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On the Existence and Uniqueness Results for Fuzzy Fractional Boundary Value Problem
Involving Caputo Fractional Derivative

AZ17Z EL GHAZOUANI, FOUAD IBRAHIM ABDOU AMIR, M’"THAMED ELOMARI and SAID MELLIANI

ABSTRACT: In this paper, we investigate the existence and uniqueness of solutions for fuzzy boundary value
problems involving fuzzy Caputo fractional derivatives of order g € (2,3). As a preliminary step, we construct
a generic structure of the solution associated with our proposed model by utilizing the Green’s function. We
establish the existence of a unique solution of the proposed model paired with the given initial conditions
by using Banach fixed point theorem. At last, as application, an illustrative example is given to show the
applicability of our theoritical results.
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1. Introduction

Fractional differential equations of non-integer order play an important role in describing physical
phenomena more accurately than classical differential equations of integer order. In fact, fractional
differential equations are real-order expansions of differential equations. One reason for the need for
fractional differential equations is the fact that many phenomena cannot be modeled as integer differential
equations. For this reason, in recent years, much attention has been paid to the consequences of the
existence of solutions to differential equations of fractional order. This kind of fractional differential
equation is applicable to many practical fields such as Physics of polymers, viscous materials, viscous
damping and seismic analysis. you can see [23,17,10,18]. On the other hand, when analyzing real-world
phenomena, uncertain factors must also be dealt with. Under these circumstances, Fuzzy set theory is one
of the best non-statistical or non-random approaches leading to the theoretical study of fuzzy differential
equations. Recently, the topic of existence and uniqueness of solutions of linear and nonlinear fuzzy
fractional differential equations has been studied more extensively and discussed by many researchers
in various aspects. For example, in [4], Arshad proved the existence and uniqueness of the solution
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to Riemann-Liouville fuzzy fractional differential equation, and in [21] the existence and uniqueness
of solutions, as well as approximate solutions of fractional fuzzy differential equations under Liouville-
Caputo H differentiability, have been demonstrated by Salahshour and et al. Furthermore, the existence
and uniqueness of solutions to fuzzy fractional differential equations under generalized Liouville-Caputo
Hukuhara differentiability have been demonstrated by Allahviranloo et al. in [1]. In [8] Minhao Chen et
al corrected the errors of [15] and presented the necessary conditions to demonstrate the existence and
uniqueness of such problems.

Motivated by the above work and its approach, this article deals with the existence and uniqueness
of solutions to the nonlinear fuzzy fractional differential equation of order ¢ € (2, 3) with fuzzy boundary
conditions :

Dix(t) = f (t,z(t)), 0<t<a 11
2(a)=0€ E',z(a) = A€ E', z(b)=BeE' 0<b<a (1.1)

Where f: [0,a] x E — E' is a continuous map.
The main tools used are based on the Green function, Ascoli lemma and Banach fixed point theorem.
This article is organized as follows: After this introduction, we have presented some concepts related
to fuzzy metric spaces. Fuzzy derivatives and integrals take place in part 3. In part 4, we’ll learn about
fuzzy fractional derivatives. The main results were then discussed in Section 5. We conclude our work
with an example.

2. Preliminaries

In this section, we present some definitions and introduce essential symbols that will be used through-
out the article.

2.1. The metric space E'
Definition 2.1. Consider E' as a function space defined as :
E'={v:R—=0,1], v satisfies (1 —4) below }
1. v is normal, i.e. there is a xg € R such that v (zg) = 1;
2. v is a fuzzy conver set;
3. v is upper semi-continuous;
4. The closure of {x € R, wv(x) > 0} is compact.
For every a € (0, 1], the a-cut of the elements of E*' is defined as
v ={zx e R,v(z) > a}

Through the previous property, we can write

The distance between two elements of E' is (see [9])

D(u,v) = sup max{|u(a) —v(a)|, |u(e) — v(a)}
a€e(0,1]

Theorem 2.2. The metric space (El,d) is complete.
Before proving the theorem 2.2, we announce the following theorem :

Theorem 2.3. ( Negoita-Ralescu theorem [6] page 56 )
Given a family of subsets {M, : r € [0,1]} that satisfy conditions (i)-(iv).
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(i) For all r € [0,1], M, is a non-empty closed interval;
(i) If 0 <1 <ry <1, then M,, C M,,;
(iii) Any sequence 1, that converges from below to r € (0,1] we’ve got
o0
ﬂ Mrn = Mr
n=1

(iv) For every sequence r,, thal converges to 0 from above, we have

cl <D Mrn> = M()
n=1

Then for every r € [0,1] there is a unique u € Rp where u, = M, .

Proof. (proof of 2.2)

To prove that (El,d) is a complete metric space it must be shown that any Cauchy sequence of
elements of E' is convergent to an element of E!.

Let (), oy be the Cauchy sequence of the elements of E*, we have :

Ve > 0,3N(e) € N tell que Vp,g € N, (p > g > N(e)) = doo (Up, Uq) < €,

that is to say Ve > 0,3N(e) € N tell que Vp,q € N, (p > g > N(e)) we have
sup max {| (), = (ug), | ()] = (), |} < e,
rel0,1]

which means that Ve > 0,3N(e) € N such that Vp,q € N, (p > ¢ > N(¢)),

’(up); - (uq);’ < ¢ and ’(up):r - (uq):’ <eg, forall r €[0,1].
Then the real sequences ((un);) and ((un):) are Cauchy for all » € [0,1], so they converge in R

toward u;~ and u; for all 7 € [0,1]. Like (u,), < (u,)! for all n € N and all 7 € [0, 1], then by passing
to the limit u,; < w;, for all » € [0,1]. As a result M, = [u,,u;] is an interval of R. It remains for us to

T T

show that M, is a r chopped off. For this, we show that M, verifies the assumptions of Negoita-Ralescu
characterization theorem. O

The following theorem is easily derived from Theorem 1 of [20] and Theorem 1.1 of [19].

Theorem 2.4. Let u € E' . u® = [u(a),u(a)] denotes the a-cut of u. For [0,1], the following (1) to
(3) hold.

1. u(o),u(a) are in €([0,1],R);

2. u(w) is monotonically increasing and u(c) is monotonically decreasing.
3 u(l) =u(l)

Conversely, if i(«), s(a) : [0,1] — R satisfies the above conditions (1) to (3),

sup{a € [0,1] | i(a) < a < s(a)}, a € [i(0),s(0)]

u(a) = . 2.1
@={ 575 % Fo it 21

Then there exists u € E* such that u® = [i(a), s(a)], Vo €[0,1].

Lemma 2.5. [12] You can embed R into E* using the following map

R — E!

lze=r

g r—)gT:gr(x)z{Ox#r
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2.2. Zadeh extension Principe

Definition 2.6. This principle makes it possible to extend an application f : X1 x Xog — Y ( where
X1,X2,Y classical sets) in

fiF(Xy) x F(Xg) — F(Y)
(VlaVQ) — f(l/l,Vg) ,
forallyeY
Fvi,ve) (y) = oy ip ) Ava (@ ) £ 0
0 if ) = 0.

a) Addition extension

Let X be a vector space,
+: XxX—X

(z,y) — =+ y.

According to Zadeh’s principle:
@:F(X) x F(X) — F(x)

(V17V2)’—>V1®V2a

And for every x € X

(v1 Do) (z) = sup v1 (1) Ava (22)
(z1,22)e+~1({z})

=supvi (z1) A va (x2),

= sup vy (1) Ave(z —21).
r1EX

Stmilarly for all x € X
(11 ©v2)(z) = sup vi(z1)Ave(22).

r1—T2=T

b) Multiplication by a scalar
f: X—X

By the principe of Zadeh :

vi— f(u) VyeX,

>l
~—

fw)y)= sup wv(xz)= sup v(z)= 1/(
zef~1({y}) Az=y

Then, for all A € K, Vv € F(X),Vz € X,
()\G)V)(x):{ v(5) i A#0

By Zadeh’s extension principle,
(n+v)e = po v
(Ap)® = Au®
For all u,v € E' and X € R.

Remark 2.7. (El; @;®) is not a vector space.
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3. Fuzzy derivative and integration

This section presents some preliminary definitions and theorems about fuzzy set-valued functions.
3.1. Hukuhara generalized difference

Definition 3.1. [5] The generalized Hukuhara difference of two fuzzy numbers p,v € E* is defined as

N@gV=w<:>{ p=vitw

or v=p+(-1)w
For the a-levels,

(1 ©gv)* = [min{p(a) - v(e), ila) — v(a)}, max{p(e) - v(a), ia) - v(e)}]

and the existence condition of w = S, v € E' are

case (i) {E(O‘) = p(a) — v(a) and T(a) = f(a) — V()

with w(«) increasing, T(«) decreasing, w(«) < w(a) (8-1)
- f=(0) = 7i(a) ~ 7(a) and B(a) = (@) - (o)
case (ii) {with @(«) increasing, @(«) decreasing, w (o) < () (3:2)

for every « € [0, 1].
The following properties were obtained in [13]
Proposition 3.2. (Stefanini [15])
Let v € E' be two fuzzy numbers, after that
(i) If there is a gH difference, it is unique.

(i) pSgv=pcv orucyv = —(vepu) whenever the expressions on the right exist; in particular,
BOgH = pOn p=0,

(ii1) if n Sy v exists in the sense (i), then v Sy p exists in the sense (i) and vice versa,
(iv) (p+v)Sgv=p,
(v) 064 (LEg V) =v g,

(vi) pSyv=v6,u=mw if and only if w = —w; furthermore,

w =0 if and only if u = v.
Proposition 3.3. [1/]

1 ©g v = d(p,v)
Theorem 3.4. [16] The space (E,||.||) is a linear normed space.

For the rest of this work, we will assume u &4 v € E'. Denotes ||z, = d(z,0) for every z € E'.
3.2. Hukuhara’s derivative

Let f : [a,b] C R — E'! be a fuzzy function. The « level of f is

flz, ) = {i(x,a),?(x,a)}, YV € [a,b], Va € [0,1].

Definition 3.5. [5] Let zy € (a,b) and h be such that xo + h € (a,b), then the generalized Hukuhara
derivation of the fuzzy value function f: (a,b) — E' at zq is

lim

h—0

f ({L'() + hal_g f (II?()) —g f;H (x())

=0 (3.3)

If fom (z0) € E' satisfies (5.3) then we say that f is generalized Hukuhara differentiable at xq.
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Definition 3.6. [5] Let f : [a,b] — E' and xo € (a,b), with f(z,a) and f(z,a) both are differentiable
with respect to xg.

1. f is [(i) — gH]-differentiable at zo if

fign (x0) = [f'(w, @), f'(z, a)] (3.4)
2. f is (i) — gH]-differentiable at xo if
fiigr (o) = [f'(z, ), f'(z, )] (3.5)

Theorem 3.7. [2]Let f : J C R — E' and ¢ : J — R and z € J. Suppose ¢(x) is a function
differentiable on x and the fuzzy-valued function f(x) is gH differentiable on x. So

(fo)g(x) = ('), () + (f¢'), ()

Definition 3.8. [22] Let f : [a,b] — E' and f)H(x) Also, (a,b) has no switch point, and f(x,a) and

f(z, ) are both at xo. Differentiable.
o fis [(1) — gH]-differentiable at xq if

Flor(@o) = [£(@,0), T (@, )]
o [ is [(i1) — gH]-differentiable at xo if

T ga@o) = [T

/!

(z,0). f"(z,0)]

3.3. Fuzzy integration

Definition 3.9. [2/] Let f : [a,b] — E'. f(x) is fuzzy Riemann integrable onI € E' for every e > 0
there exists 6 > 0 such that for any division P = {[u,v]; &} with the norms A(P) < 6,we have

d <Z (v —u)f(f),[) <e

P
Where Z; stands for fuzzy sum.
Theorem 3.10. [5] If f is gH differentiable and there are no switching points on the interval [a,b], then

b
/ f/(t)ydt = [(b) S, (a)

Theorem 3.11. Let f : E' — R be a H-derivative function. f' =0 if only f is a constant function.

Proof. By 3.10 it remain to prove that f; f/(t)dt # 0 when a # b. If a # b then by Banach theorem
there is ¢ € (E')* such that |||p|]| =1 and ¢ (f(b) Sy f(a)) = || f(b) &4 f(a)||. we consider the function
g(t) = ¢ (f(t) &4 f(a)), Vt € [a,b]. We have ¢'(t) = ¢ (f'(t)) = 0 this function is at real values and
derivative which implies that g = 0, we conclude that g(b) = 0 which completes the proof. (]

Theorem 3.12. [11] Let f(x) be a fuzzy function on (—oo0,00), expressed as f(z,a) = | f(z,a), f(z, )]

for any fized o € [0,1]. Assume that | f(z, )| and |f(z, )| are Riemann integrable on (—oo,00) for all
a € [0,1]. Then f(x) is improperly fuzzy Riemann integrable over (—oo,00) and the improperly fuzzy
Riemann integral is a fuzzy number. we also have

| twar=[[ " swan [ ]
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From this theorem, we can discuss improper integration of fuzzy Riemann.

Lemma 3.13. Let f : R x Rt — E' | f(2,t;a) = [f(z,t;a), f(x,t;a)], and let a € RT.

If [ flz, t;a)dt and [ f(z,t;@)dt are converges, then

/ f(z,t;a)dt € E
Proof. Just use the theorem 2.4. O

Theorem 3.14. [7] Let f : R x RY — E' be fuzzy value function such that f(x,t;a) =
[f(z.t;q), f(z,t;a)]. Foreachx € [a,00), the fuzzy integral [.° f(z,t)dt is convergent and also [ ° f(z,t)dx
as a function of t is convergent on [c,00). Then

/:o /:0 [z, t)dxdt = /:0 /COO fx, t)dtdx

Theorem 3.15. Suppose both, f(x,t) and 0,,, f(x,t), are fuzzy continuous in [a,b] x [c,00). Moreover,

the integral converges for x € R, and the integral fcoo f(z,t)dt uniformly converges on [a,b]. Then F is
gH -differentiable on [a,b] and

() = / Do £ D)t

Proof. By the convergence domaine theorem of f(z,t;«) and f(z,; ), the continuity of s, f(z,t) on
[a, b] and use the condition (3.1). O

Theorem 3.16. [2] Let g : [a,b] — E' and f : [a,b] — R are two differentiable functions, then

b b
/ o () f(x)dz = ((9(b) © £ (D) O (9(a) © f(a))) @g/ g(a)f'(x)dz

Remark 3.17. [2] If f,g € AB" with lim f(y) =0, lim)| 00 g(y) = 0 then

ly|—o0

/ e w)e(y)de = / " )y ()da

4. Fuzzy fractional derivative

We present the derivation of generalized fuzzy fractions and their properties.

Definition 4.1. [3] Let f € LEl([a, b]). The fuzzy Riemann-Liouville integral of the fuzzy function f is
defined as

If%f(t):ﬁ(a/t(t—s)q_l(af(s)ds, a<s<t 0O0<g<l (4.1)

Definition 4.2. [2] [Riemann-Liouville fractional derivative RL]
Let f € LEl([a,b]) be a fuzzy value function,

ﬁ®<%) /a((s—t)"_q—l@f(t)du n—1l<g<n

Dy (s) = (12)
(%) 7e D g=no1
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In other words forall ¢ € (n — 1,n)

n— (n)
D?%Lng(t) = (IRLq (t)) NS [a7 b]
The second derivative in the sense of gH-differentiability exists. So these limits exist.
n—g o (n—1) _ (n—1)
gy G @ n) O (T0) (0
( RL ( )) - hl~>rnO h

n— (n—2)
()" ey o (7))

(T ()" = lim

h—0 h
Analogiquly
n— ! — /
= "o i (IRLq ) (t+h) SgH (I?%qu) (t)
( RL ()) = hli% h
n— 2—q

n—gq v I f(t+h) g I  f(1)

(IR 7f (1) = }ng% 5
Where
1 t
n—q - - _ \n—g—1
IRt f(t) T(n—q) /to (t—s) © f(s)ds,t € [to, T

Proposition 4.3. Let f € LEI([a,b]) be a fuzzy value function, the following equality hold

D,y T f(1) = f(2)

Dpyulro f(8) = IR f(), p>q

Proof.  For the first one, by using the definition,

Diyy,, Ty £ = Dy, (T £(00) = (T Ty £ 0) ™ = (1830 50) "
And
(1520) (") <// /tn " F(w)dudty o - dt >()
Finally,

D%, Th, f(t) (/ / /  Fw)dudty o - dtl)(n) — 1)

For the second equality, we have
n— (n)
D, Trr f(t) = (T Thpa(t))
1 ¢ (n)

_ m © (/:(t _ gt /:(s W le f(u)duds) "
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By the Dirichlet’s formula, we have

(n)
D(II%LQHI%Lf(t) T —gT() (/ flu / (t—s)"" T o (s — u)p_ldsdu> "

(n)

F_
If we suppose = = :

if 7= = =0
and dr = (t — s)dx

if 7=t = x=1

Also
(r—t)=({t—s)(1—-2x)
(t—s)==z(t—s)
we obtain
(n)

1
D% IV f(t </ f(s —s)" q+p—1ds/ 21—z "_q_ldx)
RLysu™ RL ( ) F(TL o q 0 ( ) ol

On the other hand,
! I'(n—q)T
/ (1 - 2y g = L OT0)
0

L(p—q+n)
Then,
(n)
D%, I% f(t (/ f(s — 5" q+p—1ds)
RLgH RL ( ) F(p q + TL gH
t (n)
Now we are going to find the, </ f(s)o (t— S)n—q+p—1ds>
a gH

We have, first derivative

/

(/at f(s)®(t - 5)”—q+p—1ds) = /at(n —q4+p—1)f(s)® (t —s)" 1P 2(s

Second derivative,

/

<L%n—q+p—1ﬁ@)®@—ﬂf/“p2%)==L%n—q+p—1xn—q+p—2ﬁw)

Ot — s)"79TP=3¢s,

nth derivative,

/

</at(n—q+p—1)...(p—q+1)f(s)@(t_s)pqu>

:/(n_q+p—n~-@—q+n@—qv@>
© (t — s)P~1"ds,
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By substituting in,
(n)

D1 IP _ n q+p—1
b T 0 = s ([ 19 x)

_p—g+n-1)-(p—g+1)(p—q /tf(s)Q(t_s)p_q_lds.

L(p—q+n)
Since,
P—gt+tn-1---(p-g+Hlp—-q _ 1
I'(p—q+n) L(p—q)
1 ¢ o _
Dy, Thf ) = 5= © [ (6=57 7" 0 f(s)ds = Ty ).

Definition 4.4. [2] The definition of the RL fractional derivative assumes that the integer order of the
derivative is the operator in the integral and in the operand functions f(t) € E',t € [a,b].

o[t pm .
P@—@GA“ Dt o [ d, n-1<q<n

CuDf(s) = . (4.3)
(di) 7(s) L g=n-1

In other words for all ¢ € (n — 1,n) and ¢ € [a, b], we have

_ D
CuDIf(t) = Dy <f(t) Ot £ (@) Sqrt (t—a) © f' (a) Oyt - Ot % © f*D <a>> ,

We get the following relations :

t ot T
/ / B / f(n)(u)dudtn71 cedty = f(t) Ogn [ (a) Sgr (t—a) © f! (a) Og - -

(t _ a)(nfl)

@gHW ® f=b (a).

By substituting,

t1
“W(//‘ / J (w)dudty—y - d>=thU@eﬂf@

@gH(t_a)Qfl(a)@gH'“@gHWQJf(nil) (a)).

Indeed,
t t1 th—1
gHqu(t) — DqRLgH (/ / .. / f(n) (u)dudt, 1 --- dt1>
=D%i,, (I%Lf(n) (t))

= I f™(1).



FUzzYy FRACTIONAL BOUNDARY VALUE PROBLEM INVOLVING CAPUTO FRACTIONAL DERIVATIVE 11

Finally,
1

Y t — )" fM(s)ds.
e [ = e

CuDUf(t) = T 1 f " (t) =

Lemma 4.5. Let f € AP" and ¢ € (0,1) thus f = [f, f] then

1. If f is [(¢) — gH]-differentiable with respect to to then D?f is [(i) — gH| differentiable with re-
spect to to and f' = [f’, f’] and DIf = [D9f, Df].

2. If f is [(i1) — gH|-differentiable with respect to to then D9f is [(ii) — gH] differentiable with respect
to to and f' = [f’, f'] and DIf = [D9f, Dif].

Proof. 1. Suppose that f is [(i) — gH]-differentiable with respect to to, Note that
1 t
e E— t—s) 1f! ds.
w7 | = (s

1
Since m(f— 5)”% s always a non-negative quantity for 0 < ¢ < s then 4y DIf(t) is [(i) — gH]

gHqu(t) =

differentiable with respect to tg.

Moreover, we have

fr=107]

! t “if, Y t—s_q’s 571 t—s—q_/ss
ﬁ/ﬂ—‘s) 9H<8>d8—[r(1_q)/0<t >f_<>dar(1_q)/0<t )T (s)ds]

Dif =[Df, Df].
we do the same for point 2.

Theorem 4.6. Let f € AP and ¢ € (1,2), then

gt DUf(t) = gu DT fop (1)
Proof. Set f(t) = [i(t;a), f(t;a)] and use lemma (4.5)
case 1. If f is [(i)]-differentiable and f’ is [(i)]-differentiable then

ft)y = [f(t;a),f’(t;a)} and f(t)" = [i”(t;a),f“(t;a)} }

Note that
1

guDf(t) = T2—q /o (t — s)l_qf;’H(s)ds,

we have

£ = [0, (5 0]
# ' — )1 (s)ds = 1 ' — ) (s a)ds 1 ' — )1 (e ) ds
rm o o = [y [ = et g [l e

o DUf(t) = [qu D7 f(t; @), gu DTF ()] -
Moreover, since [’ is [(i)-differentiable] and 0 < ¢ — 1 <1 then

(t) = [f'(ta), f'(t; )]

) =
(t) =

/ ,f' t;«
F) = [on DT £ (.00, DT (50)]

gHinl
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gD () = [quDf (t; ), gu D f(t; )] (4.4)
thus, by (4) and (4.4) we obtain ;g D7 f(t) = ;uDf(t)
case 2. If f is [(i)]-differentiable and f’ is [(ii)]-differentiable then
f@) = [f'(ta), f(t;a)] and f(t)" = [7"(t;a),i"(t;a)} :
Note that

1 ! 1—q g1
) / (= )1 (s)ds,

guDIf(t) = 2=

We have
10 = 7). o).

Which implies

# ' I ($\ds — 1 ! —Sliq_//S'oz s 1 t (s o)
F(Q_q)/o(t ) fgu(s)d [F(2—q)/0(t ) 4 (s )d’iI‘@—q)/O(t )1 (55 a)ds |

So

or Df(t) = [quDf(t; ), gu DU f (5 v)] . (4.5)
Moreover, since f’ is [(ii)-differentiable] and 0 < ¢ — 1 < 1 then
1t = [ (te), T )]

g D) = [ DT (t0), g D ()]

gHDq_lf(t)/ = [gHDqT(t; a), gHin(t; Oz)] . (4.6)
Thus, by (4.5) and (4.6) we obtain (g D91 f(t) = quDf(t)

Case 3. If f is [(ii)-differentiable] and f’ is [(i)]-differentiable then

Ft) = [T (t0), £ (ta)| and £ = [7"(t:0), £ (5:0)]

Note that . .
D0 = ey [ (=9 (s
We have
1) =7 ), £ (t:0)]
! t 1=agn S P t — )17 (s:0)ds _t t — )17 (5;0)ds
w9 s = [ [T s gt [ s
o D) = [y DF(5 ), i D (15 0] (47)

Moreover, since f’ is [(i)-differentiable] and 0 < g — 1 < 1, then

1) = [Ft0), £ (50)]
DI () = [gHqulf’(t; 0), g DT f (1 a)} .
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ga DT (1) = [guDUf(t ), gu DI f(t:a)] “

thus, by (4.7) and (4.8) we obtain ;g DI~ f(t)" = ;g DIf(t)
case 4. If f is [(ii)]-differentiable and f’ is [(ii)]-differentiable, then

Ft) = [T (), f ()| and £ = [£"(t:0), 7" (1:0)]

Note that
1 t
gHqu(t) = m/o (t — 8)1_qf;/1_1(8)d8.

We have )
f@)" = [f"ta), f(ta)].
Which implies

1 1

Moreover, since f’ is [(ii)-differentiable] and 0 < ¢ — 1 <1 then
1) = [T a). £ (t0)]

s DI (W) = (g DT (t0), yu DT ()|

13

8)

‘ 1—q g1 _ 1 ! —_ s 1—q gl s a)ds ! —3 1—q g1/ s a)ds
o |9 s = [ [0 s g [ -9 saas).

g DUf(t) = [quDf(t; ), gqu D f(t; )] . (4.

o DUTH(t) = [gHin(t; @), gu D f(t; )] (4.10)

thus, by (4.9) and (4.10) we obtain oz DI f(t)" = qu D[ (t)
from where, forall ¢ € (1,2) we have ;z DI f(t) = gHDq_lféH(t)
Lemma 4.7. Let f € LE' |Vt € [0,b] and Vg € (n — 1,n) we have
(i) “DUUf(t) = f(t)

(n—1)
(ii) I19°Df(t) = f(t) Sgmr f(0) Cgrr (1) @ f'(0) Sy - -+ Ogm ()

(n—1)!

© fD(0).
Proof. . For the first one, by using the definition, we have
(n—1)
C D4 q ’ (t) (n—1)
guDf(t) = Dy, | f(t) ©gm [(0) Sgm (1) © f7(0) ©grr -+ O e fr0) ]

Which implies that

(m"Y

CyDUIf(t) = Dy (ﬂf(t) ot 11 (0) Syt (1) © T1f (0) Syt -+ Oy
= D%, (19(1) = (1)

Indeed, forall f € LE ,it exists a constant K such that

® ]qf(n—l) (a))

(n—1)!

K = sup D[f(")(t),()]
tela,b]
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then ,
N 1 _ (t)?
Do | T9£) (1), <K—/ t—s8) 0 ds = K—"t——
o |15 0.0] < Ky J o = Ky
Which implies that, T9f(t) = I9f'(t) = --- = [9f(»~D(t) =0 in t = 0.
[
The second property, forall ¢ € (n — 1,n) we have
(n—1)
C q q / (t) (n—1)
D1 (1) = Dha,, | F10) Soar £(0) Syt (0 £/(0) Sy -+ Syt (=570 77 0))
Using the fractional integration of Riemann—Liouville in both sides, we have
aC na a4 / (t)(n_l) (n—1)
15D (1) = I"Dhe,, ( £0) S £ (0) St (06 F(0) Sy -+ Sy 5 © £ (0)
_ / ()Y (n—1)
= 1(8) St £ (0) it (1)© 1 (0) Syat -+ Sat (=57 © 1 (0)
O

5. Main Results

First, we prove the following lemma for explicit solution formulas for linear fractional problems subject
to fractional-integer boundary conditions.

Lemma 5.1. We consider the following initial-type problem of Caputo type fractional fuzzy differential
equation with the non-integer order q €] 2, 3]

Du(t) = f (t,u(t)), 0<t<a 5.1
{u(a):OEEl,u(a):AeEl, W)= BEE' 0<b<a (5-1)

Where f:[0,a] x E* — E* is a continuous and q €] 2,3].
Consider the equation

u(t) = < 25?2;6 A Ot = ig?gﬁ A O /Oa G(t,s) ® f(s,u(s))ds (5.2)
where
g (e = gt gy 0 = gyt
+b(at2_ )(b—s)ql), 0<s<t<b<a.
Gt,s) =4 — ﬁ —ﬁ(a — sl b(b“i_ta)(b— 57t - a(f_ (=9
+b(at2_ )(b—s)q—l), 0<t<s<b<a.
o (e o). o<icicoca

Here G(t,s) is called the Green’s function associated with the boundary value problem (5.1).
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Proof. Consider the following problem :
{ Du(t) = f(t,u(t)), 0<t<a

uw(0)=0, ula)=AcE'Y; ulb)=BeE' 0<b<a 2<q<3.

The first equation in this problem is equivalent to the following integral equation

1DRu(E) = u(t) Sy u(0) St 01(0) Sy 5 O ()
= If(t, u(t)).
Which give
u(t) = u(0) +t © ' (0) + g ©u”(0) + I9f (£, u(t)). (5.4)
Looking for «/(0) and «”(0)
For t = 0, we have : u(0) = 0.

For t = b, we have

u(b) = u(0) +b O (0) + & © u(0) + 17 (b, u(t)
b2 1 b
=u(0)+b® v (0) + 5 © u” (0) + Ol ® /0 (b—5)1"1® f(s,u(s))ds,

which implies

2 b
b (0) + % G u'(0) = Bo ﬁ @/0 (b= 5)= ® f(s,u(s))ds. (5.5)

For t = a, we obtain

which implies
2 a
a®u'(0)+ % ou"(0)=A0 ﬁ ©) / (a—8)Tt o f(s,u(s))ds. (5.6)
0

Doing a ® (5.5) ©b® (5.6), we find

(———)@u"(O):a@B@b@A

6— 0
I'(q)

b
/ (ad—s)"" Obla—s)"") @ f(s,u(s) ds@/ bla— )11 ® f(s,u(s ))ds]
0
Thus

2

b a
/ (a(b = )Tt S bla—s)""1) © f(s,u(s))ds @/ bla—s)?"" & f(&U(S))dSD :
0 b
(5.7)
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And a® ® (5.5) © b* ® (5.6) given
(aQb— ab2) ou(0)=a*©@Bob’ oA

: (@ Tt eb’(a—s)Tt s,u(s))ds a2a—sq_1 s,u(s))ds
@m@[/o (@’ -5 b (a—s) )@f(,())d@/bb( ) @f(,())d}

Thus
W(0)= s (BP0 B 0 A
1 (@ TLob(a—s)! s,u(s))ds a2a—5‘1—1 s,u(s))ds
GWQ/O(a(b—S) &0 - 5)11) @ f(s, u(s))d e/bb( 11 6 fs, ())dD'
(5.8)

We substitute 5.7 and 5.8 in 5.4 we get

2 2
u(t) = m@(a OBoeb oA
1 b o
o7 © | ] @0t ore -9 o feue)iso [ -t f(s,u(s))dsp
0 b
t2
t o Q(@0B6boA
b a
@F(l )¢ / (alb =)™ ©bla—)T") © f(s, u(s))ds 9/ bla—s)"" f(s,u(s))ds]>
q 0 ",
@ I9f(t,u(t))
?OBob oA aOBObOA
= g Ottt Ot
1 T at bt
- b— g—1 v A !
@F(Q) Q/o (CLQb—ab2 ©b-s) © 2 ©(a—s)
@L@(b_ )q—lei(a( _)q—l @f( ())d
ab? — ba? 5 ab? — ba2 a—s s,u(s))ds
1 “ b2t bt2
_ g—1 - _ q—1
YT /b (a?b— 2 Q=8 & s Oa—s) ) © f(s,u(s))ds
1 t
@—Q/ t—s)71 o f(s,u(s))ds
T(q) "~ J (t—s) (s, u(s))
So we obtained
>OBob oA a®©BobOA
ut) = — Ot T OF
1 b at bt 2
J— - b_ q—1 o q—1 b_ q—1
crge ), (Eepee-" e iy oI e g5 0=y

t2

@a(b ~a) ©(a—s)"" ) © f(s,u(s))ds

1 a bt -1 12 R .
@@/b (a(a—b)G(a_s) S Gt )@f(v())d

1 /f .
S ==0 t—s)17" © f(s,u(s))ds.
i @)y U7 OS5 uls)
Which implies

20BoKoA BoboA a
u(t) = L9202 g 202000 @tQ@/ G(t, s) © f(s,u(s))ds.
0

a?b — ab? ab? — ba?
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With G(t, s) is given by

1 q—1 _ bt a—sq_l aft _sq_l_ t2 a_Sq_l
_m<_(t_s) a(b—a)( ) +b(b—a)(b) a(a—b)( )
+b(at2_b)(b_5)q_l>7 0<s<t<b<a.

_ _L _La_sq—l at —sq_l—ia_sq—l
G(t,s) = F(q)(a(b—a)( (i LG presTCRE)
+b(at2_b)(b_5)q_l>7 0<t<s<b<a.
_ﬁ<a(bbja)(a_s)q1+a(at—b)(“_5)ql>, 0<t<b<s<a.

O

Theorem 5.2. We set that f € C([0,a] x E', E') such that f(a) and f(@) are continuous functions
with respect o and there exists M : [0,1] — Ry such that ¥(t,u) € [0,a] x E*

’%i(t,u,a) ,}%f(t,u,a) < M(a)
and
iA(OZ) ‘iA(a) > aiqM(a) and iB(a) i_(a) bad—1 @
do™"|" |da “T(g—-1) do ' da Ty =1 )

u s a solution to 5.1 iff u is a solution to 5.2.

Proof. Let u(t) be a solution of (5.1) then
Diu(t) = f(t,u(t)) and u(0)=0,u(b) =B,u(a)=A
Since, 1 < ¢ — 1 < 2, then by Lemme(4.7), we get
I DIy(t) = 191D/ (1) =/ (t) © w/(0) © u”(0) © t = T f(t,u(t)).

which implies
W' (t) = u'(0) +u"(0) © t + 1971 f(t, u(t)).
by integrating over [0, ], respectively over [0, a], we obtain

2 bt
bu'(0) + %u”(()) =Bo ﬁ /0 /0 (t — )12 f(s,u(s))dsdt

2

! L 0(0) = _ "l —5)9172 f(s,u(s))ds
au(O)—i—?u (0)—A6P(q_1)/0 /O(t )97 f (s, u(s))dsdt,

thus

(a®b — ba) w'(0) = (Ba2 o F(qaiil) /Ob '/Ot(t - s)"’zf(s,u(s))dsdt> e <Ab2 e F(qbiil) '/Oa /Ot(t - s)q’2f(s,u(s))dsdt>
(%bz - %) u"(0) = (Ba@ ﬁ '/Ob ./Ui(t - s)"_zf(s,u(s))dsdt) o (Ab@ ﬁ /O ‘/Ot(t - s)q-?f(s,u<s))dsdt> .
Either again

bt a t
(a®b - b*a)u'(0) =a (/0 /0 % o F(qti ) (t— s)q’2f(s,u(s))dsdt> ob </ﬂ ./0 % ) F(qli 0 (t— s)q’2f(s,u(s))dsdt>

2 2 bt a it
<% - b%) u’(0) = (/0 /0 % e F(%fl)“ - s)"_Qf(s,u(s))dsdt> <) </n A % e r(qb, 0 (t— s)q_Qf(s;u(s))dsdt> .
In other hand
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d (Ba a g dB a al™t d

T (—t—m(t—s) Qf(S,U(S),Oé)> ZEE—WEJ”(S,U(S),&)ZO
and . L

d d -

I (B—: - F(qa_ 1)(75 — )1 2f(s,u(s)vof)) < —f% - F(C;_ 1 d f(s,u(s),a) <0,
as far as

d (Ab b o dAb  at! d

7o (5~ Tt ) 2 G - ke 20
and _ T 1

d (Ab b dA b =t d

o (a_ e 1)(75 — )1 Qf(s,u(s),a)> < dJa2 h@f@au(s)va) <0.
By theorem (2.4) and lemme (4.7)

u(t) = /Ot u/'(s)ds € E*, vVt €]0,a.

This means that u(t) is continuously derivable according to Lemma (4.7)), we have

Du(t) = f (¢, u(t))

& u(t) = u(0) + ' (0) + %u FI9F (8 u(t)

t2 1t
S ult) =t (0) + —u" + — / (t— )11 f (s,u(s))ds
2 I'(q) Jo
where
w'(0) = o OBl OAS L O] /b (a*(b— )" o b (a—s)T"") @ f(s,u(s))ds © /a b2 (a—s)7t @ f(s,u(s))ds
Ta-a? \" 7T T T | R o o o
b a

W (0) = rfbaz (a ©BoboAe ﬁ ® [/U (a(b— 5)1" ©b(a— £)771) © f(s,u(s))ds © /b bla—s)" o f(g,u(g))dsD A

Substitute into the previous expression obtained, we get

a?oBoboA a®Bobo A
u(t) = a2b — ab? ©Le ab? — ba?

Ot?® /Oa G(t,s) ® f(s,u(s))ds,

that is u(t) is a solution of (5.2).
Suppose u(t) is the solution of (5.2).
)

First, u(0) = 0, u(b) = B and u(a) = A.
Since,
a?OBob? oA a®BoboOA “
ut) = ——g——r— OtO ——g— 5 — Ot @/ G(t,s) © f(s,u(s))ds
_ a®B ,  d*0OB VoA b@A 2
a2 Cae —ba2t+ a? —ba2' © @ —ba? /GtSQf(”( ))ds
‘ 2 ot b t2
= A
/0 (ab a2 © ) < " 008 © @ = ba3> OADG(t,s)© f(s,u(s))ds
_/t e © B+ P o bot OAPG(,s)O f(s,u(s))ds
Jo \ab? — bz © _ ba2 20— b " 20— bad ; ;
¢ 2 ot b t2
B A
+/t (ab — ba2 — ba2) ©b+ (a2b2 — ba3 a2b2 — ba3) ©ADG(L,s) © f(s,u(s))ds,
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it is very easy to verify that u(t) € E'. In this case, Using the property 4.3 we get

Dq/Gts (s,u(s))ds

= D1 —/ t—s)T1f (s,u(s ds)
(5 | =97 7 sute)

= f(s,u(s))
Thus u(t) is a solution of (5.1). O
Theorem 5.3. f € C([0,a] x E', E') and (A,B) € E' x E' satisfies the conditions of the theorem

a9t 4 q2pa~1

(5.2),and ¥(z,y) € E* x E' ; d(f(t,), f(t,y)) < Kd(x,y), Vte€ [0,a] where Féﬂfl) [ @=D) } <
1 Then the problem (5.1) has a unique solution in C! ([O, al, El).

Proof. Consider the following map
€ ([0, al, El) e([o al, E")
F
x— Fx: Fa(t / G(t ,x(s))

First F' is well defined :

Since G(.,s) and f are continuous then F' has its value in € ([0, a], E'), so F is well defined.

(El,d) is a complete metric space and [0,a] is a compact of R then ((‘1 ([O,a],El) ,doo), where
doo (T, y) = SUPye(o,q d(z(t),y(t)), is a complete metric space.

For all z,y € € ([0,a], E'), we have

doo (Fz, Fly) < /Oa |G(t, s)|d (f (s,2(s)), f (s,9(s))) ds

<K sup/ |G(t, s)| dsdoo (2, y)

te(0,a
< K sup [/|Gts|ds+/|Gts|ds+/|Gts|d51 oo (Z,Y)

te[0,a]
< [tq+ a1y O g1y r 1y - bql}d( )
——— Ssup a a oo\ L5
P<q+1>te[0a] (a—1b) (a—1b) (a—b) (a—1b) Y

K ba a? a? a?
< q q—1 —bqfl q—1
ST+ {”(a—b)“ a0’ @0 Ta-n
2K adtl 4+ g2pa—1
doo(,
{ @) ] (=:9)

bql} dos(2,7)

~I(g+1)
Since K sup / |G(t,s)|ds < 1. In this case, by Banach’s fixed point theorem, F has a unique fixed
te(0,a] JO
point that is the solution to (5.1). O

6. Applications

In this section we satisfy the conditions of the theorem (5.3) and as an explanation of the theorem
(5.3) t €[0,2], we have :

Du(t) = p ® ¢(ult)), 0<t<2
(6.1)
w0)=0c EY; wu(l)=(0.1 02 03); u?2) =02 05 1) 2<q<3,
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where p is a singleton fuzzy number and ¢ € € ([0,2], E*).
Since ¢ is continuous on [0;2] then there is A > 0 such that |¢| < A which implies by the Mean Value
Theorem we know there exists £ €]0; 2[ such that :

doo (P © ¢(u(t));p © o(v(1))) < |pl€dec (u(t), v(t))

This implies the existence of a solution. Then, according to the theorem (5.3) to have uniqueness it

is necessary that :
I(g+1)

2|pl¢
24 (201 4 1)

20t 4 921 <1 or <
I(¢g+1) [ } P

7. Conclusions

In this study, an attempt was made to give a solution to a fuzzy differential equation under the
Caputo derivation using the Green’s function and Banach’s fixed point theorem. An example to support
the results is presented.
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