 (X, ¢6U)

— A 92(VE9,.(0U, ,Y).
Similarly, for X, Y € T'((kerp,)*) and V € T'(Ds), we have

sin® 0291 (VxY, V) == —g1(Ax(V, 1Y) — n(Y)g1 (¢X, V)
—A292(VER.CV, 0, fY)
+ A 2g2(G(In N), X) g1 (CV, fY)
+ 91(G(In N, (Vg1 (X, fY)
—g1(G(In \), fY)g1 (X, CV)
+ 91(G(In\), X) g1 (CV,Y)
+ 91(G(In\), ¢oV) g1 (X, £Y)
—g1(G(In X),Y)g1 (X, (V)
—A292(VE.COV, 0,Y).

- . I
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O

Theorem 3.10. Let ¢ be the CBSS from the SM (M, ¢,£,1,g1) onto a RM (Ma, g2) with slant angles
01 and 05. Then vertical distribution (kery,) defines totally geodesic foliation if and only if

A 292(VEp,CU, 0, (V) = (cos® 61 — cos® 02)g1 (Vx P, U, V)
+ 91(AsV, CU) — g1(AxV, (0U)
+ 91(G(In A), X) g1 (CU, CV)

+ g1(G(In X), CU)g1 (X, CV) (3.13)
— 91(G(In X), (V)g1(X, ¢U)
—sin%6, a1([U,X],V)

for U,V € T'(kery,) and X € T'((kery,)*t).

Proof. On taking U,V € I'(kerp,) and X € I'((kery,)t) with using (2.2), (2.3) and (3.2), we have
91(VuV,X) = —=1([U,X], V) + 91(VxddU, V) — g1(Vx(U, ¢V).

On using decomposition (3.1) and Theorem 3.4, we obtained

91(VuV,X) = —g1([U,X], V) — cos® 1 g1(VxP,U, V)
—cos? 0y g1(VxPU,V) + g1(Vx(oU, V)
— gl(VXCIU, 5V) — gl(VXCU, CV)

With taking account the fact of equation (2.10), we can write

sin? 8191 (VuV, X) = (cos? 81 — cos? 02)g1 (Vx P, U, V)
- Sin2 91 gl([Uv X]v V) + 91 (‘Axdvv CU)
= 91(AxV, ¢6U) — g1(HVxCU, V).
Using equation (2.13), we yields
sin?60; g1(VyV,X) = (cos® 01 — cos? 02)g1 (Vx P2U, V) — sin? 0, g1 ([U,X], V)
+ g1(Ax0V, (U) — g1(AxV, ¢6U)
— A "2g2(VEp, (U, .CV).
Considering Lemma 2.3, have
sin?6; g1(VyV,X) = (cos? 1 — cos? 02)g1(Vx PoU, V) — sin? 0, ¢;([U,X], V)
+ 91(Ax6V, (U) — g1(AxV, ¢6U)
+ 91(G(In A), X) g1 (CU, V)
+ g1(G(In \), CU) g1 (X, CV)
= 91(G(In A),¢(V)g:1 (X, CU)
- )‘7291 (VX@*QU) @*CV)

This completes the proof of the Theorem. ]

We can provide these decomposition Theorems by taking into consideration the prior Theorems.:
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Theorem 3.11. Let ¢ be the CBSS from the SM (M, ¢,£,1,g1) onto a RM (Ma, g2) with slant angles
01 and 2. Then the total space My 5o X Mipp X Mi((rery )ty 8 locally product if and only if equation
1 2 *

(3.7)-(5.12) are holds where My s, M1ps and Mi((ery yry are integral manifolds of the distributions
— _ 1 2 *
DY, DY and ((kerp,)*t) respectively.

Theorem 3.12. Let ¢ be the CBSS from the SM (M, ¢,&,1m,91) onto a RM (Ma, g2) with slant angles
0, and 5. Then the total space Mijerp, X Mi((kerp, )ty @ locally product if and only if equation (3.11)-
(3.13) are holds where Mjep,  and My ((kerp yry are integral manifolds of the distributions (kery,) and
((ker,)*) respectively.

Theorem 3.13. Let ¢ be the CBSS from the SM (M1, $,&,n,91) onto a RM (Mz, g2) with slant angles
01 and 02. Then  is totally geodesic map if and only if
7
A2 92(VE0,C0V, 0, X) = (cos? 01 — cos® 02)g1 (Vy PV, X)
- g1(TuCV, X)
+ g1(G(In X)), U) g1 (¢OV, X)
—91(G(In ), U)g1(CV, fX)
— A2V, 0V, 0, X)
s
A295(VEp, LU, ¢, fY) = (cos® By — cos® 1)g1 (Ax P U, Y)
+ g1 (X, U)n(Y) + g1 (AxCU, CY)
—g1(G(In X), X)g1 (U, Y)
—g1(G(In N), ¢0U) g1 (X,Y)
+g1(G(In N),Y) g1 (X, ¢6U)
+ 91(G(In A), X)g1(CU, fY)
+ g1(G(In M), CU)g1 (X, £Y)
+ g1(G(In N), fY)g1 (X, CU)
+92(V£p,(oU, 9,Y)

for U,V e T'(kery,) and X,Y € T'((kerg,)*t).
Proof. for U,V € I'(kery,) and X € T'((kery,)*) with using equation (2.13), we can write
A0 (Ve ) (U, V), 0.X) = 2 (VuV, X) (3.14)
From equations (2.2), (2.3) and (3.2), we have

91(VuV, X) = g1(Vu(V, ¢X) — g1 (VupdV, X)
+ 91(U, 6V)n(X) + ¢1(U, 6V)n(X)

Considering Theorem 3.4 and decomposition (3.1), we obtained

sin2 51 a1 (VUV, X)
= (cos2 05 — cos? 91)g1 (VuPV, X)
+ g1(Vu¢oV, X) + g1 (VuCV, ¢X).
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From equation (3) and (3.14), we get

sin 01 A7%g2((Vep,) (U, V), ¢,X)
= (cos?® By — cos® 01)g1(Vu PV, X)
+ 91(Vu(oV, X) + g1 (Vu(V, ¢X).
On using equations (2.7) and (2.8), we have

sin® 61 A2 g2((Vep,) (U, V), 9,X)
= (cos? 0y — cos? 0,) g1 (Tu P2V, X)
+ 91(HVu(oV, X) + g1 (Tu(V, tX)
+ g1 (HV(V, X).

From equation (2.13) and Lemma 2.3, we get

sin? 6, Aing((v‘P*)(Ua V), ¢.X)
= A"g2(U(In M), (Y, 0, X)

+ A 2g2(VE0. 6V, 0,X)

+ A 202(U(In N, CV, 0, fX)

+ A 202(VE0. (Y, 0, [X).

On the other hand, for U € T'(kery,) and X, Y € T'((kerp,)t), we get

A 292((Vp,) (X, U), ¢, Y) = g1(VxU, Y).
On using (2.2), (2.3) and (3.2), we have

91(VxU,Y) = —g1(VxddU,Y) + 91 (VxCU, ¢Y) + g1 (¢X, U)n(Y)

With the help of decomposition (3.8) and Theorem 3.4, we obtain

sin? 61 g1(VxU,Y)

= (cos2 05 — cos? 91)g1 (Vx P UY)
+ 91(Vx(U, ¢Y) + g1 (¢X, U)n(Y)
—91(Vx(dU, Y)

From (3.15) and (3.16), we can write

sin 01 A2 (V. ) (X, U), .Y)
= (cos2 05 — cos? 91)g1 (VxPUY)
+ 91(Vx(U, ¢Y) + g1 (¢X, U)n(Y)
—g1(Vx¢U, Y).
From equation (2.9) and (2.10), we have

sin® 61 A2 g2((Vep,) (X, U), ,Y)

= (cos? By — cos? 61) g1 (Ax Py U, Y)

+ 91(AxCU, 1Y) + g1 (1X, U)n(Y)

= g1 (HVxCU, Y) + g1 (HVx(U, Y).

(3.15)

(3.16)

11
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Considering Lemma 2.3 with equation (2.13), we yields

sin” 1A %92 ((Vp, ) (X, U), ¢, Y)

= (cos? 0y — cos? 01) g1 (Ax P, U, Y)

+ g1 (AxCU, 1Y) + g1 (¢.X, U)n(Y)

—g1(G(In \), X)g1(¢OU,Y)

—g1(G(In \), ¢0U) g1 (X,Y)

+ 91(G(In N), Y)g1(X, ¢60)
(G(
(G(

;Y

+ 91(G(In ), X)g1 (CU, fY)
+91(G(In A), CU)g1 (X, fY)
—g1(G(In N), fY)g1 (X, CU)
+ A %g2(VEp.CoU)

Finally we show that X is constant on I'(D;). For Uy, Uy € I'(D;) and from Lemma 2.3. we obtain

N NG N NG NG NG

(Ve,)(CUy,¢Uz) = (Ur(In A)p,CUs + (Uz(In M), CUy
— 91(CUL, CUs)ep, (G(In X)).

Replacing Uy by U; in above equation, we get

(V,)(CUy,¢Uy) = 2¢Us (In X))y, Uy
— 91(CU1,CU ), (G(In N)).

Taking inner product with ¢,(U; in (3.17), we can write

2g1(G(In A), CU1)g2(,.CU1, ¢,CU1)
= 91(CU1, (U1)g2(p, G(In A), o U1) = 0,

(3.17)

which shows that A is constant on I'(D?). Similarly, we can show that A is constant on T'(Dg) and T'(y).
This completes the proof of the Theorem. O
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