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On the Generalized Apostol-Kolodner Differential Equation of the Second-Order
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abstract: This paper concerns the generalized Apostol-Kolodner differential equations of the second order.
Our approach is based on some matrix square root properties, the Fibonacci-Hörner decomposition of matrix
powers, and its related dynamical solution. Various explicit compact formulas for the solutions of the general-
ized Apostol-Kolodner matrix differential equations are established. Finally, to validate the results and show
their robustness, examples and applications are provided.
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1. Introduction

Over the past few decades, higher-order linear differential matrix equations have attracted considerable
attention, given their importance in many fields. More specifically, applying the higher-order linear matrix
differential equations theory extends beyond mathematical studies into applied sciences and engineering.
(see, for instance, [3,9,13,17,22,23,27] and references therein). Apostol (see [2]) and Kolodner (see [18])
have studied the following matrix differential equation of the second-order

X
′′

(t) = AX(t), (1.1)

submitted to the initial dataX(0) andX ′(0), where A ∈ Cd×d the algebra of square matrices of order d×d.
Apostol and Kolodner gave some properties of the solutions of Equation (1.1). In [2], Apostol proposes a
process for solving equation (1.1) based on Putzer’s method to calculate the exponential of matrices (see
[2,24]). In [18], Kolodner studies some manageable formulas to compute exp(tA), where A is a square
matrix, by establishing an analogous Putzer’s formula for the matrix powers An. Then, he extends its
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process to second-order matrix differential systems (1.1). In [8], the linear matrix differential equations
of higher order have been studied under the commutativity condition of the coefficients matrices. Some
results have been established for a class of matrix differential equations of higher order, and some results
of Apostol and Kolodner are recovered.

In the present study, we are interested in the generalized Apostol-Kolodner linear matrix differential
equation of the second-order

X
′′

(t) = A0X
′

(t) +A1X(t), (1.2)

where A0 and A1 are in Cd×d, which do not necessarily commute. In the first step, we study the Apostol-
Kolodner differential equation (1.1), where we exhibit the properties of its solutions in terms of the
square root of the matrices. The main purpose of the second step is to investigate the properties and
solutions of the generalized Apostol-Kolodner matrix differential equation (1.2). Our main tools are the
computational properties of the powers of matrices, using the linear recursive relations in the algebras
of square matrices, and the analytic expressions of some real or complex linear recursive sequences. Our
approach will allows us to characterize explicitly the solutions of equations (1.1) and (1.2), namely, linear
solutions, combinatorial, and analytical solutions.

The content of the present study is structured as follows. Section 2 consists of studying the differential
equation of Apostol-Kolodner (1.1) and establishing properties related to the principal square roots of the
matrices. Section 3 is devoted to the generalized Apostol-Kolodner differential equation (1.2), where the
linear recursive sequences in the algebra of square matrices of order d× d play a central role. Moreover,
the commutativity conditions A0A1 = A1A0 allows us to obtain the combinatorial solutions of Equation
(1.2). Section 4 is devoted to the use of the Fibonacci-Hörner decomposition of the matrix powers to solve
Equation (1.2) employing the properties of the so-called dynamical solutions. When the commutativity
condition is satisfied, the combinatorial aspect of the solution of Equation (1.2) is approached. In Section
5, the linear and analytic aspects of the solution of Equation (1.2) are studied via the Fibonacci-Hörner
decomposition by considering the analytical expression of the dynamical solution. In the general setting,

the solutions of Equation (1.2) are expressed in terms of operators related to the derivation D = t
d

dt
. The

Fibonacci-Hörner decomposition process is also applied to the differential equation of Apostol-Kolodner
(1.1). Section 6 deals with an approach to the solutions of Equation (1.2), under the commutativity
condition A0A1 = A1A0. Throughout the previous sections, illustrative examples and applications are
provided. Finally, a conclusion and perspectives are discussed.

Without loss of generality and only for simplicity purpose, we will refer to the Apostol-Kolodner
differential equation (1.1) as Equation (1.1), and the generalized Apostol-Kolodner differential equation
(1.2) as Equation (1.2).

2. Apostol-Kolodner equation X
′′

(t) = AX(t) and matrix square root

Let Cd×d be the algebra of square matrix of order d × d. We investigate here Equation (1.1), under
the following equivalent matrix differential equation of the first order Z ′(t) = BZ(t), where Z(t) =

(X ′(t), X(t))T and B is the companion block matrix given by B =

(

Od A
Id Od

)

, where A ∈ Cd×d, Od

and Id are the null and the identity matrix, respectively. A direct computation implies that B2n =
(

An Od

Od An

)

and B2n+1 =

(

Od An+1

An Od

)

. Thus, we derive that

etB =
+∞
∑

n=0

tn

n!
Bn =

+∞
∑

n=0

t2n

(2n)!
B2n +

+∞
∑

n=0

t2n+1

(2n+ 1)!
B2n+1.

Considering the initial data X(0) and X ′(0), we derive that

Z(t) = etBZ(0) =

+∞
∑

n=0

t2n

(2n)!
B2nZ(0) +

+∞
∑

n=0

t2n+1

(2n+ 1)!
B2n+1Z(0).
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Yet, using the previous expressions of the powers B2n and B2n+1, we get

[

X ′(t)
X(t)

]

=

+∞
∑

n=0

t2n

(2n)!

[

AnX ′(0)
AnX(0)

]

+

+∞
∑

n=0

t2n+1

(2n+ 1)!

[

An+1X(0)
AnX ′(0).

]

.

Therefore, we obtain

X(t) =

(

+∞
∑

n=0

t2n

(2n)!
An

)

X(0) +

(

+∞
∑

n=0

t2n+1

(2n+ 1)!
An

)

X ′(0).

In summary, we recover the following result of Apostol (see [2,8,18]).

Proposition 2.1. The unique solution of Equation (1.1), under the prescribed initial data X(0) and
X ′(0), is given by

X(t) = C1(t)X(0) + C2(t)X ′(0),

for every t ∈] − ∞,+∞[, where

C1(t) =

+∞
∑

n=0

t2n

(2n)!
An and C2(t) =

+∞
∑

n=0

t2n+1

(2n+ 1)!
An. (2.1)

In Proposition 2.1, the solution of Equation (1.1) is expressed by the powers of the matrix A. In
the Subsection 5.3, the Fibonacci-Hörner decomposition of the powers An of the matrix A, will yield the
analytical aspect of the functions C1(t) and C2(t).

However, as observed in [2], the expressions of C1(t) and C2(t) in (2.1) are related to the square root
of the matrix A, through the matrix hyperbolic functions cosh and sinh. In general, determining the
square root of a matrix A of order d (d ≥ 2), defined as the solution of the matrix equation X2 = A,
is not an easy task. Several studies in the literature are devoted to the square root of matrices (see, for
instance, [1,14,16] and references therein). When the matrix A has no eigenvalues on R

− (the closed
negative real axis), there exists a unique matrix X such that X2 = A and the eigenvalues of X lies on
the segment {z ∈ C : −π/2 < arg(z) < π/2}, where arg(z) is the argument of z (see, for instance, [16]
and references therein). Suppose that the matrix A owns a principal matrix square root S, then the two
functions C1(t) and C2(t) of Expression (2.1), can be written under the forms

C1(t) =

+∞
∑

n=0

t2n

(2n)!
S2n and C2(t) =

+∞
∑

n=0

t2n+1

(2n+ 1)!
S2n.

If the matrix A is invertible and owns a principal square root S, then S is also invertible. Therefore, we
have

C1(t) = cosh(tS) and C2(t) = S−1 sinh(tS),

where cosh(tS) and sinh(tS) are the hyperbolic matrix functions. Thus, from Proposition 2.1, we acquire
the following result.

Proposition 2.2. Suppose that the matrix A is invertible and owns a square root S, namely, A = S2.
Then, under the initial data X(0) and X ′(0), the unique solution of Equation (1.1) is given by

X(t) = cosh(tS)X(0) + S−1 sinh(tS)X ′(0),

for every t ∈] − ∞,+∞[, where cosh(tS) and sinh(tS) are the matrix hyperbolic functions. Especially, if
S owns simple eigenvalues λ1, . . . , λd, then we have

C1(t) = Pdiag(cosh(tλ1), . . . , cosh(tλd))P−1, (2.2)

C2(t) = Pdiag(λ−1
1 sinh(tλ1), . . . , λ−1

d sinh(tλd))P−1, (2.3)

where P is the invertible matrix such that S = Pdiag(λ1, . . . , λd)P−1.
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Let furnish an illustrative numerical example based on the principal square root.

Example 2.3. Let consider Equation (1.1), where its related matrix A is given by A =

(

14 −5
10 −1

)

. A

direct verification shows that A = S2, where S =

(

4 −1
2 1

)

. Therefore, Proposition 2.2 implies that the

solution of Equation (1.1) takes the form X(t) = cosh(tS)X(0) + S−1 sinh(tS)X ′(0). On the other hand,

since S = P

(

3 0
0 2

)

P−1, where P =

(

1 1
1 2

)

and S−1 =
1

6

(

1 2
−1 4

)

, a straightforward computation

permits us to show that the unique solution of Equation (1.1), defined by the matrix A, is expressed as
follows

X(t) = C1(t)X(0) + C2(t)X ′(0),

where

C1(t) =

(

2 cosh(3t) − cosh(2t) cosh(2t) − cosh(3t)
2(cosh(3t) − cosh(2t)) 2 cosh(2t) − cosh(3t)

)

,

and

C2(t) =
1

6

(

6 sinh(3t) − 5 sinh(2t) 3 sinh(3t) + 5 sinh(2t)
6 sinh(3t) − 7 sinh(2t) 3 sinh(3t) + 7 sinh(2t)

)

.

Proposition 2.2 enables to determine the analytic formulas of the solution of Equation (1.1), through
the spectral aspect of the matrix square root S of A. And Example 2.3 shows that if the eigenvalues
of the principal square matrix S of A, are real numbers, then the unique solution of Equation (1.1) are
expressed in terms of the hyperbolic functions cosh and sinh. In the following example, we illustrate a
case when one of the eigenvalues of S owns an imaginary part that is not null.

Example 2.4. Let consider Equation (1.1), whose related matrix A is

(

22 −13
26 −17

)

. A direct verifi-

cation implies that A = S2, where S =

(

6 − 2i −3 + 2i
6 − 4i −3 + 4i

)

is the principal square root of A, with

S = P

(

3 0
0 2i

)

P−1, where P =

(

1 1
1 2

)

and S−1 =





2

3
+

1

2
i −1

3
− 1

2
i

2

3
+ i −1

3
− i



. Thus, a long straight-

forward computation permits to show that the unique solution of Equation (1.1) is determined by

X(t) = C1(t)X(0) + C2(t)X ′(0),

where

C1(t) =

(

2 cosh(3t) − cos(2t) − cosh(3t) + cos(2t)
2 cosh(3t) − 2 cos(2t) − cosh(3t) + 2 cos(2t)

)

,

and

C2(t) =





2

3
sinh(3t) − 1

2
sin(2t) −1

3
sinh(3t) +

1

2
sin(2t)

2

3
sinh(3t) − sin(2t)

1

3
sinh(3t) + sin(2t)



 .

Example 2.4 shows that the principal matrix square root S of A owns an eigenvalue, whose imaginary
part is not null. Therefore, the solution X(t), of Equation (1.1) is expressed with the aid of the trigono-
metric functions and hyperbolic functions. For the general setting, this fact can be also deducted from
Expressions (2.2) and (2.3) of C1(t) and C2(t), respectively.

There are several characterizations of the existence and uniqueness of the principal square root of
a given matrix (see, for example, [1,14,16] and references therein). An Hermitian matrix A of Cd×d,

namely, A∗ = A, where A∗ = A
T

= (ai,j)1≤i, j≤d, is called positive semi-definite, if x∗Ax ≥ 0 for all
x ∈ Cd, and it is positive definite, if x∗Ax > 0, for all x ∈ Cd. It was established in [14, Theorem 4.3],
that for every positive semidefinite Hermitian matrix A and a given integer k ≥ 1, there exists a unique
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positive semidefinite Hermitian matrix S such that Sk = A. Moreover, the matrix S is real if A is real.
Since the eigenvalues of the positive semidefinite (respectively, positive definite) Hermitian matrix A are
all nonnegative (respectively, positive), then for k = 2, the unique positive Hermitian matrix S satisfying
S2 = A, representing the square root of A, whose eigenvalues are also all nonnegative (respectively,
positive). Thus, for a positive semidefinite Hermitian matrixA, the unique positive semidefinite Hermitian
matrix S satisfying S2 = A represents the principal square matrix of A. Therefore, we have the following
result.

Proposition 2.5. Suppose that A is a positive definite Hermitian matrix and consider its unique positive
Hermitian principal square root S, namely, S2 = A. Then, the unique solution of Equation (1.1), under
the prescribed data X(0) and X ′(0), is as follows X(t) = cosh(tS)X(0) + S−1 sinh(tS)X ′(0), for every
t ∈] − ∞,+∞[, where cosh(tS) and sinh(tS) are the hyperbolic matrix functions.

Remark 2.6. Let X(t) = (x1(t), · · · , xd(t))T be the solution of Equation (1.1) defined by the matrix A
and the initial data X(0) = (x1(0), · · · , xd(0))T . Then, a long straightforward computation allows us to
obtain the explicit formulas for the the functions x1(t), · · · , xd(t), for every t ∈ R.

Equation (1.1) will also be dealt with through two other approaches in Subsection 5.3. More precisely,
the linear and analytical approaches considered for the general case (1.2), in Section 4 and Subsections
5.1 and 5.2, will also be applied to the Apostol-Kolodner equation (1.1).

3. Solutions of Equation (1.2) by recursiveness for A0 6= Od and A1 6= Od

3.1. Recursiveness and powers of companion 2 × 2 block matrices with entries in C
d×d

Let A0, A1 and S0, S1 be fixed matrices in Cd×d such that A0 6= Od and A1 6= Od, which does not
necessarily commute. Let {Yn}n≥0 be the matrix sequence defined by Yn = Sn for n = 0, 1 and

Yn+1 = A0Yn +A1Yn−1, for every n ≥ 1. (3.1)

Let {Yn,s}n≥0 (0 ≤ s ≤ 1) be the two special sequences of type (3.1), defined by

Yn+1,s = A0Yn,s +A1Yn−1,s, for n ≥ 1, (3.2)

where the initial values are Ys,s = Id and Yn,s = Od if 0 ≤ n 6= s ≤ 1. Let B ∈ C2d×2d be the companion
block matrix

B =

(

A0 A1

Id Od

)

. (3.3)

For exhibiting the powers Bn, we will use the recent technique of calculating the powers of the usual
companion matrix (see [12]). That is, for n = 0, we show that

B0 =

(

Id Od

Od Id

)

=

(

Y1,1 Od

Od Y0,0

)

.

For n = 1, we have Y2,1 = A0Y1,1 + A1Y0,1 = A0 and Y2,0 = A0Y1,0 + A1Y0,0 = A1. Therefore, we have

B1 =

(

Y2,1 Y2,0

Y1,1 Y1,0

)

=

(

A0 A1

Id Od

)

. Then, by an induction process, we get the following proposition.

Proposition 3.1. Let A0, A1 be in Cd×d such that A0 6= Od, A1 6= Od and the sequence Yn,s as in (3.2).
Then, we have

Bn =

(

Yn+1,1 Yn+1,0

Yn,1 Yn,0

)

, for every n ≥ 0. (3.4)

It is essential to observe that in Proposition 3.1, the two matrices A0 and A1 do not necessarily
commute. When the commutativity condition, A0A1 = A1A0, is satisfied, a similar straightforward
computation as in [7,21] permits us to establish the combinatorial expression of Yn, the general term of
(3.1), as follows

Yn = ρ(n, 2)W0 + ρ(n− 1, 2)W1, for every n ≥ 2, (3.5)
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where W0 = A1S0 +A0S1, W1 = A1S1 and

ρ(n, 2) =
∑

k0+2k1=n−2

(k0 + k1)!

k0!k1!
Ak0

0 Ak1

1 , (3.6)

for every n ≥ 2, with ρ(2, 2) = Id and ρ(n, 2) = Od for n ≤ 1 (see [5,7,20,21]). Moreover, application of
Formulas (3.5) and (3.6) to the sequences {Yn,0}n≥0 and {Yn,1}n≥0 implies that

Yn,0 = A1ρ(n, 2) for n ≥ 2 and Yn,1 = A0ρ(n, 2) +A1ρ(n− 1, 2) for n ≥ 2, (3.7)

where ρ(n, 2) is as in (3.6). This allows us to establish the combinatorial expression of the powers of B
the matrix (3.3).

Corollary 3.2. Let A0, A1 be in Cd×d such that A0 6= Od, A1 6= Od and A0A1 = A1A0. Then, we have

Bn =

(

A0ρ(n+ 1, 2) +A1ρ(n, 2) A0ρ(n+ 1, 2)
A0ρ(n, 2) +A1ρ(n− 1, 2) A0ρ(n, 2)

)

, for every n ≥ 2,

where ρ(n, 2) is as in (3.6).

Proposition 3.1 and Corollary 3.2 will play a vital role in the sequel, for exhibiting some properties
of Equation (1.2).

3.2. Solving Equation (1.2) by recursiveness process

Now, we are interested in studying the solutions of Equation (1.2), using the linear matrix recursiveness
(3.1). Consider Equation (1.2), whose solution X belonging to C

∞(R ,Cd×d), is subjected to the initial
data X(0) and X

′

(0). Set Z(t) = (X
′

(t), X(t))T (t ∈ R) and Z(0) = (X
′

(0), X(0))T . A standard
computation shows that Equation (1.2) is reduced to the usual matrix differential equation

Z ′(t) = BZ(t), (3.8)

where B is the companion block matrix (3.3). It is well known that the solution of Equation (3.8) is
given by Z(t) = etBZ(0), where the formula of etB is derived from on the computation of the powers Bn,
in terms of A0, A1. Formula (3.4) implies that, we have

Z(t) =

+∞
∑

n=0

[

Yn+1,1X
′(0) + Yn+1,0X(0)

Yn,1X
′(0) + Yn,0X(0)

]

tn

n!
.

Hence, we have X(t) =

[

+∞
∑

n=0

Yn,1
tn

n!

]

X ′(0) +

[

+∞
∑

n=0

Yn,0
tn

n!

]

X(0). Thus, the solutions of Equation (1.2)

are formulated as in the following theorem.

Theorem 3.3. Let A0 and A1 be in Cd×d. Then, under initial data X(0) and X ′(0), the unique solution
of Equation (1.2) is given by

X(t) = C1(t)X(0) + C2(t)X
′

(0),

with

C1(t) =

+∞
∑

n=0

Yn,0
tn

n!
and C2(t) =

+∞
∑

n=0

Yn,1
tn

n!
,

where {Yn,0}n≥0 and {Yn,1}n≥0 are the two recursive matrices sequences defined by Expression (3.2).

Once again, in Theorem 3.3 the commutativity condition A0A1 = A1A0 is not considered. When

the commutativity condition A0A1 = A1A0 is fulfilled, we can apply the results of Theorem 3.3 to
succeed in making the combinatorial solutions for Equation (1.2). Indeed, taking into account the com-
binatorial Expression (3.7) of the two sequences {Yn,j}n≥0 (0 ≤ j ≤ 1) defined by Expression (3.2),
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we show that C1(t) = Y0,0 + Y1,0
t

1!
+

+∞
∑

n=2

Yn,0
tn

n!
= Id + A1

+∞
∑

n=2

ρ(n, 2)
tn

n!
, and C2(t) =

+∞
∑

n=0

Yn,1
tn

n!
=

Y1,0 + Y1,1
t

1!
+

+∞
∑

n=2

Yn,1
tn

n!
= Idt + A0

+∞
∑

n=2

ρ(n, 2)
tn

n!
+ A1

+∞
∑

n=2

ρ(n − 1, 2)
tn

n!
. We observe that g0(t) =

∑+∞
n=0 ρ(n, 2)

tn

n!
and g1(t) =

∑+∞
n=0 ρ(n − 1, 2)

tn

n!
are nothing else but the exponential generating func-

tions of the matrix recursive sequences {ρ(n, 2)}n≥0 and {ρ(n − 1, 2)}n≥0, where ρ(n, 2) is defined by
Expression (3.6). Thus, we have the following characterization of the combinatorial solutions of Equation
(1.2).

Proposition 3.4. Consider Equation (1.2), where A0, A1 ∈ Cd×d satisfying A0A1 = A1A0. Then,
submitted to the prescribed initial data X(0) and X ′(0), its unique solution X(t) is expressed as follows

X(t) = [Id +A1g0(t)]X(0) + [Idt+A0g0(t) +A1g1(t)]X ′(0),

where g0(t) and g1(t) are nothing else but the exponential generating functions of the matrices sequences
{ρ(n, 2)}n≥0 and {ρ(n− 1, 2)}n≥0, respectively.

4. Dynamical solution approach and solutions of Equation (1.2)

For reason of simplicity and without loss of generality, we supposes that A0 6= Od and A1 6= Od in
Subsections 4.1 and 4.2.

4.1. Fibonacci-Hörner process and dynamical solution for solving Equation (1.2)

Let A be a matrix of Cd×d and R(z) = zr − a0z
r−1 − · · · − ar−1, with ar−1 6= 0, be a polynomial such

that R(A) = Od (the zero matrix of Cd×d). The Fibonacci-Hörner decomposition of the powers An is
expressed as follows

An = unW0 + un−1W1 + · · · + un−r+1Wr−1, for every n ≥ 0, (4.1)

where
W0 = Id ; Wi = Ai − a0A

i−1 − · · · − ai−1Ir, for i = 1, . . . , r − 1, (4.2)

and the sequence {un}n≥−r+1 is defined by

un =
∑

k0+2k1+···+rkr−1=n

(k0 + k1 + · · · + kr−1)!

k0!k1! · · · kr−1!
ak0

0 ak1

1 · · ·akr−1

r−1 , (4.3)

for every n ≥ −r + 1, with initial values u0 = 1 and u−j = 0 for 1 ≤ j ≤ r − 1 (for more details, see
[4,7,19,20,21]). Moreover, it was established in [4,20,26] that the sequence {un}n≥0 satisfies the following
linear recurrence relation of order r

un+1 = a0un + a1un−1 + · · · + ar−1un−r+1, for every n ≥ 0. (4.4)

The set of matrices {W0 , W1 , · · · , Wr−1} is called the Fibonacci-Hörner system of the powers
decomposition of A. This system is obtained from the Fibonacci combinatorial process and the fact
that each matrix Wj (0 ≤ j ≤ r − 1) verifies Wj = hj(A), where the hj(z) (1 ≤ j ≤ r − 1) are the
Hörner polynomials associated to R(z), namely, h0(z) = 1, h1(z) = z − a0, . . . , hj(z) = zhj−1(z) −
aj−1, . . . , hr−1(z) = zhr−2(z) − ar−1 = R(z).

Let B be the companion block matrix (3.3) related to Equation (1.2), namely, B =

(

A0 A1

Id Od

)

, where

the A0 and A1 are in Cd×d. Consider the polynomial R(z) = zr − a0z
r−1 − · · · − ar−2z − ar−1, of degree

r ≤ 2d such that R(B) = O2d. For reason of simplicity and seek of generality, we consider in the sequel
a polynomial

R(z) = zr − a0z
r−1 − · · · − ar−2z − ar−1,

with ar−1 6= 0, such that R(B) = O2d. Applying the Fibonacci-Hörner decomposition for computing the
powers Bn, we can formulate the following lemma.
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Lemma 4.1. Let consider Equation (1.2), where A0 6= Od, A1 6= Od and B the associated companion
block matrix (3.3). Let R(z) = zr − a0z

r−1 − · · · − ar−2z− ar−1 be the polynomial such that R(B) = O2d.
Then, we have

Bn = unW0 + un−1W1 + · · · + un−r+1Wr−1, for every n ≥ 0, (4.5)

where
W0 = I2d , Wi = Bi − a0B

i−1 − · · · − ai−1I2d, (4.6)

and the sequence {un}n≥−r+1 is given by

un =
∑

k0+2k1+···+rkr−1=n

(k0 + k1 + · · · + kr−1)!

k0!k1! · · · kr−1!
ak0

0 ak1

1 · · ·akr−1

r−1 , (4.7)

for every n ≥ 0, with u0 = 1 and u−j = 0 for 1 ≤ j ≤ r − 1.

Starting with expression etA =
∑

n≥0
tn

n!B
n, a direct computation, using Expressions (4.5) and (4.7),

permits to have etB =

+∞
∑

n=0

tn

n!

r−1
∑

j=0

un−jWn−j =

r−1
∑

j=0

[

+∞
∑

n=0

un−j

tn

n!

]

Wj . Therefore, we obtain

etB =

r−1
∑

j=0

ϕj(t)Wj where ϕj(t) =

+∞
∑

n=0

un

tn+j

(n+ j)!
. (4.8)

Note that etB is an absolutely convergent series and its radius of convergence is R = +∞, then the

series ϕj(t) =
∑+∞

n=0 un
tn+j

(n+j)! are convergent, with the same radius of convergence. Moreover, for every

1 ≤ j ≤ r − 1, we can verify that
dϕj

dt
(t) = ϕj−1(t), and by induction we show that

dkϕj

dtk
(t) = ϕj−k(t)

for every k (0 ≤ k ≤ j). Hence, we have

dr−j−1ϕr−1

dtr−j−1
(t) = ϕr−1−(r−j−1)(t) = ϕj(t).

In summary, we can formulate the following lemma related to [4, Proposition 2.1].

Lemma 4.2. Let B the companion block matrix (3.3), where A0 6= Od and A1 6= Od. Let R(z) =
zr − a0z

r−1 − · · · − ar−2z − ar−1 be the polynomial such that R(B) = O2d. Then, we have etB =
r−1
∑

j=0

ϕ(r−j−1)(t)Wj , where

ϕ(t) =
+∞
∑

n=0

un

tn+r−1

(n+ r − 1)!
, (4.9)

with ϕ(k)(t) =
dkϕ

dtk
(t).

Expression (4.4) shows that ϕ(t) defined by (4.9) satisfies the following ordinary differential equation
y(r)(t) = a0y

(r−1)(t)+a1y
(r−2)(t)+ · · · +ar−1y(t). Moreover, Expression (4.9) shows that ϕ(k)(0) = 0 for

k = 0, 1, . . . , r− 2 and ϕ(r−1)(0) = 1. Hence, the function ϕ(t) is nothing else but the dynamical solution
of the preceding differential equation (see [25] [28]). And Expression (4.8) reveals that the functions ϕj

appearing in the Fibonacci-Hörner decomposition of etB are the elements of the fundamental system of
solutions {ϕ(t), ϕ′(t), . . . , ϕ(r−2)(t), ϕ(r−1)(t)} of the previous differential equation.

Lemmas 4.1 and 4.2 are very useful for solving Equation (1.2). To this aim, we express each element
of the Fibonacci-Hörner system {Wj}0≤j≤r−1 related to B the companion block matrix (3.3), in terms of
{Yn,s}n≥0 (0 ≤ s ≤ 1) of Cd×d, the two sequences (3.2). It was shown in Expression (3.4) of Proposition
3.1 that the powers of the matrix B can be expressed using the two sequences (3.2). Therefore, for Wj

(1 ≤ j ≤ r − 1) the matrices given by (4.2), we have the following lemma.
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Lemma 4.3. The Fibonacci-Hörner system H = {Wi}0≤i≤r−1 associated to (3.3), the matrix B is

described as follows W0 = I2d and Wi =

(

W
(i,1)
1,1 W

(i,0)
1,2

W
(i,1)
2,1 W

(i,0)
2,2

)

is such that W
(i,1)
1,1 = Yi+1,1 − a0Yi,1 −

· · · − ai−1Y1,1, W
(i,1)
1,2 = Yi+1,0 − a0Yi,0 − · · · − ai−1Y1,0,W

(i,1)
2,1 = Yi,1 − a0Yi−1,1 − · · · − ai−1Y0,1 and

W
(i,1)
2,2 = Yi,0 − a0Yi−1,0 − · · · − ai−1Y0,0, where the {Yn,s}n≥0 (0 ≤ s ≤ 1) are the matrix sequences (3.2).

Especially, for the matrix W0 =

(

W
(0,1)
1,1 W

(0,0)
1,2

W
(0,1)
2,1 W

(0,0)
2,2 ,

)

, we have W
(0,1)
1,1 = Y1,1 = Id, W

(0,1)
1,2 = Y1,0 = Od,

W
(0,1)
2,1 = Y0,1 = Od, W

(0,1)
2,2 = Y0,0 = Id, namely, W0 = I2d. Since the solution X(t) of Equation (1.2) is

derived from Z(t) = etBZ(0), where Z(t) = (X ′(t), X(t))T , then Expression (4.8) shows that

[

X ′(t)
X(t)

]

= ϕ0(t)

[

X ′(0)
X(0)

]

+

r−1
∑

i=1

ϕi(t)

(

Wi

[

X ′(0)
X(0)

])

.

On the other hand, for every 1 ≤ i ≤ r − 1, we have

WiZ(0) =

(

W
(i,1)
1,1 X ′(0) +W

(i,0)
1,2 X(0)

W
(i,1)
2,1 X ′(0) +W

(i,0)
2,2 X(0)

)

.

Therefore, we obtains

X(t) = ϕ0(t)X(0) +
r−1
∑

i=1

ϕi(t)
[

W
(i,1)
2,1 X ′(0) +W

(i,0)
2,2 X(0)

]

,

or equivalently

X(t) =

[

r−1
∑

i=0

ϕi(t)W
(i,1)
2,1

]

X ′(0) +

[

r−1
∑

i=0

ϕi(t)W
(i,0)
2,2

]

X(0),

where the W i,s
2,1, W i,s

2,2 (s = 0, 1) are described in Lemma 4.3. Taking into account Lemma 4.2, we arrive
at the following result which aim toward solving the generalized Apostol-Kolodner equation using a linear
process and dynamical solution.

Theorem 4.4. Let consider Equation (1.2), where A0 6= Od, A1 6= Od and B its related companion block
matrix (3.3). Let R(z) = zr − a0z

r−1 − · · · − ar−2z − ar−1, be the polynomial such that R(B) = O2d.
Then, the solution of Equation (1.2) is given by

X(t) =

[

r−1
∑

i=0

ϕi(t)W
(i,1)
2,1

]

X ′(0) +

[

r−1
∑

i=0

ϕi(t)W
(i,0)
2,2

]

X(0),

where the W
(i,k)
n,s are the matrices given in Lemma 4.3 and the ϕj(t) =

+∞
∑

n=0

un

tn+j

(n+ j)!
. Moreover, we

have

X(t) =

[

r−1
∑

i=0

ϕ(r−i−1)(t)W
(i,1)
2,1

]

X ′(0) +

[

r−1
∑

i=0

ϕ(r−i−1)(t)W
(i,0)
2,2

]

X(0),

where ϕ(t) the dynamical solution is as in (4.9) with ϕ(k)(t) =
dkϕ

dtk
(t).
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4.2. Study of a particular case of Equation (1.2)

Let illustrate the process of the previous subsection and Theorem 4.4 by studying the following
particular case. Consider Equation (1.2), namely, X ′′(t) = A0X

′(t) + A1X(t), where A0 and A1 are in
C2×2 and the solution X ∈ C

∞(R,C2×2) is subjected to the initial data X(0) and X ′(0). Set Z(t) =

(X
′

(t), X(t))T (t ∈ R) and Z(0) = (X
′

(0), X(0))T . Let B be the matrix (3.3), namely, B =

(

A0 A1

I2 O2

)

.

Suppose that the characteristic polynomial of B is given by P (z) = z4 − a0z
3 − a1z

2 − a2z− a3, then
the matrices in Lemma 4.3 of the Fibonacci-Hörner system Wi (0 ≤ i ≤ 3), are as follows W0 = I4, W1 =
B − a0I4, W2 = B2 − a0B − a1I4, W3 = B3 − a0B

2 − a1B − a2I4. A direct computation shows that

W0 =

(

I2 O2

O2 I2

)

, W1 =

(

A0 − a0I2 A1

I2 −a0I2

)

, W2 =

(

A2
0 +A1 − a0A0 − a1I2 A0A1 − a0A1

A0 − a0I2 A0A1 − a1I2

)

and

W3 =

(

A3
0 +A0A1 +A1A0 − a0A1 − a1A0 − a2I2 A2

0A1 +A2
1 − a0A0A1 − a1A1

A2
0 +A1 − a0A0 − a1I2 A0A1 − a0A1 − a2I2

)

.

Therefore, the matrices W i,s
2,1, W i,s

2,2 (s = 0, 1) given by in Lemma 4.3 are presented under the form











W
(0,1)
2,1 = Od, W

(0,0)
2,2 = Id, W

(1,1)
2,1 = Id, W

(1,0)
2,2 = −a0I2,

W
(2,1)
2,1 = A0 − a0Id, W

(2,0)
2,2 = A0A1 − a1I2,

W
(3,1)
2,1 = A2

0 +A1 − a0A0 − a1I2, W
(3,0)
2,2 = A0A1 − a0A1 − a2I2.

(4.10)

Now the associated dynamical solution (4.9) is given by

ϕ(t) =

+∞
∑

n=0

un

tn+3

(n+ 3)!
, (4.11)

where {un}n≥−2 is defined by

un =
∑

k0+2k1+···+4k3=n

(k0 + k1 + k2 + k3)!

k0!k1!k2!k3!
ak0

0 a
k1

1 ak2

2 ak3

3 ,

for every n ≥ 0, with u0 = 1 and u−j = 0 for 1 ≤ j ≤ 2. Therefore, the solution of the previous
generalized Apostol-Kolodner equation is formulated as follows.

Proposition 4.5. Consider Equation (1.2), namely, X ′′(t) = A0X
′(t) + A1X(t) whose solution X ∈

C
∞(R, C2×2) is subjected to the prescribed initial data X(0) and X

′

(0). Let P (z) = z4 − a0z
3 − a1z

2 −
a2z − a3 be the characteristic polynomial of B the associated companion block matrix (3.3). Then, the
solution of Equation (1.2) is given by

X(t) =

[

3
∑

i=0

ϕi(t)W
(i,1)
2,1

]

X ′(0) +

[

3
∑

i=0

ϕi(t)W
(i,0)
2,2

]

X(0),

where the matrices W
(i,s)
2,j are given by (4.10) and ϕj(t) =

+∞
∑

n=0

un

tn+j

(n+ j)!
, j = 0, 1, 2, 3. Moreover, we

have

X(t) =

[

3
∑

i=0

ϕ(3−i)(t)W
(i,1)
2,1

]

X ′(0) +

[

3
∑

i=0

ϕ(3−i)(t)W
(i,0)
2,2

]

X(0),

where ϕ(t) is the dynamical solution given as in (4.11), with ϕ(k)(t) =
dkϕ

dtk
(t).

For more clarity, we consider the following illustrative numerical example.
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Example 4.6. Consider Equation (1.2), namely, X ′′(t) = A0X
′(t) + A1X(t), whose solution X ∈

C
∞(R, C2×2) is subjected to the prescribed initial data X(0) and X

′

(0). Set Z(t) = (X
′

(t), X(t))T

(t ∈ R) and Z(0) = (X
′

(0), X(0))T . Suppose that the characteristic polynomial of B =

(

A0 A1

I2 O2

)

is

P (z) = det(B − zI4) = z4 − 2z3 − 3z2 + 4z + 1. Since a0 = −2, a1 = −3, a2 = 4 and a3 = 1, we derive
that the matrices Wi (0 ≤ i ≤ 3) of the Fibonacci-Hörner system, are given by











W0 = I4, W1 = B − a0I4 = B + 2I4,

W2 = B2 − a0B − a1I4 = B2 + 2B + 3I4,

W3 = B3 − a0B
2 − a1B − a2I4 = B3 + 2B2 + 3B − 4I4.

(4.12)

Then, using Expression (4.12), we can establish that the matrices W
(i,s)
2,j are











W
(0,1)
2,1 = O4, W

(0,1)
2,2 = I4, W

(1,1)
2,1 = I4, W

(1,0)
2,2 = 2I4,

W
(2,1)
2,1 = A1 + 2I4, W

(2,0)
2,2 = A0A1 + 2I4,

W
(3,1)
2,1 = A2

0 + 2A0 +A1 + 3I4, W
(3,0)
2,2 = A0A1 + 2A1 − 4I4.

(4.13)

The associated dynamical solution is given by

ϕ(t) =

+∞
∑

n=0

un

tn+3

(n+ 3)!
, (4.14)

where {un}n≥−2 is defined by

un =
∑

k0+2k1+···+4k3=n

(k0 + k1 + k2 + k3)!

k0!k1!k2!k3!
(−2)k0 (−3)k14k2 1k3 ,

for every n ≥ 0, with u0 = 1 and u−j = 0 for 1 ≤ j ≤ 2. Therefore, the solution of the preceding
generalized matrix differential equation of Apostol-Kolodner is

X(t) =

[

3
∑

i=0

ϕ(3−i)(t)W
(i,1)
2,1

]

X ′(0) +

[

3
∑

i=0

ϕ(3−i)(t)W
(i,0)
2,2

]

X(0),

where ϕ(t) is the dynamical solution (4.14) and the matrices W
(i,s)
2,j are as in (4.13).

Theorem 4.4 shows that the solution of the generalized Apostol-Kolodner equation are obtained in
terms of the linear process (3.1), (3.2) and the dynamical solution (4.9), related to matrix exponential
etB. Moreover, the two matrices A0 6= Od and A1 6= Od do not necessarily commute.
When A0A1 = A1A0, Expression (3.7) shows that Yn,0 = A1ρ(n, 2) and Yn,1 = A0ρ(n, 2) +A1ρ(n− 1, 2)
for n ≥ 2, where ρ(n, 2) is given by (3.6). Hence, we derive that Wi,s the matrices in Lemma 4.3 take
the following form

Wi,0 = A1ρ(i, 2) −A1

i−1
∑

j=0

aiρ(i − j − 1, 2), (4.15)

Wi,1 = A0ρ(i, 2) +A1ρ(i, 2) −
i−1
∑

j=0

ai [A0ρ(i− j − 1, 2) −A1ρ(i− j − 2, 2)] , (4.16)

where ρ(i, 2) = 0, for i ≤ 1. Expressions (4.15) and (4.16) allow us to obtain the following corollary of
Theorem 4.4.

Corollary 4.7. Suppose the data of Theorem 4.4. Then, if the commutativity conditions A0A1 = A1A0

is verified, we have

X(t) =

[

r−1
∑

i=0

ϕ(r−1−i)(t)Wi,1

]

X ′(0) +

[

ϕ0(t)Id +

r−1
∑

i=1

ϕ(r−1−i)(t)Wi,0

]

X(0),

where the Wi,s are the matrices given by (4.15) and (4.16), and ϕ the dynamical solution is as in (4.9).
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5. Fibonacci-Hörner method and analytical approach for solving Equation (1.2): Study of

the simple case

In this section, we are concerned with the analytical approach of Equations (1.1) and (1.2) based on
the Fibonacci-Hörner method.

5.1. Study of the simple case

It is known in the literature that the sequence {un}n≥−r+1 satisfies the linear recurrence relation (4.4)
of order r (see, for instance, [4,20,26]), namely, un+1 = a0un +a1un−1 + · · ·+ar−1un−r+1 for every n ≥ 0,
with initial data u0 = 1 and u−j = 0 for 1 ≤ j ≤ r − 1. Moreover, sequence (4.4) owns an analytical
expression in terms of the roots of the (characteristic) polynomial R(z) = zr −a0z

r−1 −· · ·−ar−2z−ar−1

and the initial data. More precisely, we have

un =

s
∑

k=1





mk−1
∑

j=0

βkjn
j



λn
k , (5.1)

for every n ≥ −r + 1, where the λk (1 ≤ k ≤ s) are the roots of the polynomial R(z) of multiplicities
mk (1 ≤ k ≤ s), respectively. The scalars βkj (1 ≤ k ≤ s, 0 ≤ j ≤ mk − 1) are obtained by solving
a generalized Vandermonde linear system of equations (see, for example, [6,11,26]). Especially, when
the roots of the polynomial R(z) are simple, then, the analytic Expression (5.1) takes the simple form

un =

r
∑

k=1

βkλ
n
k , where the scalars βk (1 ≤ k ≤ r) are determined by solving an usual Vandermonde

system. It was established in [5,6] that the scalars βk (1 ≤ k ≤ r) are obtained from the following useful
lemma.

Lemma 5.1 ( [5,6]). Suppose that the roots λ1, . . . , λr of R(z) = zr − a1z
r−1 − · · · − ar−2z− ar (ar 6= 0)

satisfy λi 6= λj for i 6= j. Then, we have

un =
r
∑

i=1

λn−1
i

R′ (λi)
=

r
∑

i=1

λn−1
i

∏

k 6=i

(λi − λk)
for every n ≥ 1, (5.2)

otherwise u0 = 1 , u−j = 0 for 1 ≤ j ≤ r − 1, where R′(z) = dR
dz

(z).

The dynamical solution (4.8), namely, ϕ(t) =
+∞
∑

n=0

un

tn+r−1

(n+ r − 1)!
is expressed in terms of the coeffi-

cients of the recursive sequence {un}n≥−r+1 defined by (4.7). Therefore, using Expression (5.2) of Lemma
5.1, we can express the dynamical solution in terms of the simple roots λ1,· · · , λr of the polynomial R(z).
That is, we have

ϕ(t) =

+∞
∑

n=0

un

tn+r−1

(n+ r − 1)!
=

+∞
∑

n=0

[

r
∑

i=1

λn−1
i

R′ (λi)

]

tn+r−1

(n+ r − 1)!
.

Therefore, we obtain ϕ(t) = −
r−2
∑

n=0

[

r
∑

i=1

λn
i

λr
iR

′ (λi)

]

tn

n!
+

r
∑

i=1

1

λr
iR

′ (λi)
eλit. In summary, we have estab-

lished the following theorem whose goal is to solve the generalized Apostol-Kolodner equation using
analytic process and dynamical solution.

Theorem 5.2. Let consider Equation (1.2), where A0 6= Od, A1 6= Od and B the associated companion
block matrix (3.3). Let R(z) = zr − a0z

r−1 − · · · − ar−2z− ar−1 be the polynomial such that R(B) = O2d.
Then, the solution is given by

X(t) =

[

r−1
∑

i=0

ϕ(r−1−i)(t)W2,1

]

X ′(0) +

[

ϕ0(t)Id +

r−1
∑

i=1

ϕ(r−1−i)(t)W2,2

]

X(0),
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where the Wn,s (1 ≤ n, s ≤ 2) are the matrices in Lemma 4.3 and ϕ is the dynamical solution ϕ(t) =

−Hr(t) +

r
∑

i=1

1

λr
iR

′ (λi)
eλit such that Hr(t) is the polynomial Hr(t) =

r−2
∑

n=0

[

r
∑

i=1

λn
i

λr
iR

′ (λi)

]

tn

n!
.

Note that the expression ϕ0(t) =
∑+∞

n=0 un

tn

n!
can be obtained by a straightforward computation,

using the formula (5.2), as follows ϕ0(t) =

r
∑

i=1

1

λiR′ (λi)
eλit. The preceding formula can be also deduced

from (4.9), utilizing from the fact that ϕ0(t) = ϕ(r−1)(t).

Let illustrate the preceding result of Theorem 5.2 by the following numerical example.

Example 5.3. Consider the Equation (1.2), studied in Example 4.6, namely, X ′′(t) = A0X
′(t)+A1X(t),

whose solution X ∈ C
∞(R, C2×2) is subjected to the prescribed initial data X(0) and X

′

(0). Set Z(t) =
(X

′

(t), X(t))T (t ∈ R) and Z(0) = (X
′

(0), X(0))T . Suppose that the characteristic polynomial of B =
(

A0 A1

I2 O2

)

is P (z) = z4 − 2z3 − 3z2 + 4z + 1. Hence, we have a0 = −2, a1 = −3, a2 = 4 and a3 = 1. It

was established by a straightforward computation, using Expression (4.12), the entries W
(i,s)
2,j (s = 0 or 1

and 0 ≤ i ≤ 3) of the Wi, are given by (4.13), namely,











W
(0,1)
2,1 = Od, W

(0,1)
2,2 = Id, W

(1,1)
2,1 = Id, W

(1,0)
2,2 = 2Id,

W
(2,1)
2,1 = A1 + 2Id, W

(2,0)
2,2 = A0A1 + 2Id,

W
(3,1)
2,1 = A2

0 + 2A0 +A1 + 3Id, W
(3,0)
2,2 = A0A1 + 2A1 − 4Id.

On the other hand, using any numerical computing software we can show that the roots of the polyno-

mial P (z) are simple, and thus we have P (z) =

4
∏

i=1

(z −λi), where λ1 ≈ −1.49550, λ2 ≈ −0.21968, λ3 ≈

1.21968, λ4 ≈ 2.49550. The associated dynamical solution is given by

ϕ(t) = −H4(t) +
4
∑

i=1

1

λ4
iP

′(λi)
eλi , (5.3)

where H4(t) =

4
∑

i=1

1

λr
iP

′ (λi)
+

[

4
∑

i=1

λi

λr
iP

′ (λi)

]

t

1!
+

[

4
∑

i=1

λ2
i

λr
iP

′ (λi)

]

t2

2!
. Therefore, the solution of the

preceding generalized matrix differential equation of Apostol-Kolodner is,

X(t) =

[

3
∑

i=0

ϕ(3−i)(t)W
(i,1)
2,1

]

X ′(0) +

[

3
∑

i=0

ϕ(3−i)(t)W
(i,0)
2,2

]

X(0),

where ϕ(t) is the dynamical solution (5.3) and the the matrices W
(i,s)
2,j (s = 0 or 1 and 0 ≤ i ≤ 3) are as

in (4.13).

5.2. Study of the general setting

Let consider the dynamical solution as in (4.9), namely, ϕ(t) =

+∞
∑

n=0

un

tn+r−1

(n+ r − 1)!
, where the sequence

{un}n≥−r+1 satisfies the linear recursive equation (4.4), with initial data u0 = 1 and u−j = 0 for
1 ≤ j ≤ r − 1. In the general setting, the analytical expression of the sequence {un}n≥−r+1 is expressed

as follows, un =

s
∑

k=1





mk−1
∑

j=0

β
(j)
k nj



 λn
k , for every n ≥ −r+1, where the λk (1 ≤ k ≤ s) are the roots of the

polynomial R(z) = zr − a0z
r−1 − · · · − ar−2z − ar−1, of multiplicities mk (1 ≤ k ≤ s), respectively. The
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scalars βkj (1 ≤ k ≤ s, 0 ≤ j ≤ mk −1) are computed by solving a generalized Vandermonde linear system
of equations (see, for example, [6,11,26]). For every n ≥ 0, we set un =

∑s
k=1 Qk(n)λn

k , where Qk(n) =
∑mk−1

j=0 βkjn
j . Now, we substitute the former analytic expression of un in Expression (4.9) of the dynamic

solution. Then, we have

ϕ(t) =

+∞
∑

n=0

un

tn+r−1

(n+ r − 1)!
=

s
∑

k=1

+∞
∑

n=0

Qk(n)λn
k

tn+r−1

(n+ r − 1)!
.

Hence, the former function ϕ(t) can be written under the form ϕ(t) =

s
∑

k=1

ψk(t), where

ψk(t) =

+∞
∑

n=0

mk−1
∑

j=0

β
(j)
k nj tn+r−1

(n+ r − 1)!
λn

k .

Then, we have

ψk(t) =

mk−1
∑

j=0

β
(j)
k

λr−1
k

+∞
∑

n=r−1

j
∑

p=0

(−1)j−p

(

j

p

)

np(r − 1)j−p t
n

n!
λn

k .

Let consider the derivation D = t
d

dt
, then the function ψk(t) takes the form

ψk(t) =

mk−1
∑

j=0

j
∑

p=0

(−1)j−p

(

j

p

)

(r − 1)j−p β
(j)
k

λr+p−1
k

Dp

[

+∞
∑

n=r−1

(λkt)
n

n!

]

.

From the identity

j
∑

h=0

p
∑

i=0

zk,i =

p
∑

i=0

j
∑

h=i

zh,i, we derive that

ψk(t) =





mk−1
∑

p=0

1

λr+p−1
k





mk−1
∑

j=p

(−1)j−p

(

j

p

)

(r − 1)j−pβ
(j)
k



Dp



Ωk(t),

where Ωk(t) =

+∞
∑

n=r−1

(λkt)
n

n!
. Therefore, the dynamical solution can be written under the form ϕ(t) =

s
∑

k=1

Γk(D)Ωk(t), where Γk(D) is the differential operator given by

Γk(D) =

mk−1
∑

p=0

1

λr+p−1
k





mk−1
∑

j=p

(−1)j−p

(

j

p

)

(r − 1)j−pβ
(j)
k



Dp. (5.4)

Now, we can formulate the analytic solution of Equation (1.2) when the minimal polynomial of the matrix
B owns some roots of multiplicities mk ≥ 2.

Theorem 5.4. Let consider Equation (1.2), where A0 6= Od and A1 6= Od and B its related companion
block matrix (3.3). Let R(z) = zr − a0z

r−1 − · · · − ar−2z − ar−1 =
∏s

k=1(z − λk)mk , with mk ≥ 1, be the
polynomial such that P (B) = O2d. Then, the solution of Equation (1.2) is given by

X(t) =

[

r−1
∑

i=0

ϕ(r−i−1)(t)W
(i,1)
2,1

]

X ′(0) +

[

r−1
∑

i=0

ϕ(r−i−1)(t)W
(i,0)
2,2

]

X(0),

where W2,s (1 ≤ s ≤ 2) are the matrices described in Lemma 4.3 and ϕ(t) the dynamical solution is

ϕ(t) =
∑s

k=1 Γk(D)Ωk(t), with Ωk(t) =

+∞
∑

n=r−1

(λkt)
n

n!
, D = t

d

dt
and Γk(D) is the differential operator

given by Expression (5.4).
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Let Ek(x) = 1 +
1

1!
x +

1

2!
x2 + . . . +

1

k!
xk be the exponential polynomial of degree k. For r ≥ 3, we

show that the function Ωk(t) =
+∞
∑

n=r−1

(λkt)
n

n!
can takes the form

Ωk(t) =

+∞
∑

n=r−1

(λkt)
n

n!
= −Er−2(λkt) +

+∞
∑

n=0

(λkt)
n

n!
= −Er−2(λkt) + eλkt.

Therefore, the dynamical solution can be written under the form

ϕ(t) =
s
∑

k=1

Γk(D)Ωk(t) = −
s
∑

k=1

Γk(D)Er−2(λkt) +
s
∑

k=1

Γk(D)eλkt,

where D = t
d

dt
and Γk(D) is the differential operator given by Expression (5.4).

Corollary 5.5. Consider the Equation (1.2), where A0 6= Od, A1 6= Od and B its related companion
block matrix (3.3). Let R(z) = zr − a0z

r−1 − · · · − ar−2z − ar−1 =
∏s

k=1(z − λk)mk , with mk ≥ 1, be the
polynomial such that R(B) = O2d. Then, the solution of Equation (1.2) is given by

X(t) =

[

r−1
∑

i=0

ϕ(r−i−1)(t)W
(i,1)
2,1

]

X ′(0) +

[

r−1
∑

i=0

ϕ(r−i−1)(t)W
(i,0)
2,2

]

X(0),

where W i,j
2,s (s = 1, 2, j = 0, 1) are the matrices in Lemma 4.3 and ϕ(t) is the dynamical solution given

by

ϕ(t) = −
s
∑

k=1

Γk(D)Er−2(λkt) +

s
∑

k=1

Γk(D)eλkt,

with D = t
d

dt
and Γk(D) is the differential operator given by Expression (5.4), namely,

Γk(D) =

mk−1
∑

p=0

1

λr+p−1
k





mk−1
∑

j=p

(−1)j−p

(

j

p

)

(r − 1)j−pβ
(j)
k



Dp.

We illustrate Theorem 5.4 and Corollary 5.5 with the following numerical example.

Example 5.6. Consider the Equation (1.2), where A0 6= Od, A1 6= Od and B its related companion block
matrix (3.3). Let R(z) = zr−a0z

r−1−· · ·−ar−2z−ar−1 be the polynomial such that R(B) = O2d. Suppose

that R(z) = (z−λ1)2
r−1
∏

k=2

(z −λk), where λ1 6= λk, for 2 ≤ k ≤ r− 1, and λk 6= λj, for 2 ≤ j 6= k ≤ r− 1.

Thus, the analytic expression of {un}n≥−r+1 is a recursive sequence (4.7), can be written under the form,

un = Q1(n)λn
1 +

r−1
∑

k=2

βkλ
n
k , for every n ≥ 0, where Q1(n) = α1 + α2n. Therefore, the dynamical solution

can be written under the form ϕ(t) = ∆1(t) +

r−1
∑

k=2

Ωk(t), such that ∆1(t) = Γ1(D)Ω1(t) with D = t
d

dt
,

Γ1(D) = α1 +
α2

λ1
D and Ωk(t) =

+∞
∑

n=r−1

(λkt)
n

n!
= −Er−2(λkt) +

+∞
∑

n=0

(λkt)
n

n!
= −Er−2(λkt) + eλkt, where

Er−2(z) is the exponential polynomial of degree r − 2. On the other side, we have

∆1(t) = Γ1(D)Ω1(t) =

+∞
∑

n=0

Q1(n)
tn+r−1

(n+ r − 1)!
λn

1 =

+∞
∑

n=r−1

Q1(n− r + 1)

λr−1
1

(λ1t)
n

n!
.
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Since Q1(n) = α1 + α2n, we derive that

∆1(t) =

+∞
∑

n=r−1

α1 + α2(n− r + 1)

λr−1
1

(λ1t)
n

n!
= C1

[

eλ1t − Er−2(λ1t)
]

+
C2

λ1
D
[

eλ1t − Er−2(λ1t)
]

,

and a direct computation shows that

∆1(t) = Γ1(D)Ω1(t) = (C1 + C2t)e
λ1t − (C1 +

C2

λ1
D)Er−2(λ1t).

Therefore, the associated dynamical solution is given by

ϕ(t) = ∆1(t) +

r−1
∑

k=2

βke
λkt −

r−1
∑

k=2

βkEr−2(λkt), (5.5)

with

∆1(t) = (C1 + C2t)e
λ1t − (C1 +

C2

λ1
D)Er−2(λ1t). (5.6)

A direct calculation shows that ∆1(t) = (C1 + C2t)
[

eλ1t − Er−3(λ1t)
]

− C1
(λ1t)

r−2

(r − 2)!
. Therefore, the

solution of Equation (1.2) is

X(t) =

[

r−1
∑

i=0

ϕ(r−i−1)(t)W
(i,1)
2,1

]

X ′(0) +

[

r−1
∑

i=0

ϕ(r−i−1)(t)W
(i,0)
2,2

]

X(0),

where W i,j
2,s (s = 1, 2, j = 0, 1) are the matrices described in Lemma 4.3 and ϕ(t) is the dynamical solution

given by (5.5) and (5.6).

5.3. Linear and analytic approach of Equation (1.1)

This subsection is devoted to the study of the linear and analytic approaches for Equation (1.1). It was
established in Proposition 2.1 that the unique solution is specified by X(t) = C1(t)X(0)+C2(t)X ′(0), for
every t ∈]−∞,+∞[, submitted to the initial data X(0) and X ′(0), where C1(t) and C2(t) are as in (2.1),

namely, C1(t) =
∑+∞

n=0

t2n

(2n)!
An and C2(t) =

∑+∞
n=0

t2n+1

(2n+ 1)!
An. Let R(z) = zr − b0z

r−1 − · · · − br−1 be

a polynomial such that R(A) = Od. Then, the Fibonacci-Hörner decomposition for the powers An of the
matrix A, is determined by Expressions (4.1) and (4.3), namely,

An = vnU0 + vn−1U1 + · · · + vn−r+1Ur−1, for every n ≥ 0, (5.7)

where U0 = Ir; Ui = Ai − b0A
i−1 − · · · − bi−1Ir, for i = 1, . . . , r − 1, and the sequence {vn}n≥−r+1

is defined by vn =
∑

k0+2k1+···+rkr−1=n

(k0 + k1 + · · · + kr−1)!

k0!k1! · · ·kr−1!
bk0

0 b
k1

1 · · · bkr−1

r−1 , for every n ≥ −r + 1, with

initial values v0 = 1 and v−j = 0 for 1 ≤ j ≤ r − 1 (for more details, see [4,7,20,21]). Moreover,
it was established in [4,20,26] that the sequence {vn}n≥−r+1 satisfies the following recursive relation
vn+1 = b0vn + b1vn−1 + · · · + br−1vn−r+1, for every n ≥ 0. Using Expression (5.7), we show that C1(t) =
r−1
∑

k=0

[

+∞
∑

n=0

t2n

(2n)!
vn−k

]

Uk and C2(t) =

r−1
∑

k=0

[

+∞
∑

n=0

t2n+1

(2n+ 1)!
vn−k

]

Uk. For every k (0 ≤ k ≤ r − 1), we have

ψk(t) =

+∞
∑

n=0

t2n

(2n)!
vn−k =

+∞
∑

n=0

t2(n+k)

(2(n+ k))!
vn, φk(t) =

+∞
∑

n=0

t2n+1

(2n+ 1)!
vn−k =

+∞
∑

n=0

t2(n+k)+1

(2(n+ k) + 1)!
vn.

If we consider

ψr−1(t) =

+∞
∑

n=0

t2(n+r−1)

(2(n+ r − 1))!
vn and φr−1(t) =

+∞
∑

n=0

t2(n+r−1)+1

(2(n+ r − 1) + 1)!
vn, (5.8)
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then, a direct computation permits us to show that for every k (0 ≤ k ≤ r− 1), we have ψk(t) = ψ
(2k)
r−1(t)

and φk(t) = φ
(2k)
r−1(t), with ψ(k)(t) =

dkψ

dtk
(t) and φ(k)(t) =

dkφ

dtk
(t). Therefore, we get the following

analogous result of Theorem 4.4.

Theorem 5.7. Let consider the Equation (1.1), where the solution is submitted to initial data X(0) and
X ′(0). Let R(z) = zr − a0z

r−1 − · · · − ar−2z − ar−1, be the polynomial such that R(A) = Od. Then, its
unique solution is given by,

X(t) =

[

r−1
∑

k=0

ψk(t)Uk

]

X(0) +

[

r−1
∑

k=0

φk(t)Uk

]

X ′(0), (5.9)

where U0 = Ir; Ui = Ai − b0A
i−1 − · · · − bi−1Ir, for i = 1, . . . , r − 1, ψk(t) =

+∞
∑

n=0

t2(n+k)

(2(n+ k))!
vn and

φk(t) =

+∞
∑

n=0

t2(n+k)+1

(2(n+ k) + 1)!
vn. Moreover, we have

X(t) =

[

r−1
∑

k=0

ψ
(2k)
r−1(t)Uk

]

X(0) +

[

r−1
∑

k=0

φ
(2k)
r−1(t)Uk

]

X ′(0), (5.10)

where ψr−1(t) and φr−1(t) are given as in (5.8), with ψ(k)(t) =
dkψ

dtk
(t) and φ(k)(t) =

dkφ

dtk
(t).

We can observe that Theorem 5.7 is analogous to Theorem 4.4. Indeed, Expression (5.9) represents the
Fibonacci-Hörner decomposition of the unique solution of Equation (1.1), and Expression (5.10) shows
that the functions ψr−1(t) and φr−1(t) represent the related dynamical solutions.

The two fundamental functions ψr−1(t) and φr−1(t) considered in (5.8), are expressed in terms of the
sequence {vn}n≥−r+1 exhibited in the Fibonacci-Hörner decomposition (5.7). Since {vn}n≥−r+1 satisfies
the recursive Equation (4.4) of order r, namely, vn+1 = a0vn + a1vn−1 + · · · + ar−1vn−r+1, for every
n ≥ 0, with initial data v0 = 1 and v−j = 0 for 1 ≤ j ≤ r − 1, hence this sequence owns an analytical
form, with the aid of the roots of the polynomial R(z) = zr − a0z

r−1 − · · · − ar−2z− ar−1 and the initial
data (see, for example, [6,11,26]).

For the sake of simplicity and length of the text, we assume that the roots λk (1 ≤ k ≤ s) of the
polynomial R(z) = zr −a0z

r−1−· · ·−ar−2z−ar−1 are simple. In this special case, the analytic expression

of the sequence {vn}n≥−r+1, is as follows vn =

r−1
∑

k=1

βkλ
n
k , where the scalars βk (1 ≤ k ≤ s) are obtained

by solving a Vandermonde linear system of equations (see, for example, [6,11,26]). Here the scalars βk

(1 ≤ k ≤ r) are obtained from the Lemma 5.1, and we have

vn =
r
∑

i=1

λn−1
i

R′ (λi)
=

r
∑

i=1

λn−1
i

∏

k 6=i

(λi − λk)
for every n ≥ 1,

otherwise u0 = 1 , u−j = 0 for 1 ≤ j ≤ r − 1, where P ′(z) = dR
dz

(z). Therefore, the former functions

ψk(t) =
∑+∞

n=0

t2n

(2n)!
vn−k =

∑+∞
n=0

t2(n+k)

(2(n+ k))!
vn and φk(t) =

∑+∞
n=0

t2n+1

(2n+ 1)!
vn−k =

∑+∞
n=0

t2(n+k)+1

(2(n+ k) + 1)!
vn

take the following form

ψk(t) =

r
∑

j=1

1

λk+1
j R′(λj)

[

+∞
∑

n=0

t2n

(2n)!
λn

j

]

and φk(t) =

r
∑

j=1

1

λk+1
j R′(λj)

[

+∞
∑

n=0

t2n+1

(2(n+ 1))!
λn

j

]

.
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For every λj (1 ≤ j ≤ r), let µj (1 ≤ j ≤ r) be its principal square root. Then, we have

ψk(t) =
r
∑

j=1

1

λk+1
j R′(λj)

cosh(tµj) and φk(t) =
r
∑

j=1

1

λk+1
j R′(λj)

sinh(tµj).

In summary, we have the following result.

Theorem 5.8. Let consider Equation (1.1), where the solution is submitted to initial data X(0) and
X ′(0). Let R(z) = zr − a0z

r−1 − · · · − ar−2z − ar−1, be the polynomial such that R(A) = Od. Assume
that, R(z) owns simple roots λj (1 ≤ j ≤ r). Then, the unique solution of Equation (1.1), is as follows

X(t) =

[

r−1
∑

k=0

ψk(t)Uk

]

X(0) +

[

r−1
∑

k=0

φk(t)Uk

]

X ′(0),

where U0 = Ir, Ui = Ai − b0A
i−1 − · · · − bi−1Ir, for i = 1, . . . , r − 1 and ψk(t) and φk(t) are given.

Moreover, we have

ψk(t) =

r
∑

j=1

1

λk+1
j R′(λj)

[

+∞
∑

n=0

t2n

(2n)!
λn

j

]

, φk(t) =

r
∑

j=1

1

λk+1
j R′(λj)

[

+∞
∑

n=0

t2n+1

(2(n+ 1))!
λn

j

]

.

If µj (1 ≤ j ≤ r) are the principal square root of λj (1 ≤ j ≤ r), respectively, we get

X(t) =





r−1
∑

k=0





r
∑

j=1

1

λk+1
j R′(λj)

cosh(tµj)



Uk



X(0)+





r−1
∑

k=0





r
∑

j=1

1

λk+1
j R′(λj)

sinh(tµj)



Uk



X ′(0).

We can observe that, for Equation (1.1), Theorem 5.8 is analogous to Theorem 5.2. Moreover, the
principal square root of the matrix A considered in Proposition 2.2, is analogous to the principal square
root of the simple eigenvalues λj (1 ≤ j ≤ r) of A.

6. Equation (1.2): another approach for the commutative case

When the commutativity condition, A0A1 = A1A0, is fulfilled, it was established in Proposition 3.4
that Equation (1.2) owns a unique solution X(t), with the prescribed initial data X ′(0) and X(0) given
by

X(t) = [Id +A1g0(t)]X(0) + [Idt+A0g0(t) +A1g1(t)]X ′(0),

where g0(t) and g1(t), are the exponential generating matrix functions of {ρ(n, 2)}n≥0 and {ρ(n−1, 2)}n≥0

(respectively), with ρ(n, 2) is as (3.6). And we can verify that
dg1

dt
(t) = g0(t) or equivalently g1(t) =

∫ t

0

g0(x)dx.

Suppose that P1(A0) = P2(A1) = Od, for some polynomials P1(z) and P2(z). For clarity, we consider
P1(z) = det(A0 − zId) and P2(z) = det(A1 − zId) are the characteristic polynomial of A0 and A1, respec-
tively. For reason of simplicity, we suppose that the eigenvalues {λ1, . . . , λd} (respectively {µ1, . . . , µd})
of A0 (respectively A1) are simple. Because of the commutativity condition A0A1 = A1A0, there exists
an invertible matrix P ∈ Cd×d such that

P−1A0P = diag(λ1, . . . , λd) and P−1A1P = diag(µ1, . . . , µd).

Therefore, we have An
0 = Pdiag(λn

1 , . . . , λ
n
d )P−1 and An

1 = Pdiag(µn
1 , . . . , µ

n
d )S−1. Hence, we acquire

ρ(n, 2) = Pdiag(ρ(n, 2)[λ1, µ1], . . . , ρ(n, 2)[λj , µj ], . . . , ρ(n, 2)[λd, µd])P−1,
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where un,j = ρ(n, 2)[λj , µj ] =
∑

k0+2k1=n−2

(k0 + k1)!

k0!k1!
λk0

j µk1

j . Hence, for each fixed j (1 ≤ j ≤ d), the

sequence {un,j}n≥1 is a recursive sequence of order 2 of type (4.4), whose coefficients are a0,j = λj ,
a1,j = µj , and initial values u1,j = 0, u2,j = 1, namely, un+1,j = λjun,j +µjun−1,j = a0,jun,j +a1,jun−1,j

for every n ≥ 2. Suppose that λ2
j + 4µj 6= 0, then, we have un,j = α1,jz

n
1,j + α2,jz

n
2,j , for every

n ≥ 0, with z1,j =
λj+

√
λ2

j
+4µj

2 , z2,j =
λj−

√
λ2

j
+4µj

2 , where the scalar α1,j , α2,j are obtained by solving
the Vandermonde linear system α1,jz

n
1,j + α2,jz

n
2,j = un,j , for n = 1, 2. Therefore, we have g0(t) =

+∞
∑

n=0

ρ(n, 2)
tn

n!
= Pdiag(Λ1(t), . . . ,Λj(t), . . . ,Λd(t))P−1, where Λj(t) =

+∞
∑

n=0

un,j

tn

n!
. Using the analytic

expression of the recursive sequences {un,j}n≥1, we get

Λj(t) =

+∞
∑

n=0

[α1,jz
n
1,j + α2,jz

n
2,j]

tn

n!
= α1,je

z1,jt + α2,je
z2,jt.

In summary, we get the following result.

Proposition 6.1. Let consider Equation (1.2), where A0, A1 ∈ Cd×d satisfy the commutativity condition
A0A1 = A1A0. Suppose that the eigenvalues {λ1, . . . , λd} (respectively {µ1, . . . , µd}) of A0 (respectively
A1) are simple, with λ2

j + 4µj 6= 0. Then, the unique solution X(t) of Equation (1.2), with the prescribed
initial data X(0) and X ′(0), is formulated as follows

X(t) = [Id +A1g0(t)]X(0) + [Idt+A0g0(t) +A1g1(t)]X ′(0),

where
g0(t) = Pdiag(Λ1(t), . . . ,Λj(t), . . . ,Λd(t))P−1

and
g1(t) = Pdiag(Φ1(t), . . . , Φj(t), . . . , Φd(t))P−1,

such that Λj(t) = α1,je
z1,jt + α2,je

z2,jt, with z1,j =
λj+

√
λ2

j
+4µj

2 , z2,j =
λj−

√
λ2

j
+4µj

2 , Φj(t) =
∫ t

0
Λj(x)dx

and P ∈ C
d×d is an invertible matrix satisfying

P−1A0P = diag(λ1, . . . , λd) and P−1A1P = diag(µ1, . . . , µd).

Proposition 6.1 can be extended to the case of multiple eigenvalues of the matrices A0 and A1.

7. Concluding Remarks

In this work, we studied the generalized Apostolo-Kolodner second-order matrix differential. We have
opted for a method based on the properties of recursive sequences in the algebra of square matrices, the
Fibonacci-Hörner decomposition of the powers of a matrix, and the fundamental solution of a differential
equation, describing the associated system fundamental of solutions. It seems to us that our approach
and results are not current in the literature on this topic.

Finally, it should be mentioned that the results of the previous sections seem to be also important
for the resolution of non-homogeneous second-order matrix differential equations of the type, X ′′(t) =
AX(t) +F (t), where A ∈ Cd×d and F (t) is a continuous function near t = t0. We can mainly get explicit
formulas of the solutions of this type of matrix differential equation. Some preliminary results have been
established on this subject.
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