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Study of Maximal Open Sets and Its Images with Ideals

Chhapikul Miah∗, Shyamapada Modak and Md. Monirul Islam

abstract: Maximal I-open sets and maximal I∗-open sets have been introduced through this write up
with help of the ideal’s related two operators local function and its associated set valued set function. The
role of these sets in the cofinite sets has been discussed rigorously. Several characterizations, decompositions
and examples of these sets have also been discussed. In respect of topological invariance, the homeomorphic
images of maximal I-open sets and maximal I∗-open sets and its related structures have also been discussed
sternly. The situation of above mentioned sets has also been discussed in the field of compatible ideal.
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1. Introduction and Preliminaries

Recently, Selim and Modak [20] introduced associated set-valued set function (in short associated
function) in the literature. The operator ψ [22] on an ideal topological space is an example of an associated
function. This associated function ψ has an association with the local function [7] of the ideal topological
space and they are related by the following relation ψ(A) = X \ (X \ A)∗ [16,22]. Interior and closure
operators in a topological space are also examples of associated functions. On the other hand, in [21],
Nakaoka and Oda introduced maximal open sets in topological space and further discussed their various
properties in topological spaces and in locally finite spaces. In [27], Rashid and Hussein introduced
maximal and minimal regular β-open sets in topological spaces and discussed their related properties.

2. Historical Background

Various types of limit points such as closure points, ω-limit points, ω-accumulation points etc. may be
jointly studied with the help of ideals. This study has been introduced by the mathematicians Kuratowski
[12] and Vaidyanathswamy [29].

The ideal is a collection I of subsets of a set X which satisfies hereditary and finite additivity proper-
ties. If I is an ideal on a topological space (X, τ), then it is called an ideal topological space. Throughout
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this paper, this triplicate (X, τ, I) are denoted as XIT , where the topological space (X, τ) will be denoted
as XT , i.e., we have XIT = (X, τ, I) and XT = (X, τ). In this work, we use T space and space as always
a topological space and an ideal topological space respectively, and no separation axioms are assumed
unless explicitly stated.

According to the modern notation of local function, we have, M∗(XIT ) ={p ∈ X : M ∩ V /∈ I for
every V ∈ τ(p)}, where τ(p) = {V ∈ τ : p ∈ V }, when there is no confusion, we will write M∗ or simply
M∗I or M∗(I, τ) or M∗Iτ and call it the “local function of M”. This local function helps to determine
some new topologies on X, one of them is ∗-topology. The members of the ∗-topology are called the
∗-open sets. One of the most useful basis of the ∗-topology is, β(I, τ) = {M \ I1 :M ∈ τ, I1 ∈ I} [8].

For the answer of the question, “when β(I, τ) and ∗-topology are equal”? Nj̊astad [24,25] has given
the answer of this question with the help of “Compatibility”. The ideal I to be compatible with τ ,
denoted I ∼ τ if the following holds for every M ⊆ X: if for all p ∈ M , there exists V ∈ τ(p) where
τ(p) = {V ∈ τ : p ∈ V } such that V ∩M ∈ I, then M ∈ I. The operator ψ : ℘(X) → τ [7] which has
been defined as a associated function [20] of local function ()∗, that is ψ(M) = X \ (X \M)∗, we will
write simply ψτ (M) or ψI

τ (M). In this context for I ∼ τ , ψ(ψ(M)) = ψ(M) [7] and ψ(M) \M ∈ I for
every M ⊆ X.

For a ∗-topological space (X, τ∗), we denote ‘Cl∗’ and ‘Int∗’ as the closure operator and interior
operator respectively. Furthermore, in a space XIT , mathematicians handle two structures on X, thus
the condition τ ∩ I = {∅} is useful for the study of the same field. This concepts introduced by Newcomb
[23] as τ -boundary.

In this context e-I-open sets [2,4] and e-I-continuity [2,4] have been defined in terms of regular open
sets and the closure operator of the ∗-topology. Also a new flavor of local function has also been defined
with the help of regular open sets, and the other notions from the same local function has also been
considered by the respective mathematicians.

As an application of local function, I-open set has been defined in literature. For a space XIT : A
subset M of X is said to be I-open if M ⊆ Int(M∗) [1,9]. The set of all I-open sets in a space (X, τ, I)
is denoted by IO(XIT ) or written simply as IO(X), when there is no scope for misunderstanding.

In this paper, we have studied jointly associated functions and maximal-open sets. As an extraction,
we have found maximal I-open sets and maximal I∗-open sets in the topological spaces with ideals. These
sets play an important role in the study of local functions and set operator ψ. Homeomorphisms in the
topological spaces are also played a remarkable role in the study of maximal I-open sets and maximal
I∗-open sets.

3. Maximal I-open sets

In this section, we shall present maximal I-open set and investigate numerous characterizations and
features of maximal I-open sets:

Definition 3.1 ( [21]) A proper nonempty open set M in a topological space XT is said to be a maximal
open set if and only if every open set which contains M is either X or M .

Definition 3.2 A proper nonempty subset M of X in a space XIT is said to be a maximal I-open set
if and only if it is an I-open set and every I-open set which contains M is either X or M .

For existence of maximal I-open set, we intimate following examples:

Example 3.1 Consider a space XIT where X = {e1, e2, e3, e4}, τ = {∅, X, {e1, e2}, {e3}, {e1, e2, e3}}
and I = {∅, {e2}}. Then, IO(X) = {∅, X, {e1}, {e3}, {e1, e2}, {e1, e3}, {e1, e2, e3}, {e1, e3, e4}}. There-
fore {e1, e2, e3} and {e1, e3, e4} are maximal I-open sets in this space.

Example 3.2 Consider XIT be a space where X = R, set of all real numbers, τ = {∅, [a, b],R} where
a, b ∈ R, a ≤ b and I = {∅, {a}}. Take ∅ ≠ M ⊆ R \ [a, b]. Then M∗ = (−∞, a) ∪ (b,∞). This implies
Int(M∗) = ∅ and hence M is not I-open set in this case. If we take M = {a}, then M∗ = ∅. This
implies Int(M∗) = ∅ and hence M is not I-open set in this case. If we take ∅ ≠M ⊆ (a, b], then M∗ = R
and Int(M∗) = R. This implies M ⊆ Int(M∗) and hence M is an I-open set. If we take M = ∅, then
M∗ = ∅ and Int(M∗) = ∅. This implies M ⊆ Int(M∗) and hence M = ∅ is an I-open set. Hence
IO(X) = {∅}

⋃
{M : ∅ ≠M ⊆ (a, b]}. This implies (a, b] is a maximal I-open set.
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By the following, we can say that in a space XIT , an open set (or ∗-open set) need not be a maximal
I-open set.

Example 3.3 In Example 3.2, τ∗(I) = {∅,R, (a, b], [a, b],R \ {a},R}. Here [a, b] is an open set as well
as a ∗-open set but not a maximal I-open set. But in Example 3.1, {e1, e2, e3} is an open set, a ∗-open
set and a maximal I-open set. Hence an open set (or ∗-open set) need not be a maximal I-open set.

The set of all maximal I-open sets in a space XIT is denoted by MmaxIO(XIT ) or written simply as
MmaxIO(X) when there is no scope for misunderstanding.
We may deduce from the following examples that maximal openness [21] and maximal I-openess are
independent concepts:

Example 3.4 In Example 3.1, MmaxIO(X) = {{e1, e2, e3}, {e1, e3, e4}}. Here {e1, e3, e4} is a maximal
I-open set, but {e1, e3, e4} is neither a maximal open set nor an open set.

Example 3.5 We consider a space XIT , where X = {e1, e2, e3, e4}, τ ={∅, X, {e1, e2}, {e3}, {e1, e2, e3}}
and I = {∅, {e1}, {e3}, {e1, e3}}. Then there is, IO(X) = {∅, {e2}, {e1, e2}}. Here {e1, e2, e3} is a
maximal open set but not a maximal I-open set.

Let XIT be a space. An XIT will be denoted as SMmaxIO(X), if it has atleast one maximal I-open
set.

Example 3.6 Consider the example X = {e1, e2}, τ = {∅, X, {e1}} and I = {∅, {e1}}. Then, IO(X) =
{∅}. Therefore there is no member in this space XIT which belongs to MmaxIO(X).

Theorem 3.1 ( [9]) Arbitrary union of I-open sets in a space XIT is also an I-open set.

Lemma 3.1 Consider a space SMmaxIO(X) . Then:

1. for M ∈MmaxIO(X) and O ∈ IO(X), either M ∪O = X or O ⊆M .

2. for M,N ∈MmaxIO(X), either M ∪N = X or M = N .

Proof: (1) Let O be an I-open set such that M ∪ O ̸= X. Since M is a maximal I-open set and
M ⊆ M ∪O, then we have either M ∪O = M or M ∪O = X. But M ∪O ̸= X, then M ∪O = M and
hence O ⊆M .
(2) If M ∪N ̸= X, then M ⊆ N and N ⊆M by (1) of Lemma 3.1. Thus M = N . 2

Note 1 From Lemma 3.1 (2), in a space SMmaxIO(X), union of two members of MmaxIO(X) is either
a member of MmaxIO(X) or equals X .

Note 2 Let SMmaxIO(X) be a space, intersection of two members of MmaxIO(X) may not be a member
of MmaxIO(X) again.
In Example 3.1, {e1, e2, e3} and {e1, e3, e4} are maximal I-open sets. But {e1, e2, e3} ∩ {e1, e3, e4} =
{e1, e3} is not a maximal I-open set.

Theorem 3.2 Let SMmaxIO(X) be a space and let M1, M2 and M3 be three members of MmaxIO(X)
with M1 ̸=M2. If M1 ∩M2 ⊆M3, either M1 =M3 or M2 =M3.

Proof: We have,

M1 ∩M3 =M1 ∩ (M3 ∩X)

=M1 ∩ (M3 ∩ (M1 ∪M2))(by Lemma 3.1 (1))

=M1 ∩ ((M3 ∩M1) ∪ (M3 ∩M2))

= (M1 ∩M3) ∪ (M1 ∩M2 ∩M3)

= (M1 ∩M3) ∪ (M1 ∩M2)[since M1 ∩M2 ⊆M3]

=M1 ∩ (M2 ∪M3).
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Thus if M3 ̸=M2, then M2 ∪M3 = X and hence M1 ∩M3 =M1. This implies M1 ⊆M3. Since M1 and
M3 are maximal I-open sets, then M1 =M3. 2

Following is the contrapositive way of the Theorem 3.2:
In Example 3.1, if we considerM1 = {e1, e2, e3} andM2 = {e1, e3, e4}. Then,M1,M2 ∈MmaxIO(X).

Here,M1∩M2 = {e1, e3} =M3 (say) is not a maximal I-open set and also neitherM1 ̸=M3 norM2 ̸=M3.

Theorem 3.3 Let SMmaxIO(X) be a space and let M1, M2 and M3 be three members of MmaxIO(X)
such that they are different from each other. Then M1 ∩M2 ⊈M1 ∩M3.

Proof: If possible, let M1 ∩M2 ⊆M1 ∩M3, then

(M1 ∩M2) ∪ (M2 ∩M3) ⊆ (M1 ∩M3) ∪ (M2 ∩M3).

This implies M2 ∩ (M1 ∪M3) ⊆ (M1 ∪M2) ∩M3. Since M1 ∪M3 = X = M1 ∪M2, then M2 ⊆ M3 and
hence M2 =M3 that contradicts our given condition. Thus, M1 ∩M2 ⊈M1 ∩M3. 2

Now we consider the concept of I-neighbourhood:
Let XIT be a space and p ∈ X. A subset S ⊆ X is called an I-neighbourhood of p if there exists
A ∈ IO(X) such that p ∈ A ⊆ S.

Clearly, every I-open sets is an I-neighbourhood of each of its points. The collection of all I-
neighbourhoods of a point p ∈ X of a space XIT is simply denoted by IN (p).

Proposition 3.1 Every I-neighbourhood is an I-open set in a space XIT .

Proof: LetW be an I-neighbourhood. Then for all p ∈ W, there exists O ∈ IO(X) such that p ∈ O ⊆ W.
Also W =

⋃
p∈W

{p} ⊆
⋃

p∈O∈IO(X)

O ⊆ W. This implies W =
⋃
O where p ∈ O ∈ IO(X). Then, by

Theorem 3.1, W is an I-open set. 2

Proposition 3.2 Let SMmaxIO(X) be a space. If M ∈ MmaxIO(X) and p ∈ M , then M =
⋃
{N(p) :

N(p) ∈ IN (p) and N(p) ∪M ̸= X}.

Proof: If N(p) ∈ IN (p) and N(p)∪M ̸= X, then by Lemma 3.1 (1), N(p) ⊆M . Hence M ⊆
⋃
{N(p) :

N(p) ∈ IN (p) such that N(p) ∪ M ̸= X} ⊆ M . This implies M =
⋃
{N(p) : N(p) ∈ IN (p) and

N(p) ∪M ̸= X}. Hence the result. 2

For exceptional circumstances, we now check the presence of proper maximal I-open sets. For this we
consider cofinite I-open sets that means those I-open sets whose complement is a finite subset.

Theorem 3.4 If O is a proper nonempty cofinite I-open subset in a space XIT , then, there exists atleast
one (cofinite) maximal I-open set M such that O ⊆M .

Proof: If O is a maximal I-open set, we takeM = O. If not, then there exists an I-open setM1(cofinite)
such that O ⫋ M1 ̸= X. If M1 is a maximal I-open set, we take M = M1. If not, then there exists an
I-open set M2 (cofinite) such that O ⫋ M1 ⫋ M2 ̸= X. We have a sequence of I-open sets satisfying,
O ⫋ M1 ⫋ M2 ⫋ M3 ⫋ M4... ⫋ Mk..., if we continue this approach. Since O is a cofinite, then the
aforementioned process occurs only finitely and consequently we have a maximal I-open set M =Mn for
some n ∈ N. Hence the result. 2

Theorem 3.5 In a space SMmaxIO(X), if M ∈ MmaxIO(X) and p is a member of X \ M , then
X \M ⊆W for any W ∈ IN (p)
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Proof: Since p ∈ X \M , then for any W ∈ IN (p), W ⊈M . Thus M ∪W = X, by Lemma 3.1 (1) and
hence X \M ⊆W . 2

Corollary 3.1 Let SMmaxIO(X) be a space and suppose M ∈MmaxIO(X). Then one of the followings
are true:

1. for any p ∈ X \M and for each W ∈ IN (p), W = X.

2. there exists an I-open set W such that X \M ⊆W and W ⫋ X.

Proof: If (1) is not true, then there exists an element p of X \M and W ∈ IN (p) such that W ⊊ X.
Then, by Theorem 3.5, we have X \M ⊆W . 2

Corollary 3.2 Let SMmaxIO(X) be a space. If M ∈MmaxIO(X), then one of the followings is true:

1. for any p ∈ X \M and for each W ∈ IN (p), X \M ⫋W .

2. there exists an I-open set W such that X \M =W ̸= X.

Proof: Assume that (2) does not hold. Then, by Theorem 3.5, for each p ∈ X \ M and for any
W ∈ IN (p), X \M ⊂W . Hence we have, X \M ⫋W . 2

Now, we are giving supporting examples to discuss that in a space XIT every e-I-open set [4] may not
be a maximal I-open set where as a maximal I-open set may be an e-I-open set:

Example 3.7 Consider a space XIT where X = {e1, e2, e3, e4}, τ = {∅, X, {e1}, {e2, e4}, {e1, e2, e4}}
and I = {∅, {e3}, {e4}, {e3, {e4}}. Take, A = {e1, e3}. Then, A is an e-I-open set but not a maximal
I-open set.

Example 3.8 In Example 3.1, {e1, e3, e4} is a maximal I-open set as well as an e-I-open set.

4. Maximal I∗-open sets

In this part, we shall introduce maximal I∗-open set and study several characterizations and properties
of the maximal I∗-open sets:

Definition 4.1 A nonempty ∗-open set M in a space XIT is said to be a maximal I∗-open set if and
only if every ∗-open set which contains ψ(M) is either ψ(M) or X.

X is always a maximal I∗-open set. This maximal I∗-open set is called improper maximal I∗-open set.
For existence of maximal I∗-open set, we intimate following examples:

Example 4.1 Let X = {e1, e2, e3, }, τ = {∅, X, {e1}, {e2}, {e1, e2}} and I = {∅, {e1}}. Therefore all the
∗-open sets are ∅, X, {e1}, {e2}, {e1, e2}, {e2, e3}. Take M = {e1, e2}. Then ψ(M) = X \ (X \M)∗ =
X \ {e3}∗ = X \ {e3} = {e1, e2}. Here the non empty ∗-open sets which contain ψ(M) is either ψ(M) or
X. Therefore M = {e1, e2} is a maximal I∗-open set.

Example 4.2 Consider XIT be a space where X = N, set of all natural numbers, τ = {∅, X, {1}, {1, 2},
{1, 2, 3}, ..., {1, 2, 3, ..., n}, ...} and I = {∅, {1}}. Therefore τ∗(I) = {∅, X, {1}, {2}, {1, 2}, {2, 3}, {1, 2, 3},
{2, 3, 4}..., {1, 2, 3, ..., n}, ...}. Clearly, there is no finite proper maximal I∗-open set.

Example 4.3 Consider XIT be a space where X = R, set of all real numbers, τ = {∅, [a, b],R} where
a, b ∈ R, a ≤ b and I = {∅, {a}}. Therefore τ∗(I) = {∅,R, (a, b], [a, b],R \ {a},R}. Take M = (a, b]. Then
ψ(M) = R\{(−∞, a]∪(b,∞)}∗ = R\((−∞, a]∗∪(b,∞)

∗
) . Now (−∞, a]

∗
= {x ∈ R : (−∞, a]∩U /∈ I for

all U ∈ τ(x)} = (−∞, a) ∪ (b,∞) where τ(x) = {U ∈ τ : x ∈ U}. Similarly, (b,∞)∗ = (−∞, a) ∪ (b,∞).
This implies (−∞, a]

∗ ∪ (b,∞)∗ = (−∞, a) ∪ (b,∞) and hence ψ(M) = R \ ((−∞, a) ∪ (b,∞)) = [a, b].
Here the non empty ∗-open sets which contain ψ(M) is either ψ(M) or R. Therefore M = (a, b] is a
maximal I∗-open set.
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Definition 4.2 Let XIT be a space. Then XIT is called a space with proper maximal I∗-open set(s)
(simply MmaxI

∗O(XIT ) or MmaxI
∗O(X) when there is no scope for misunderstanding), if there exists

a proper maximal I∗-open set in XIT .

Example 4.4 Consider a space XIT where X = {e1, e2, e3}, τ = {∅, X, {e1, e3}} and I = {∅}. Then
τ∗(I) = {∅, X, {e1, e3}}. Take M = {e1, e3}. Then ψ(M) = {e1}. Thus M is not a maximal I∗-open set.
Hence there is no proper maximal I∗-open set in this space XIT .

By the following, we can say that in a space XIT , an open set (or ∗-open set) need not be a maximal
I∗-open set.

Example 4.5 In Example 4.2, {1, 2} is an open set as well as a ∗-open set but not a maximal I∗-open
set. In Example 4.1, M = {e1, e2} is an open set, a ∗-open set and a maximal I∗-open set. Hence an
open set (or ∗-open set) need not be a proper maximal I∗-open set.

We may deduce from the following examples that maximal openness, maximal I-openess and maximal
I∗-openess are independent concepts:

Example 4.6 In examples 3.4 and 3.5, we have already proved that maximal openness and maximal
I-openess are independent to each other.

Example 4.7 In Example 3.1, τ∗(I) = {∅, X, {e1, e2}, {e3}, {e1, e2, e3}, {e1}, {e1, e3}, {e1, e3, e4}}. Take
M = {e1, e3}. Then ψ(M) = X \ {e2, e4}∗ = X. This implies M is a maximal I∗-open set but M is
neither a maximal I-open set nor an open set.

Note 3 In examples 3.2 and 3.3, {b} is an I-open set but not a ∗-open set. So every I-open set need
not be a ∗-open set and hence we conclude that every maximal I-open set need not be a maximal I∗-open
set.

Lemma 4.1 Let XIT be a space. Then union of any two maximal I∗-open sets is again a maximal
I∗-open set.

Proof: Let M and N be two maximal I∗-open sets. We have to prove that M ∪N is a maximal I∗-open
set. If possible suppose M ∪N is not a maximal I∗-open set, then there exists a nonempty proper ∗-open
set M1 such that ψ(M ∪ N) ⫋ M1. This implies ψ(M) ∪ ψ(N) ⫋ M1 [7] and hence ψ(M) ⫋ M1 and
ψ(N) ⫋ M1 which lead a contradiction to the fact that M and N are maximal I∗-open sets. Hence our
assumption is wrong. Thus union of any two maximal I∗-open sets is again a maximal I∗-open set. 2

Note 4 In a space XIT , intersection of two members of MmaxI
∗O(X) need not be a member of

MmaxI
∗O(X) again.

Consider the space XIT where X = {e1, e2}, τ = {∅, X, {e1}} and I = {∅, {e1}}. Then τ∗(I) =
{∅, X, {e1}, {e2}}. Here M = {e1} and N = {e2} are members of MmaxI

∗O(X) but M ∩N = ∅ is not a
member of MmaxI

∗O(X).

Lemma 4.2 Let XIT be a space. Then any proper maximal I∗-open set M and for any ∗-open set O,
either ψ(M) ∪O = X or O ⊆ ψ(M).

Corollary 4.1 Let XIT be a space. Then, any proper maximal I∗-open set M and for any open set O,
either ψ(M) ∪O = X or O ⊆ ψ(M).

Proof: For any ∗-open set O, ψ(M) ⊆ ψ(M)∪O. SinceM ∈MmaxI
∗(X) and ψ(M) contained in ∗-open

set ψ(M) ∪O, then either ψ(M) ∪O = X or ψ(M) ∪O = ψ(M). This implies either ψ(M) ∪O = X or
O ⊆ ψ(M). 2

Definition 4.3 Let XIT be a space and x ∈ X. A subset S ⊆ X is called a ∗-open neighbourhood of x
if there exists A ∈ τ∗(I) such that x ∈ A ⊆ S.
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Clearly, every ∗-open sets is an ∗-open neighbourhood of each of its points. The collection of all ∗-open
neighbourhoods of a point x ∈ X of a space XIT is simply denoted by N ∗(x).

Proposition 4.1 In a space XIT , every ∗-open neighbourhood is an ∗-open set.

Proposition 4.2 Let M ∈MmaxI
∗O(X) and p ∈ M .Then for any W ∈ N ∗(x), either ψ(M) ∪W = X

or W ⊆ ψ(M).

Proof: Proof is obvious by Lemma 4.2 and hence omitted. 2

Lemma 4.3 Let XIT be a space. Then for any two M,N ∈ MmaxI
∗O(X), either ψ(M) ∪ ψ(N) = X

or ψ(M) = ψ(N) when τ ∼ I.

Proof: SinceM,N ∈MmaxI
∗O(X), then by Lemma 4.2, either ψ(M)∪N = X or N ⊆ ψ(M) and either

ψ(N) ∪M = X or M ⊆ ψ(N). These implies ψ(M) ∪ ψ(N) = X or N ⊆ ψ(M) and M ⊆ ψ(N). Since
τ ∼ I, then N ⊆ ψ(M) and M ⊆ ψ(N) implies ψ(N) ⊆ ψ(ψ(M)) = ψ(M) and ψ(M) ⊆ ψ(ψ(N)) =
ψ(N). Combining ψ(M) = ψ(N). Hence either ψ(M) ∪ ψ(N) = X or ψ(M) = ψ(N). 2

Theorem 4.1 Let XIT be a space with τ ∼ I. Let M1,M2,M3 ∈ MmaxI
∗O(X) such that ψ(M1) ̸=

ψ(M2). If ψ(M1) ∩ ψ(M2) ⊆ ψ(M3), then either ψ(M1) = ψ(M3) or ψ(M2) = ψ(M3).

Proof: We have,

ψ(M1) ∩ ψ(M3) = ψ(M1) ∩ (ψ(M3) ∩X)

= ψ(M1) ∩ (ψ(M3) ∩ (ψ(M1) ∪ ψ(M2)))(by Lemma 4.3)

= ψ(M1) ∩ [((ψ(M3) ∩ ψ(M1)) ∪ (ψ(M3) ∩ ψ(M2)))]

= (ψ(M1) ∩ ψ(M3)) ∪ (ψ(M1) ∩ ψ(M2) ∩ ψ(M3))

= (ψ(M1) ∩ ψ(M3)) ∪ (ψ(M1) ∩ ψ(M2))[since ψ(M1) ∩ ψ(M2) ⊆ ψ(M3)]

= ψ(M1) ∩ (ψ(M2) ∪ ψ(M3)).

Thus if ψ(M2) ̸= ψ(M3), then ψ(M2) ∪ ψ(M3) = X and hence ψ(M1) ∩ ψ(M3) = ψ(M1). This implies
ψ(M1) ⊆ ψ(M3). Since M1 and M3 are maximal I∗-open sets, then ψ(M1) = ψ(M3). 2

Theorem 4.2 Let XIT be a space with τ ∼ I. Let M1,M2,M3 ∈MmaxI
∗O(X) in which ψ(M1), ψ(M2)

and ψ(M3) are different from each other, then ψ(M1) ∩ ψ(M2) ⊈ ψ(M1) ∩ ψ(M3).

Proof: If possible, let ψ(M1) ∩ ψ(M2) ⊆ ψ(M1) ∩ ψ(M3), then

(ψ(M1) ∩ ψ(M2)) ∪ (ψ(M2) ∩ ψ(M3)) ⊆ (ψ(M1) ∩ ψ(M3)) ∪ (ψ(M2) ∩ ψ(M3)).

This implies ψ(M2) ∩ (ψ(M1) ∪ ψ(M3)) ⊆ (ψ(M1) ∪ ψ(M2)) ∩ ψ(M3). Since ψ(M1), ψ(M2) and ψ(M3)
are different from each other, then ψ(M1) ∪ ψ(M3) = X = ψ(M1) ∪ ψ(M2) by Lemma 4.3. This implies
ψ(M2) ⊆ ψ(M3) and hence ψ(M2) = ψ(M3) that contradicts our given condition. Thus ψ(M1)∩ψ(M2) ⊈
ψ(M1) ∩ ψ(M3). 2

We now check for the presence of maximal I∗-open sets in unusual instances. For this we consider cofinite
I∗-open sets that means those I∗-open sets whose complement is a finite subset.

Theorem 4.3 Let XIT be a space with τ ∼ I. If O is a proper nonempty cofinite ∗-open subset. Then,
there exists atleast one (cofinite) proper maximal I∗-open set M such that ψ(O) ⊆ ψ(M).
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Proof: If O is a maximal I∗-open set, we takeM = O. If not, then there exists a ∗-open setM1(cofinite)
such that ψ(O) ⫋ M1 ̸= X. If M1 is a maximal I∗-open set, we take M = M1. Since τ ∼ I, then
ψ(O) ⫋M implies ψ(O) = ψ(ψ(O)) ⊆ ψ(M). If not , then there exists an ∗-open set M2 (cofinite) such
that ψ(O) ⊆ ψ(M1) ⫋ M2 ̸= X. Since τ ∼ I, then ψ(O) ⊆ ψ(M1) ⊆ ψ(M2). Continuing this process,
we have a sequence of ∗-open sets satisfying, ψ(O) ⊆ ψ(M1) ⊆ ψ(M2) ⊆ ψ(M3) ⊆ ψ(M4)... ⊆ ψ(Mk)....
Since O is a cofinite, then ψ(O) is also cofinite. Thus the aforementioned process occurs only finitely and
consequently we have a maximal I∗-open set M =Mn for some n ∈ N. Hence the result. 2

Proposition 4.3 Let XIT be a space. Let M ∈ MmaxI
∗O(X) and x ∈ ψ(M), then ψ(M) =

⋃
{W :

W ∈ N ∗(x) and W ∪ ψ(M) ̸= X}.

Proof: If W ∈ N ∗(x) and W ∪ ψ(M) ̸= X, then by Proposition 4.2, W ⊆ ψ(M). Hence ψ(M) ⊆⋃
{W : W ∈ N ∗(x) and W ∪ ψ(M) ̸= X} ⊆ ψ(M). This implies ψ(M) =

⋃
{W : W ∈ N ∗(x) and

W ∪ ψ(M) ̸= X}. Hence the result. 2

Theorem 4.4 Let M ∈MmaxI
∗O(X) and x ∈ X \ ψ(M). Then X \ ψ(M) ⊆W for any W ∈ N ∗(x)

Proof: Since x ∈ X \ ψ(M), then for any W ∈ N ∗(x), we have W ⊈ ψ(M). Thus W ∪ ψ(M) = X by
Lemma 4.2 and hence X \ ψ(M) ⊆W . 2

Corollary 4.2 Let M ∈MmaxI
∗O(X), then one of the following is true:

1. for any x ∈ X \ ψ(M) and for each W ∈ N ∗(x), W = X.

2. there exists a ∗-open set W such that X \ ψ(M) ⊆W and W ⊊ X.

Proof: If (1) is not true, then there exists an element x of X \ψ(M) and W ∈ N ∗(x) such that W ⫋ X.
Then by Theorem 4.4, we have X \ ψ(M) ⊆W . 2

Corollary 4.3 If M ∈MmaxI
∗O(X), then one of the following is true:

1. for any x ∈ X \ ψ(M) and for each W ∈ N ∗(x), X \ ψ(M) ⫋W .

2. there exists a ∗-open set W such that X \ ψ(M) =W ̸= X.

Proof: Assume that (2) does not hold. Then by Theorem 4.4, for each x ∈ X \ ψ(M) and for any
W ∈ N ∗(x), X \ ψ(M) ⊆W . Hence we have, X \ ψ(M) ⫋W . 2

Theorem 4.5 Let M ∈MmaxI
∗O(X). Then either Cl∗(ψ(M)) = X or Cl∗(ψ(M)) = ψ(M).

Proof: Since M is a proper maximal I∗-open set, only the following cases (1) and (2) occured by
Corollary 4.3.
(1) For each x ∈ X \ ψ(M) and each W ∈ N ∗(x), we have X \ ψ(M) ⫋ W . Let x be any element of
X \ ψ(M) and W be any ∗-open neighbourhood of x. Since X \ ψ(M) ⫋ W , we have W ∩ ψ(M) ̸= ∅
for any ∗-open neighbourhood of x. Hence x ∈ Cl∗(ψ(M)). Thus X \ ψ(M) ⊆ Cl∗(ψ(M)). Since
X = ψ(M) ∪ (X \ ψ(M)), then X ⊆ ψ(M) ∪ Cl∗(ψ(M)) = Cl∗(ψ(M)) ⊆ X. Hence X = Cl∗(ψ(M)).
(2) There exists a ∗-open set W such that X \ ψ(M) = W ̸= X. Since X \ ψ(M) = W is a ∗-open set,
then ψ(M) is a ∗-closed set. Therefore Cl∗(ψ(M)) = ψ(M). 2

Theorem 4.6 LetM ∈MmaxI
∗O(X). Then either Int∗(X\ψ(M)) = X\ψ(M) or Int∗(X\ψ(M)) = ∅.
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Proof: By Corollary 4.3, we have either,
(1) Int∗(X \ ψ(M)) = ∅ or
(2) there exists a ∗-open set W such that X \ ψ(M) = W ̸= X. This implies, Int∗(X \ ψ(M)) =
Int∗(W ) =W = X \ ψ(M). 2

Theorem 4.7 Let M ∈ MmaxI
∗O(X) and S be any nonempty subset of X \ ψ(M). Then Cl∗(S) =

X \ ψ(M).

Proof: Since ∅ ≠ S ⊆ X \ ψ(M), we have W ∩ S ̸= ∅ for any element x of X \ ψ(M) and any ∗-open
neighbourhood W of x by Theorem 4.4. This implies x ∈ Cl∗(S) and hence X \ ψ(M) ⊆ Cl∗(S). Since
X \ ψ(M) is a ∗-closed set and S ⊆ X \ ψ(M), then Cl∗(S) ⊆ Cl∗(X \ ψ(M)) = X \ ψ(M). Hence
Cl∗(S) = X \ ψ(M). 2

Corollary 4.4 Let M ∈MmaxI
∗O(X) and U be a subset of X with ψ(M) ⫋ U . Then Cl∗(U) = X.

Proof: Since ψ(M) ⫋ U ⊆ X, there exists a nonempty subset S of X \ ψ(M) such that U = S ∪ ψ(M).
Hence, we have Cl∗(U) = Cl∗(S∪ψ(M)) = Cl∗(S)∪Cl∗(ψ(M)) ⊇ (X \ψ(M))∪ψ(M) = X by Theorem
4.7. This implies Cl∗(U) = X. 2

Theorem 4.8 Let M be a proper maximal I∗-open set in a space XIT and assume that |X \ψ(M)| ≥ 2
where |.| denotes the cardinality. Then Cl∗(X \ {a}) = X for a ∈ X \ ψ(M).

Proof: Since ψ(M) ⫋ X \ {a}, then by our assumption, we get the required result by Corollary 4.4. 2

Theorem 4.9 Let M be a proper maximal I∗-open set in a space XIT and N be a proper subset of X
with ψ(M) ⊆ N . Then Int∗(N) = ψ(M).

Proof: Since ψ(M) ⊆ N , then Int∗(ψ(M)) ⊆ Int∗(N) and hence ψ(M) ⊆ Int∗(N) as ψ(M) is a ∗-open
set. Also since Int∗(N) is a ∗-open set and ψ(M) is a proper maximal I∗-open set, then ψ(M) = Int∗(N).

2

Theorem 4.10 Let M be a proper maximal I∗-open set in a space XIT and S be a nonempty subset of
X \ ψ(M). Then X \ Cl∗(S) = Int∗(X \ S) = ψ(M).

Proof: Since ψ(M) ⊆ X \ S ⫋ X is our assumption, we get the required result by Theorems 4.7 and
4.9. 2

A subset M of a topological space (X, τ) is called a pre-open set [13] if M ⊆ Int(Cl(M)). For a space
XIT , the collection of all pre-open sets in (X, τ∗(I)) is denoted as PO∗(X, τ∗(I)).

Theorem 4.11 Let M be a proper maximal I∗-open set in a space XIT and S be any subset of X with
ψ(M) ⊆ S. Then S ∈ PO∗(X, τ∗(I)).

Proof: If ψ(M) = S, then S is a ∗-open set and hence S = Int∗(S). Also S ⊆ Cl∗(S). This implies
Int∗(S) ⊆ Int∗(Cl∗(S)) and hence S ⊆ Int∗(Cl∗(S)). Thus S ∈ PO∗(X, τ∗(I)).
Otherwise ψ(M) ⫋ S, then Int∗(Cl∗(S)) = Int∗(X) ⊇ S. Therefore S ∈ PO∗(X, τ∗(I)). 2

Corollary 4.5 Let M be a proper maximal I∗-open set in a space XIT . Then X \ {a} ∈ PO∗(X, τ∗(I))
for any element a of X \ ψ(M).

Proof: Since ψ(M) ⊆ X \ {a}, by our assumption, we get the required result by Theorem 4.11. 2
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5. Images of Maximal I-open sets

In this part, we have studied homeomorphic images of maximal I-open sets in the Tspace XT with
an ideal.

Lemma 5.1 ( [9]) Let f : X → Y be a function. If I is an ideal on X, then f(I) = {f(I1) : I1 ∈ I} is
also an ideal on Y .

Lemma 5.2 ( [9]) Let f : X → Y be an injective function. If I is an ideal on Y , then f−1(I) =
{f−1(I1) : I1 ∈ I} is also an ideal on X.

Proposition 5.1 ( [10,17]) Let (X, τ1) and (Y, τ2) be two T spaces and I be an ideal on X. If f : X → Y
is a homeomorphism, then for any M ∈ ℘(X), (f(M))∗f(I) = f(M∗I).

Theorem 5.1 Let (X, τ1) and (Y, τ2) be two T spaces and I be an ideal on X. If f : X → Y is a
homeomorphism, then for any I-open set M in X, f(M) is an f(I)-open set in Y .

Proof: Since M is an I-open set in X, then M ⊆ Int(M∗I). This implies,

f(M) ⊆ f(Int(M∗I))

= Int(f((M∗I))) (since f is a homeomorphism)

= Int(f(M)∗f(I)) (by Proposition 5.1)

Hence f(M) is an f(I)-open set in Y . 2

Theorem 5.2 Let (X, τ1) and (Y, τ2) be two T spaces and I be an ideal on Y . If f : X → Y is a
homeomorphism, then for any I-open set M in Y , f−1(M) is an f−1(I)-open set in X.

Proof: Follows from Theorem 5.1. 2

Theorem 5.3 Let (X, τ1) and (Y, τ2) be two T spaces and I be an ideal on X. If f : X → Y is a
homeomorphism, then for any maximal I-open set M in X, f(M) is a maximal f(I)-open set in Y .

Proof: If possible, suppose f(M) is not a maximal f(I)-open set in Y , then there exists a nonempty
proper f(I)-open set V in Y such that f(M) ⫋ V . Since f is a homeomorphism, thenM ⫋ f−1(V ) ⫋ X.
Also since f is a homeomorphism and V is a nonempty f(I)-open set in Y , then f−1(V ) is a nonempty
f−1(f(I))(= I)-open set in X by Theorem 5.2, which contradicts that M is a maximal I-open set. Thus
our assumption is wrong. Hence the result. 2

Theorem 5.4 Let (X, τ1) and (Y, τ2) be two T spaces and I be an ideal on Y . If f : X → Y is a
homeomorphism, then for any maximal I-open set M in Y , f−1(M) is a maximal f−1(I)-open set in X.

Proof: Follows from Theorem 5.3. 2

Note 5 Let (X, τ1) and (Y, τ2) be two T spaces and I be an ideal on X. If f : X → Y is a function,
then for any maximal I-open set M in X, f(M) is not always a maximal f(I)-open set in Y .

We are now giving an example in support of the Note 5:

Example 5.1 Consider (X, τ1, I) be a T spaces with an ideal where X = {e1, e2, e3, e4}, τ1 = {∅, X,
{e1, e2}, {e3}, {e1, e2, e3}} and I = {∅, {e2}}. Then M = {e1, e2, e3} is a maximal I-open set in X.
Again consider (Y, τ2) be another T spaces where Y = X = {e1, e2, e3, e4} and τ2 = τ1.
Let us define a function f : X → Y by f(e1) = e1, f(e2) = e2, f(e3) = e2 and f(e4) = e3. Then
f(I) = {f(I1) : I1 ∈ I} = {∅, {e2}} is an ideal on Y. Now f(M) = {f(x) : x ∈ M} = {e1, e2} is not a
maximal f(I)-open set in Y .
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Note 6 ( [11,26]) Let f : X → Y be a function. If I is an ideal on Y , then f←(I) = {A : A ⊂ f−1(I1) ∈
f−1(I)} is also an ideal on X.

Proposition 5.2 Let (X, τ1) and (Y, τ2) be two T spaces and I be an ideal on Y . If f : X → Y is an
injective function, then f−1(I) = f←(I)

Proof: Proof is obvious and hence omitted. 2

Note 7 Let (X, τ1) and (Y, τ2) be two T spaces and I be an ideal on Y . If f : X → Y is a function, then
for any maximal I-open set M in Y , f−1(M) is not always a maximal f←(I)-open set in X.

We are now giving an example in support of the Note 7:

Example 5.2 Consider (Y, τ2, I) be a T spaces with an ideal where Y = {e1, e2, e3, e4}, τ2 = {∅, X, {e1,
e2}, {e3}, {e1, e2, e3}} and I = {∅, {e2}}. Therefore M = {e1, e2, e3} is a maximal I-open set in Y .
Again consider (X, τ1) be another T space where X = {e1, e2, e3, e4} and τ1 = τ2 = {∅, X, {e1, e2}, {e3},
{e1, e2, e3}}.
Let us define a function f : X → Y by f(e1) = e1, f(e2) = e2, f(e3) = e4 and f(e4) = e3. Then
f−1(I) = {f−1(I1) : I1 ∈ I} = {∅, {e2}} and hence f←(I) = {∅, {e2}} is an ideal on X by Note 9. Now
f−1(M) = {e1, e2, e4}. Thus (f−1(M))∗f

←(I) = {e1, e2, e4} and hence Int((f−1(M))∗f
←(I)) = {e1, e2}.

This implies f−1(M) ⫅̸ Int((f−1(M))∗f
←(I)) and hence f−1(M) is not a maximal (f←(I))-open set in

X.

6. Images of Maximal I∗-open sets

In this part, we have studied homeomorphic images of proper maximal I∗-open sets in the Tspace
XT with an ideal.

Proposition 6.1 ( [17]) Let (X, τ1) and (Y, τ2) be two T spaces and I be an ideal on X. If f : X → Y

is a homeomorphism, then for any M ∈ ℘(X), ψ
f(I)
τ2 (f(M)) = f(ψI

τ1(M)).

Proposition 6.2 ( [10,17]) Let (X, τ1) and (Y, τ2) be two Tspaces and I be an ideal on Y . If f : X → Y

is a homeomorphism, then for any M ∈ ℘(Y ), f−1(M∗I) = (f−1(M))∗f
−1(I).

Proposition 6.3 ( [10,17]) Let (X, τ1) and (Y, τ2) be two T spaces and I be an ideal on Y . If f : X → Y

is a homeomorphism, then for any M ∈ ℘(Y ), ψ
f−1(I)
τ1 (f−1(M)) = f−1(ψI

τ2(M)).

Theorem 6.1 Let (X, τ1) and (Y, τ2) be two T spaces and I be an ideal on X. If f : X → Y is a
homeomorphism, then for any proper maximal I∗-open set M in X, f(M) is a proper maximal (f(I))∗-
open set in Y .

Proof: If possible, suppose f(M) is not a maximal (f(I))∗-open set in Y , then there exists ∅ ̸= V ∈
τ∗2 (f(I)) and V ̸= Y such that ψ

f(I)
τ2 (f(M)) ⫋ V . This implies f(ψI

τ1(M)) ⫋ V . Since f is a home-
omorphism, ψI

τ1(M) ⫋ f−1(V ) ⊆ X. Also since f is a homeomorphism, V ∈ τ∗2 (f(I)) and hence
ψI
τ1(M) ⫋ f−1(V ) ∈ τ∗1 (I) leads a contradiction as M is a proper maximal I∗-open set. Hence the result.

2

Theorem 6.2 Let (X, τ1) and (Y, τ2) be two T spaces and I be an ideal on Y . If f : X → Y is
a homeomorphism, then for any proper maximal I∗-open set M in Y , f−1(M) is a proper maximal
(f−1(I))∗-open set in X.

Proof: Follows from Theorem 6.1. 2

Note 8 Let (X, τ1) and (Y, τ2) be two T spaces and I be an ideal on X. If f : X → Y is a function,
then for any proper maximal I∗-open set M in X, f(M) is not always a maximal f(I)∗-open set in Y .
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We are now giving an example in support of the Note 8:

Example 6.1 Consider (X, τ1, I) be a T spaces with an ideal where X = {e1, e2, e3}, τ1 = {∅, X, {e1},
{e2}, {e1, e2}} and I = {∅, {e1}}. Then τ∗(I) = {∅, X, {e1}, {e2}, {e1, e2}, {e2, e3}}. Clearly M =
{e1, e2} is a proper maximal I∗-open set in X. Again consider (Y, τ2) be another T spaces where Y = {a, b}
and τ2 = {∅, {a}, Y }.
Let us define a function f : X → Y by f(e1) = b, f(e2) = b and f(e3) = a. Then f(I) = {f(I1) :
I1 ∈ I} = {∅, {b}} is an ideal on Y. Thus τ∗2 (f(I)) = {∅, {a}, Y }. Now f(M) = {f(x) : x ∈ M} = {b}.
Therefore ψ

f(I)
τ2 (f(M)) = Y \ (Y \ {b})∗f(I) = Y \ {a}∗f(I) = Y \ {a, b} = ∅. This implies f(M) is not a

maximal f(I)∗-open set in Y .

Note 9 Let (X, τ1) and (Y, τ2) be two T spaces and I be an ideal on Y . If f : X → Y is a function, then
for any proper maximal I∗-open set M in Y , f−1(M) is not always a maximal (f←(I))∗-open set in X.

We are now giving an example in support of the Note 9:

Example 6.2 Consider (Y, τ2, I) be a T spaces with an ideal where Y = {e1, e2, e3}, τ2 = {∅, Y, {e1},
{e2}, {e1, e2}} and I = {∅, {e2}}. Therefore τ∗2 (I) = {∅, Y, {e1}, {e2}, {e1, e2}, {e1, e3}}. Clearly M =
{e1, e2} is a proper maximal I∗-open set in Y . Again consider (X, τ1) be another T space where X = {a, b}
and τ1 = {∅, {b}, X}.
Let us define a function f : X → Y by f(a) = e2 and f(b) = e3 . Then f−1(I) = {f(I1) : I1 ∈ I} =
{∅, {a}} and hence f←(I) = {∅, {a}} is an ideal on X by Note 9. Thus τ∗1 (f

←(I)) = {∅, {b}, X}. Now

f−1(M) = {a}. Therefore ψ
f←(I)
τ1 (f−1(M)) = X \ (X \ {a})∗f←(I) = X \ {b}∗f←(I) = X \ {a, b} = ∅.

This implies f−1(M) is not a maximal (f←(I))∗-open set in X.

7. Conclusion

In this write up, we have added some new kinds of open sets called maximal I-open sets and maximal
I∗-open sets in ideal topological spaces and discussed their various properties. Using this idea, we
have discussed the relationships between pre-open sets, maximal open sets, maximal I-open sets and
maximal I∗-open sets. Furthermore, images of maximal I-open sets and maximal I∗-open sets under
homeomorphisms have been discussed here. The other properties of these types of sets can be found and
one can introduce some other relations to these types of sets to develop the skills of learning mathematics.
These ideas may be defined with help of grill [6,14,15], filter [28,14,15] and other related mathematical
structures. Furthermore it may be considered for the nature of MmaxIO(X) and MmaxI

∗O(X) to
constitute a filter, ultrafilter, ideal, universal ideal etc. These may be the way of the future research
work.
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