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Bounds for the Minimum Degree Eigenvalues of Graphs
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abstract: In this article, we obtain several upper bounds for the minimum degree eigenvalues of graph G.
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1. Introduction

Let G be a simple graph and let its vertex set be V (G) = {v1, v2, . . . , vn}. The square matrix A(G)
of order n whose (i, j)− entry equal to unity if the vertices vi and vj are adjacent and is equal to zero
otherwise is called adjacency matrix of graph G. The eigenvalues λ1, λ2, . . . , λn of A(G), assumed in non
increasing order are the eigenvalues of the graph G.
In 1978 Ivan Gutman [3] introduced Energy of graph G as

E(G) =

n∑
i=1

|λi|.

In [1,8], author introduced the minimum degree matrix m(G) associated with a graph G and studied
its spectrum. Let G be a simple graph with n vertices v1, v2, . . . , vn and let di be the degree of vi,
i = 1, 2, 3, . . . , n. Define

dij =

{
min{di, dj}, if vi and vj are adjacent,
0, otherwise.

Then the n × n matrix m(G) = (dij) is called the minimum degree matrix of G. The characteristic
polynomial of the minimum degree matrix m(G) is defined by

ϕ(G;µ) = det(µI −m(G))

= µn + c1µ
n−1 + c2µ

n−2 + · · ·+ cn−1µ+ cn,

where I is the unit matrix of order n. The minimum degree eigenvalues µ1, µ2, . . . , µn of the graph G
are the eigenvalues of its minimum degree matrix m(G). The minimum degree energy of a graph G is
defined as

Em(G) =

n∑
i=1

|µi|.

Since m(G) is real symmetric matrix with zero trace, these minimum degree eigenvalues are all real with
sum equal to zero.
The largest eigenvalue λ1 of the graph G is often called the Spectral radius of G. In literature there are
several upper bounds for the spectral radius λ1 (see [2,4,5,6,7,9])
In this paper we give upper bounds for minimum degree eigenvalues of G.
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2. Bounds for Minimum degree eigenvalues

We now give the explicit expression for the co-efficient ci of µn−i(i = 0, 1, 2) in the characteristic
polynomial of the minimum degree matrix m(G). It is clear that c0 = 1 and c1 = trace of m(G) = 0.
We have,

c2 =
∑

i≤j≤k≤n

∣∣∣∣ 0 dkj
djk 0

∣∣∣∣ .
But ∣∣∣∣ 0 dkj

djk 0

∣∣∣∣ = { −(min{dj , dk})2, if vj and vk are adjacent,
0, otherwise.

Thus,

c2 = −
n∑

i=1

(ai + bi)d
2
i

where, ai = the number of vertices in the neighborhood of vi, whose degrees are greater than di
and bi = the number of vertices vj(j > i) in the neighborhood of vi, whose degrees are equal to di.
Note that c2 and c′2 are negative and so −c2 = |c2| , −c′2 = |c′2| .

Theorem 2.1 If µ1, µ2, . . . , µn are the minimum degree eigenvalues of G, then

n∑
i=1

µ2
i = 2 |c2| .

Proof: We have

n∑
i=1

µ2
i = trace of m(G)2 =

n∑
i=1

(
n∑

k=1

dikdki

)

= 2

n∑
i=1

(ai + bi)d
2
i

= −2c2

= 2 |c2| .

2

Theorem 2.2 Let G and H be two graphs with n vertices. If µ1, µ2, . . . , µn are the minimum degree
eigenvalues of G and µ′

1, µ
′
2, . . . , µ

′
n are the minimum degree eigenvalues of H, then

n∑
i=1

µiµ
′
i ≤ 2

√
|c2| |c′2|.

Proof: By Cauchy-Schwarz inequality, we have(
n∑

i=1

µiµ
′
i

)2

≤

(
n∑

i=1

µ2
i

)(
n∑

i=1

µ′2
i

)
.

On using Theorem 2.1 in the above inequality, we obtain(
n∑

i=1

µiµ
′
i

)2

≤ 4 |c2| |c′2| .
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Hence,
n∑

i=1

µiµ
′
i ≤ 2

√
|c2| |c′2|.

2

Theorem 2.3 If G is a graph with n vertices and µ1 ≥ µ2 ≥ · · · ≥ µn are the minimum degree eigenvalues
of G, then

µ1 ≤ 1

p− 1

{√
2 |c2| p(p− 1) +

n∑
i=1

µn−p+i

}
, 2 ≤ p ≤ n.

Proof: Let µ1, µ2, . . . , µn−p+1, µn−p+2, . . . , µn, 2 ≤ p ≤ n be the minimum degree eigenvalues of G.
Let H = Kp

⋃
Kn−p. The minimum degree eigenvalues of H are (p − 1)2, 0(n − p times), and −(p −

1)(p− 1 times).
Now on employing Theorem 2.2, we obtain

µ1(p− 1)2 + µ2(0) + · · ·+ µn−p+1(0)− µn−p+2(p− 1)− · · · − µn(p− 1) ≤ 2

√
|c2|

p(p− 1)3

2

and so

µ1(p− 1)2 − (p− 1)

p∑
i=2

µn−p+i ≤
√

2 |c2| p(p− 1)3.

Thus,

µ1 ≤ 1

p− 1

{√
2 |c2| p(p− 1) +

p∑
i=2

µn−p+i

}
. (2.1)

This completes the proof of the theorem. 2

Remark 2.1 If we put p = n in (2.1), we get

µ1 ≤ 1

n− 1

{√
2 |c2|n(n− 1) +

n∑
i=2

µi

}
.

Since
n∑

i=1

µi = 0,

we have

µ1 ≤ 1

n− 1

{√
2 |c2|n(n− 1)− µ1

}
and hence,

µ1 ≤ 1

n

√
2 |c2|n(n− 1).

Remark 2.2 Now putting p = 2 in (2.1), we get

µ1 − µn ≤
√
4 |c2|. (2.2)

Corollary 2.1 If G is r-regular with n vertices, then

µn ≥ r2 − 2
√
nr3.
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Proof: Let G be an r-regular graph with n vertices. It is known that |c2| =
nr3

2
and µ1 = r2. Therefore

from (2.2), we get

µn ≥ r2 −
√
2nr3.

2

Theorem 2.4 Let G be a graph with n vertices and µ1 ≥ µ2 ≥ · · · ≥ µn be the minimum degree
eigenvalues, then

k∑
i=1

µi ≤
√

2 |c2| k(n− k)

n
, 1 ≤ k ≤ n.

Proof: Let G be a graph with minimum degree eigenvalues µ1, µ2, . . . , µk, µk+1, . . . , µn. Let H be a

graph with n vertices and k components each is complete graph Kp i.e.,H =
⋃
k

Kp. The minimum degree

eigenvalues of H are (p−1)2 (k times) and −(p−1)[(p−1)k times] and the number of vertices and edges

of H are n = pk and
kp(p− 1)

2
respectively. Therefore from theorem 2.2, we obtain

(p− 1) {(p− 1)µ1 + (p− 1)µ2 + · · ·+ (p− 1)µk − [µk+1 + · · ·+ µn]} ≤ 2

√
|c2|

kp(p− 1)3

2
.

i.e., p

k∑
i=1

µi −
n∑

i=1

µi ≤
√
2 |c2| kp(p− 1).

Since
n∑

i=1

µi = 0 and n = pk,

we deduce that,
k∑

i=1

µi ≤
√

2 |c2| k(n− k)

n
. (2.3)

2

Corollary 2.2 If G is r-regular graph with n vertices,then

µ2 ≤ r
√

2r(n− 2)− r2.

Proof: Putting k = 2 in equation (2.3), we see that

µ1 + µ2 ≤ 2

√
|c2| (n− 2)

n
.

Since G is r-regular, we have |c2| =
nr3

2
and µ1 = r2.

Thus,
µ2 ≤ r

√
2r(n− 2)− r2.

2

Theorem 2.5 Let G be a graph with n vertices and µ1 ≥ µ2 ≥ · · · ≥ µn be the minimum degree
eigenvalues, then

k∑
i=1

[µi − µn−k+i] ≤ 2
√
|c2| k, 1 ≤ k ≤

[n
2

]
.
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Proof: Let G be a graph with minimum degree eigenvalues µ1 ≥ µ2 ≥ · · · ≥ µk ≥ µk+1 ≥ · · · ≥ µn−k ≥
µn−k+1 ≥ · · · ≥ µn. Let H be a graph with n vertices and k components each is complete bipartite graph

Kp,q i.e., H =
⋃
k

Kp,q.

The minimum degree eigenvalues of H are p
√
pq [k times], 0[(n − 2k) times] and −p

√
pq [k times] and

the number of vertices and edges of H are n = k(p+ q) and kpq respectively.
On employing Theorem 2.2, we get

p
√
pq

k∑
i=1

µi − p
√
pq

k∑
i=1

µn−k+i ≤ 2
√

|c2| (kp3q).

Thus,
k∑

i=1

[µi − µn−k+i] ≤ 2
√
|c2| k. (2.4)

2

Corollary 2.3 If G is r-regular bipartite graph with n ≥ 6 vertices, then

µ2 ≤ r
√
nr − r2.

Proof: Putting k = 2 in (2.4), we get

µ1 + µ2 − µn−1 − µn ≤ 2
√
2 |c2|.

Since G is bipartite, we have
µ1 = −µn, µ2 = −µn−1

and
µ1 + µ2 ≤

√
2 |c2|.

Since,

|c2| =
nr3

2
and µ1 = r2,

we have,
µ2 ≤ r

√
nr − r2.

2
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