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Some characterizations of translation surface generated by a non-null curve and a curve
on a spacelike surface in Minkowski 3-space ∗

Akhilesh Yadav and Ajay Kumar Yadav†

abstract: In this paper, we study translation surfaces generated by a non-null curve in E3
1 and a curve lying

on a spacelike surface in Minkowski 3-space and obtain necessary and sufficient conditions for such surfaces
to be flat or minimal. Further, we obtain normal curvature, geodesic curvature and geodesic torsion of the
generating curves and find necessary and sufficient conditions for these curves to be geodesic, asymptotic line
and line of curvature. Finally, we study some special cases of such translation surfaces according to the angle
between the normal of the translation surface and the respective normals of the generating curves.
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1. Introduction

A surface of revolution is formed by translating a curve in such a way that a point on the curve moves
along a circle. Translation surfaces are the generalization of the surfaces of revolution which are formed
by as translating a curve along any other arbitrary curve which has a intersection with the first one. The
parametrization of generalized type of a translation surface in 3-dimensional Euclidean space is given by

X(u, v) = α(u) + β(v),

where α and β are space curves, called generating curves. Translation surface which is known as double
curve in differential geometry are base for roofing structures. The construction and design of free form
glass roofing structures are generally created with the help of curved (formed) glass panes or planar
triangular glass facets.

Translation surfaces has been studied in Euclidean space as well as semi-Euclidean space by many
authors. For instance, In [4], Liu obtained some characterizations about the translation surfaces with con-
stant mean curvature or constant Gauss curvature in 3-dimensional Euclidean space E3 and 3-dimensional
Minkowski space E3

1. In [3], Çetin and Tunçer studied surfaces parallel to translation surfaces in Eu-
clidean 3-space. In [1], Ali et al., gave some results on some special points of the translation surfaces in
E3. Since the translation surfaces are surfaces produced by two space curves, some basic calculations of
the surface can be stated in terms of Frenet vectors and curvatures of the space curves. In [2], Çetin
and Önder investigated translation surfaces according to Frenet frames in Minkowski 3-space and studied
some properties of these surfaces. Furthermore, they calculated first fundamental form, second funda-
mental form, Gaussian curvature and mean curvature of the translation surface. Finally, they gave the
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conditions for the generator curves of the translation surface being a geodesic, an asymptotic line and a
principal line. In [9], we studied the translation surfaces generated by spherical indicatrices of timelike
curves in Minkowski 3-space.

Motivated by these studies, we study translation surfaces generated by a non-null space curve and a
curve lying on a spacelike surface in Minkowski 3-space according to Frenet frame of the first curve and
Darboux frame of the second one. We calculate normal curvature, geodesic curvature and geodesic torsion
of the generating curves and obtain necessary and sufficient conditions for these curves to be geodesic,
asymptotic and line of curvature. Finally, we study some special cases of such translation surfaces
according to the angle between the normal of the surface and the normals of the generating curves. In
first subsection of the section 3, we deal with a translation surface M generated by an arbitrary spacelike
space curve α and an arbitrary curve β on a spacelike surface σ while in the second subsection we deal
with a translation surface M generated by an arbitrary timelike space curve α and an arbitrary curve β
on the spacelike surface σ.

2. Preliminaries

The Minkowski 3-space denoted by E3
1 is a three dimensional real vector space R3 endowed with the

metric tensor ⟨., .⟩ = −dx2 + dy2 + dz2. The (Lorentzian) scalar and cross product are defined by{
⟨x, y⟩ = −x1y1 + x2y2 + x3y3,

x× y = (x2y3 − x3y2, x1y3 − x3y1, x2y1 − x1y2),
(2.1)

where x = (x1, x2, x3), y = (y1, y2, y3) belong to E3
1. This space is also known as Lorentz-Minkowski

space. A vector x ∈ E3
1 is said to be spacelike when ⟨x, x⟩ > 0 or x = 0, timelike when ⟨x, x⟩ < 0 and

lightlike(null) when ⟨x, x⟩ = 0. A curve in E3
1 is called spacelike, timelike or lightlike when the velocity

vector of the curve is spacelike, timelike or lightlike, respectively.
Let γ = γ(s) : I → E3

1 be a regular curve. The curve γ is said to be a unit speed (or parameterized
by the arc-length parameter s) if ⟨γ′(s), γ′(s)⟩ = ±1 for any s ∈ I. Let {t(s), n(s), b(s)} be the moving
Frenet frame of γ.

For the timelike curve γ the Frenet frame satisfy following condition:
⟨t, t⟩ = −⟨n, n⟩ = −⟨b, b⟩ = −1,

⟨t, n⟩ = ⟨t, b⟩ = ⟨b, n⟩ = 0,

t× n = b, n× b = −t, b× t = n,

det(t, n, b) = 1,

(2.2)

and the Frenet-Serret equations are given by t′n′
b′

 =

0 κ 0
κ 0 τ
0 −τ 0

 tn
b

 , (2.3)

where the ′ denotes the derivative with respect to s. κ and τ are the curvature and torsion of the curve,
respectively.

For a spacelike curve γ the Frenet frame satisfies following condition:{
t× n = b, n× b = −ϵt, b× t = −n,
det(t, n, b) = −ϵ,

(2.4)

where ϵ = ±1.
The Frenet-Serret equations are given by t′n′

b′

 =

 0 κ 0
−ϵκ 0 τ
0 τ 0

  tn
b

 ,
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where ⟨t, t⟩ = 1, ⟨n, n⟩ = ϵ, ⟨b, b⟩ = −ϵ, ⟨t, b⟩ = ⟨t, n⟩ = ⟨n, b⟩ = 0. When ϵ = 1, γ(s) is a spacelike curve
with spacelike principal normal n and timelike binormal b while if ϵ = -1 then γ is a spacelike curve with
timelike principal normal n and spacelike binormal b.

Definition 2.1 [8] Let v and w be two spacelike vectors in E3
1. Then there is a unique non-negative real

number θ ≥ 0 such that ⟨v, w⟩ = ∥v∥∥w∥ cos θ.

Definition 2.2 [8] Let v be a spacelike vector and w be a timelike vector in E3
1. Then there is a unique

non-negative real number θ ≥ 0, such that ⟨v, w⟩ = ∥v∥∥w∥ sinh θ.

Definition 2.3 [6] Let v be a timelike vector and w be a timelike vector in same time cone of E3
1, i.e.

⟨v, w⟩ < 0. Then there is a unique non-negative real number θ ≥ 0, such that ⟨v, w⟩ = −∥v∥∥w∥ cosh θ.

A surface in E3
1 is said to be a spacelike, timelike or lightlike if the metric on the surface is positive

definite, indefinite or degenerate, respectively. Type of the surface can also be expressed in terms of the
causal character of the normal on the surface by the following lemma.

Lemma 2.1 [5] A surface in Minkowski 3-space is spacelike, timelike or lightlike if and only if, at every
point of the surface there exists a normal that is timelike, spacelike or lightlike, respectively.

Let M be a smooth spacelike surface in E3
1 and γ : I → M ⊂ E3

1 be a unit speed spacelike curve on
the surface. Then the Darboux frame {T,B = N × T,N} along the curve is well-defined and positively
oriented along the curve, where T is the tangent vector field of γ, N is the unit normal of M and B is
intrinsic normal of γ. The Darboux equations are given by

T
′
= κgB + κnN, B

′
= −κgT + τgN, N

′
= κnT + τgB, (2.5)

where κg, κn and τg are the geodesic curvature, normal curvature and geodesic torsion, respectively, and
⟨T, T ⟩ = ⟨B,B⟩ = 1 and ⟨N,N⟩ = −1, ⟨n, n⟩ = 1.

Let M : X = X(u, v) ∈ E3
1 be a regular surface. The unit normal vector field of the surface M is

determined by

N =
Xu ×Xv

∥Xu ×Xv∥
, (2.6)

where Xu and Xv are derivatives of X with respect to u and v, respectively. The coefficients of the first
fundamental form and second fundamental form are given by

E = ⟨Xu, Xu⟩, F = ⟨Xu, Xv⟩, G = ⟨Xv, Xv⟩

and

l = ⟨Xuu, N⟩, m = ⟨Xuv, N⟩, n = ⟨Xvv, N⟩.

Gaussian and mean curvatures of the surface M are expressed as follows [7]

K = ⟨N,N⟩ ln−m2

EG− F 2
(2.7)

and

H =
1

2

En+Gl − 2Fm

|EG− F 2|
, (2.8)

respectively.

Definition 2.4 A surface in E3
1 is called flat when the Gaussian curvature vanishes and it is called

minimal when the mean curvature vanishes.
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3. Translation surface generated by a space curve in E3
1 and a curve lying on a spacelike

surface in Minkowski 3-space E3
1

Let α : I ⊂ R → E3
1 be a space curve with arc-length parameter u and β : J ⊂ R → σ ⊂ E3

1 be a
curve with arc-length parameter v on a spacelike surface σ in E3

1. Since σ is spacelike, the curve β is also
spacelike. Let {t, n, b, κα, τα} be the Frenet apparatus of the curve α and let {T,B,N} be the Darboux
frame of β with κn, κg, τg be the normal curvature, geodesic curvature and geodesic torsion of β on σ
respectively. In this section, we examine the translation surface generated by the curves α and β and
find out some characterizations of the surface as well as of the generating curves of the surface.

3.1. Translation surface generated by a spacelike curve and a curve lying on a spacelike
surface

The translation surface generated by a spacelike curve α and a spacelike curve β lying on a spacelike
surface σ is given by

M : X(u, v) = α(u) + β(v). (3.1)

Differentiating the above equation (3.1) with respect to u and v, we obtain Xu = t and Xv = T .
The unit normal vector N̄ of the surface M is given by

N̄(u, v) =
Xu ×Xv

∥Xu ×Xv∥
, (3.2)

where Xu ×Xv = t× T and ∥Xu ×Xv∥ =
√
−ϵ(EG− F 2), where ϵ = ⟨N̄ , N̄⟩.

By Definition 2.1, we have ⟨t, T ⟩ = cos θ and the coefficients of first fundamental form are obtained
as follows

E = 1, F = cos θ, G = 1, (3.3)

where θ is the smooth angle function between t and T . EG − F 2 = 1 − cos2 θ = sin2 θ > 0 shows that
the surface M is spacelike and hence the unit normal N̄ is timelike, i.e. ⟨N̄ , N̄⟩ = −1.

Thus, we obtain the timelike unit normal,

N̄(u, v) =
t× T

sin θ
, (3.4)

so that ⟨N̄ , t⟩ = ⟨N̄ , T ⟩ = 0 and necessarily θ is non-zero otherwise there does not exist such surface.
Now, we have two cases according to the causality of the principal normal n of the curve α,
Case (i): when n is spacelike, then ⟨t, t⟩ = 1, ⟨n, n⟩ = 1, ⟨b, b⟩ = −1. Suppose the angle between n

and N̄ is ϕ and the angle between N and N̄ is ψ then N̄ can be expressed as follows [10]

N̄(u, v) = sinhϕ n+ coshϕ b,
N̄(u, v) = coshψ N + sinhψ B.

The coefficients of second fundamental form of the surface M are given by
l = κα sinhϕ,

m = 0,

n = κg sinhψ − κn coshψ.

(3.5)

Now, using the equations (2.7), (2.8) and above calculations, we obtain the following results.

Theorem 3.1 The Gaussian curvature and the mean curvature of the translation surface M is given as
follows

K = − (κα sinhϕ)(κg sinhψ − κn coshψ)

sin2 θ
,

H =
(κα sinhϕ) + (κg sinhψ − κn coshψ)

2 sin2 θ
.
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Corollary 3.1 The timelike translation surface M is flat if and only if

κα sinhϕ = 0 or κg sinhψ − κn coshψ = 0.

Proof: By putting K = 0 in the Theorem 3.1, we get the desired result. 2

Corollary 3.2 The translation surface M is minimal if and only if

κα sinhϕ = −κg sinhψ + κn coshψ.

Proof: By putting H = 0 in the Theorem 3.1, we get the required result. 2

Theorem 3.2 The normal curvature, geodesic curvature and geodesic torsion of the curve α lying on
the translation surface M are found as follows

καn = κα sinhϕ,

καg = −κα coshϕ,

ταg = −τα − ϕu,

where κα and τα are curvature and torsion of the curve α, respectively.

Proof: We have καn = ⟨α′′, N̄⟩ and since α′ = t, α′′ = καn and N̄ = sinhϕ n + coshϕ b, we get
καn = ⟨καn, sinhϕ n+ coshϕ b⟩ = κα sinhϕ.

Also, καg = ⟨α′′, N̄ × t⟩, where N̄ × t = sinhϕ (n× t) + coshϕ (b× t) = − sinhϕ b− coshϕ n. So, we
get καg = ⟨καn,− sinhϕ b− coshϕ n⟩ = −κα coshϕ.

Finally, ταg = ⟨N̄u, N̄ × t⟩, where N̄u = ∂N̄
∂u = ϕu coshϕ n + ϕu sinhϕ b + sinhϕ nu + coshϕ bu =

−κα sinhϕ t+ (ϕu + τα) coshϕ n+ (ϕu + τα) sinhϕ b. Hence ταg = ⟨N̄u,− sinhϕ b− coshϕ n⟩ = −(ϕu +

τα) cosh
2 ϕ+ (ϕu + τα) sinh

2 ϕ = (−ϕu − τα)(cosh
2 ϕ− sinh2 ϕ) = −ϕu − τα. 2

Case (ii): When n is timelike, then ⟨t, t⟩ = 1, ⟨n, n⟩ = −1, ⟨b, b⟩ = 1. Suppose the angle between n
and N̄ is ϕ and the angle between N and N̄ is ψ then N̄ can be expressed as follows [10]

N̄(u, v) = coshϕ n+ sinhϕ b,
N̄(u, v) = coshψ N + sinhψ B.

The coefficients of second fundamental form of the surface M are given by
l = −κα coshϕ,

m = 0,

n = κg sinhψ − κn coshψ.

(3.6)

Now, using the equations (2.7), (2.8) and above calculations, we obtain the following results.

Theorem 3.3 The Gaussian curvature and the mean curvature of the spacelike translation surface M
are given as follows, respectively

K =
(κα coshϕ)(κg sinhψ − κn coshψ)

sin2 θ
,

H =
−(κα coshϕ) + (κg sinhψ − κn coshψ)

2 sin2 θ
.

Corollary 3.3 The spacelike translation surface M is flat if and only if

κα = 0 or κg sinhψ − κn coshψ = 0.
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Proof: By putting K = 0 in the Theorem 3.3, we get the desired result. 2

Corollary 3.4 The spacelike translation surface M is minimal if and only if

κα coshϕ = κg sinhψ − κn coshψ.

Proof: By putting H = 0 in the Theorem 3.3, we get the required result. 2

Theorem 3.4 The normal curvature, geodesic curvature and geodesic torsion of the curve α lying on
the translation surface M are found as follows

καn = −κα coshϕ,

καg = κα sinhϕ,

ταg = −τα − ϕu,

where κα and τα are curvature and torsion of the curve α, respectively.

Proof: We have that καn = ⟨α′′, N̄⟩ and since α′ = t, α′′ = καn and N̄ = coshϕ n + sinhϕ b, we get
καn = ⟨καn, coshϕ n+ sinhϕ b⟩ = −κα coshϕ.

Also, καg = ⟨α′′, N̄ × t⟩, where N̄ × t = coshϕ (n× t) + sinhϕ (b× t) = − coshϕ b− sinhϕ n. So, we
get καg = ⟨καn,− coshϕ b− sinhϕ n⟩ = κα sinhϕ.

Finally, ταg = ⟨N̄u, N̄ × t⟩, where N̄u = ∂N̄
∂u = ϕu coshϕ b + ϕu sinhϕ n + coshϕ nu + sinhϕ bu =

κα coshϕ t + (ϕu + τα) sinhϕ n + (ϕu + τα) coshϕ b. Hence ταg = ⟨N̄u,− coshϕ b − sinhϕ n⟩ = (ϕu +

τα) sinh
2 ϕ− (ϕu + τα) cosh

2 ϕ = (−ϕu − τα)(cosh
2 ϕ− sinh2 ϕ) = −ϕu − τα. 2

Theorem 3.5 The normal curvature, geodesic curvature and geodesic torsion of the curve β lying on
the translation surface M (in both cases) are found as follows

κβn = κg sinhψ − κn coshψ,

κβg = κg coshψ − κn sinhψ,

τβg = τg + ψv,

where κn, κg and τg are the normal curvature, geodesic curvature and geodesic torsion of the curve β
lying on the surface σ, respectively.

Proof: We have κβn = ⟨β′′, N̄⟩, and since β′ = T , β′′ = κgB + κnN and N̄ = coshψ N + sinhψ B, we
get κβn = ⟨κgB + κnN, coshψ N + sinhψ B⟩ = κg sinhψ − κn coshψ.

Also, κβg = ⟨β′′, N̄ × T ⟩, where N̄ × T = coshψ (N × T ) + sinhψ (B × T ) = coshψ B + sinhψ N . So,

we get κβg = ⟨κgB + κnN, coshψ B + sinhψ N⟩ = κg coshψ − κn sinhψ.

Finally, τβg = ⟨N̄v, N̄ × T ⟩, where N̄v = ∂N̄
∂v = ψv coshψ B + ψv sinhψ N + coshψ Nv + sinhψ Bv =

(κn coshψ−κg sinhψ)T+(ψv+τg) coshψ B+(ψv+τg) sinhψ N. Hence, τβg = ⟨N̄u, coshψ B+sinhψ N⟩ =
(ψv + τg) cosh

2 ψ − (ψv + τg) sinh
2 ψ = ψv + τg. 2

Corollary 3.5 The relation between Gaussian curvature and mean curvature of the translation surface
M and normal curvatures of the generating curves are given as follows

K = −κ
α
nκ

β
n

sin2 θ
,

H =
καn + κβn
2 sin2 θ

.
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Proof: Using Theorem 3.1, 3.2, 3.3, we get the desired result. 2

Theorem 3.6 The curve α with spacelike principal normal is an asymptotic curve on M if and only if
either α is a straight line or the binormal b of the curve α is parallel to the unit normal N̄ of the surface
M .

Proof: From Theorem 3.2, we have καn = κα sinhϕ. So α is an asymptotic curve on M if and only if
κα sinhϕ = 0 if and only if either κα = 0 or sinhϕ = 0 if and only if either α is a straight line or the
binormal b of the curve α is parallel to the unit normal N̄ of the surface M . 2

Theorem 3.7 The curve α with spacelike principal normal is a geodesic curve on M if and only if α is
a straight line.

Proof: From Theorem 3.2, we have καg = −κα coshϕ. We know that a curve on a surface is a geodesic
curve if and only if the geodesic curvature is zero, so α is a geodesic curve onM if and only if κα coshϕ = 0
if and only if κα = 0, since coshϕ is never zero. Hence the curve α with spacelike principal normal is a
geodesic curve on M if and only if α is a straight line. 2

Theorem 3.8 The curve α with timelike principal normal is an asymptotic curve on M if and only if α
is a straight line.

Proof: From Theorem 3.4, we have καn = −κα coshϕ.We know that a curve on a surface is an asymptotic
curve if and only if the normal curvature is zero, so α is an asymptotic curve on M if and only if
κα coshϕ = 0 if and only if κα = 0, since coshϕ is never zero. Hence the curve α with timelike principal
normal is an asymptotic curve on M if and only if α is a straight line. 2

Theorem 3.9 The curve α with timelike principal normal is a geodesic curve on M if and only if either
α is a straight line or the principal normal n of the curve α is parallel to the normal N̄ of the surface M .

Proof: From Theorem 3.4, we have καg = κα sinhϕ. So α is a geodesic curve on M if and only if
κα sinhϕ = 0 if and only if either κα = 0 or sinhϕ = 0 if and only if either α is a straight line or the
principal normal n and the normal N̄ to the surface M are parallel together. 2

Theorem 3.10 The curve β is an asymptotic curve on M if and only if either β is a straight line or the
angle between the normal N to the surface σ and the normal N̄ to the surface M is given as follows

tanhψ =
κn
κg
.

Proof: From Theorem 3.5, we have κβn = κg sinhψ − κn coshψ. So β is an asymptotic curve on M if
and only if κg sinhψ − κn coshψ = 0 if and only if tanhψ = κn

κg
, when κg ̸= 0. In case κg = 0, we get

κn coshψ = 0, which implies κn = 0, then the curve β is a straight line. 2

Theorem 3.11 The curve β is a geodesic curve on M if and only if either β is a straight line or the
angle between the normal N to the surface σ and the normal N̄ to the surface M is given as follows

tanhψ =
κg
κn
.

Proof: From Theorem 3.5, we have κβg = κg coshψ−κn sinhψ. So β is a geodesic curve onM if and only
if κg coshψ−κn sinhψ = 0 if and only if tanhψ =

κg

κn
, when κn ̸= 0. In case κn = 0, we get κg coshψ = 0,

which implies κg = 0, then the curve β is a straight line. 2
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Theorem 3.12 The curve α with timelike/spacelike principal normal is a line of curvature on M if and
only if the angle between the normal N̄ to the surface M and the principal normal n of α is given as
ϕ = −

∫
ταdu+ c(v).

Proof: From Theorem 3.2 and 3.4, we have ταg = −τα − ϕu. We know that a curve on a surface is a
line of curvature if and only if geodesic torsion is zero, so α is a line of curvature on M if and only if
τα + ϕu = 0 if and only if ϕu = −τα, integrating both side with respect to u we get ϕ = −

∫
ταdu+ c(v),

where c(v) is some function of v. 2

Theorem 3.13 The curve β is a line of curvature on M if and only if the angle between the normal N̄
to the surface M and the normal N to the surface σ along β is given as ψ = −

∫
τgdv + c(u).

Proof: Using Theorem 3.3, we can prove it in similar way to the above theorem. 2

Theorem 3.14 If the curve α with spacelike principal normal is an asymptotic curve on the translation
surface M then α is a planar curve.

Proof: We have, N̄ = t×T
sin θ also N̄ = sinhϕ n+coshϕ b, which implies sinhϕ = ⟨N̄ , n⟩ = 1

sin θ ⟨t×T, n⟩ =
1

sin θ ⟨n× t, T ⟩ = − 1
sin θ ⟨b, T ⟩. Differentiating both sides with respect to u, we get

coshϕ ϕu =
cot θ

sin θ
θu⟨b, T ⟩ −

1

sin θ
⟨b′, T ⟩

=
cot θ

sin θ
θu⟨b, T ⟩ −

τα
sin θ

⟨n, T ⟩

= −θu cot θ sinhϕ− τα coshϕ. (3.7)

Thus, if α is an asymptotic curve then we have sinhϕ = 0, which implies that τα = −ϕu = 0, and hence
α is a planar curve.

2

Theorem 3.15 If the curve α with timelike principal normal is a geodesic curve on the translation
surface M then either θ is a function of v only or θ = 90◦. Conversely, if either θ is a function of v only
or θ = 90◦ then the curve α with timelike principal normal is a geodesic curve or a line of curvature on
the translation surface M .

Proof: We have, N̄ = t×T
sin θ also N̄ = coshϕ n+sinhϕ b, which implies coshϕ = ⟨N̄ , n⟩ = 1

sin θ ⟨t×T, n⟩ =
1

sin θ ⟨n× t, T ⟩ = − 1
sin θ ⟨b, T ⟩. Differentiating both sides with respect to u, we obtain

sinhϕ ϕu = −cot θ

sin θ
θu⟨b, T ⟩+

1

sin θ
⟨b′, T ⟩

= −cot θ

sin θ
θu⟨b, T ⟩+

τα
sin θ

⟨n, T ⟩

= −θu cot θ coshϕ− τα sinhϕ. (3.8)

Thus, if α is a geodesic curve then we have sinhϕ = 0, which implies θu cot θ coshϕ = 0 =⇒ θu cot θ =
0 =⇒ θu = 0 or cot θ = 0, hence α is a geodesic curve if either θ is a function of v only or θ = 90◦.
Now, assuming either θ is a function of v only or θ = 90◦, (3.8) gives sinhϕ (τα + ϕu) = 0, then using
Theorem 3.4 we get that either ταg = 0 or sinhϕ = 0 which implies that either α is line of curvature or a
geodesic curve.

2
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Theorem 3.16 If the normal N̄ to the translation surface M is parallel to the timelike principal normal
n of the generating curve α, then α is geodesic curve on M and β is a straight line, hence M is a
cylindrical surface with the mean curvature H = −κα

2 .

Proof: The unit normal of the translation surface M is given by

N̄ = coshϕ n+ sinhϕ b =
t× T

sin θ
.

Since N̄ is parallel to n, ϕ = 0 so καg = κα sinhϕ = 0, which implies that α is geodesic curve. Also we
have ⟨T, t⟩ = cos θ, hence we can write

T = cos θ t+ sin θ b. (3.9)

Now, κβn = ⟨T ′, N̄⟩ = ⟨∂(cos θ t+sin θ b)
∂v , coshϕ n + sinhϕ b⟩ = ⟨−θv sin θ t + θv cos θ b, n⟩ = 0. Hence

β is an asymptotic curve on the surface M . Similarly, κβg = ⟨T ′, B⟩ = ⟨∂(cos θ t+sin θ b)
∂v , N̄ × T ⟩ =

⟨−θv sin θ t+ θv cos θ b, n× T ⟩ = ⟨−θv sin θ t+ θv cos θ b, cos θ b− sin θ t⟩ = θv. Now using Corollary 3.5,

and καn = −κα coshϕ = −κα, we get K = 0 and H =
κα
n

2 sin2 θ
= − κα

2 sin2 θ
.

Also, since N̄ = n we get ⟨N̄ , T ⟩ = 0 =⇒ ⟨n, T ⟩ = 0. If we differentiate this with respect to u and
use Frenet equations of α, we get

⟨n′, T ⟩ = 0,

κα⟨t, T ⟩+ τα⟨b, T ⟩ = 0,

κα cos θ + τα sin θ = 0, (3.10)

which implies that θ is a function of u only i.e. θv = 0.
Now, since α is a geodesic curve, by Theorem 3.15, we get that θu = 0 or θ = 90◦. Hence, we get

that θ is a constant function which is equal to 90◦ and κβg = −θv =⇒ κβg = 0. So β is a straight line
which implies that M is a cylindrical surface. Finally, sin θ = sin 90◦ = 1, so mean curvature is obtained
as H = −κα

2 . 2

Theorem 3.17 If the normal N̄ to the translation surface M is parallel to the timelike binormal b of
the generating curve α, then α is a planar curve and M is a plane.

Proof: If N̄ is parallel to b then sinhϕ = 0 and hence ϕ = 0. Putting this into (3.7), we obtain that
τα = 0, which implies that α is planar curve and hence b is a fixed vector consequently N̄ is also a fixed
vector which implies M is a plane. 2

Using Theorem 3.6 and 3.17 we find the following result,

Theorem 3.18 The curve α with spacelike principal normal is an asymptotic curve on M if and only if
either α is a straight line or a planar curve.

Note: Since N̄ = coshψ N + sinhψ B, N̄ is never parallel to B as coshψ ̸= 0.

Theorem 3.19 If the normal N̄ to the translation surface M is parallel to the normal N of the surface
σ along the curve β, then the generating curve α is a straight line as a result M is a cylindrical surface

with mean curvature H =
τ2
g+κ2

n

2κn
when β is not an asymptotic curve on σ, otherwise M is a plane.

Proof: The unit normal of the translation surface M is given by,

N̄ = coshψ N + sinhψ B =
t× T

sin θ
.

Thus, if N̄ is parallel to N then ⟨N̄ , t⟩ = ⟨N, t⟩ = 0. We have ⟨t, T ⟩ = cos θ, hence we can write

t = cos θ T + sin θ B. (3.11)
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Now, καn = ⟨t′, N̄⟩ = ⟨∂(cos θ T+sin θ B)
∂u , coshψ N + sinhψ B⟩ = ⟨−θu sin θ T + θu cos θ B,N⟩ = 0. Hence,

α is an asymptotic curve on the surface M . Similarly, καg = ⟨t′, N̄ × t⟩ = ⟨t′, N × (cos θ T + sin θ B)⟩ =
⟨−θu sin θ T + θu cos θ B, cos θ B − sin θ T ⟩ = θu. Now, using Corollary 3.5 and κβn = κg sinhψ −
κn coshψ = −κn, we get K = 0 and H =

κβ
n

2 sin2 θ
= − κn

2 sin2 θ
.

Now, since N̄ = N , we get ⟨N̄ , t⟩ = 0 = ⟨N, t⟩. If we differentiate this with respect to v and use
Darboux equations of β lying on σ we get

⟨N ′, t⟩ = 0,

κn⟨T, t⟩+ τg⟨B, t⟩ = 0,

κn cos θ + τg sin θ = 0, (3.12)

which implies that θ is a function of v only i.e. θu = 0. So καg = 0 also. Hence α is a straight line. Now,

if κn = 0 then the mean curvature H =
κβ
n

2 sin2 θ
= − κn

2 sin2 θ
= 0, which along with K = 0 implies that

M is a plane. Also, when κn ̸= 0, (3.12) implies that cot θ = − τg
κn

=⇒ sin θ = − κn√
τ2
g+κ2

n

which gives

H =
τ2
g+κ2

n

2κn
. Hence, M is a cylindrical surface with mean curvature H =

τ2
g+κ2

n

2κn
.

2

Example 3.1 Let α be a spacelike curve in E3
1 given by α(s) = (

√
2 cosh s,− sinh s, cosh s) and β(t) =

(cosh t, 0, sinh t) be an spacelike curve lying on the surface σ(u, v) = (coshu cosh v, sinhu cosh v, sinh v)
which is a spacelike surface, where α and β are curves given by the arc-length parameters s and t,
respectively. The translation surface generated by the curves α and β is given by M1 : X(s, t) =
α(s) + β(t) = (

√
2 cosh s+ cosh t,− sinh s, cosh s+ sinh t). See figure 1.

Figure 1: Translation surface generated by a spacelike curve in E3
1 and a curve lying on a spacelike surface.

3.2. Translation surface generated by a timelike curve and a curve lying on a spacelike
surface

The translation surface generated by a timelike curve α and a spacelike curve β lying on a spacelike
surface σ is given by

M : X(u, v) = α(u) + β(v). (3.13)

Differentiating the above equation (3.13) with respect to u and v, we obtain Xu = t and Xv = T .
The unit normal vector N̄ of the surface M is given by

N̄(u, v) =
Xu ×Xv

∥Xu ×Xv∥
, (3.14)
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where Xu ×Xv = t× T and ∥Xu ×Xv∥ =
√
−ϵ(EG− F 2), where ϵ = ⟨N̄ , N̄⟩.

By Definition 2.2, we have ⟨t, T ⟩ = sinh θ and the coefficients of first fundamental form are obtained
as follows

E = −1, F = sinh θ, G = 1, (3.15)

where θ is the smooth hyperbolic angle function between t and T . EG−F 2 = −1−sinh2 θ = − cosh2 θ < 0
shows that the surface M is timelike and hence the unit normal N̄ is spacelike, i.e. ⟨N̄ , N̄⟩ = 1.

Thus, we obtain the spacelike unit normal,

N̄(u, v) =
t× T

cosh θ
, (3.16)

so that ⟨N̄ , t⟩ = ⟨N̄ , T ⟩ = 0.
Now, suppose the angle between n and N̄ is ϕ and the angle between N and N̄ is ψ then N̄ can be

expressed as follows [10]

N̄(u, v) = cosϕ n+ sinϕ b,
N̄(u, v) = sinhψN + coshψB.

The coefficients of second fundamental form of the surface M are given by
l = κα cosϕ,

m = 0,

n = κg coshψ − κn sinhψ.

(3.17)

Now, using the equations (2.7) and (2.8) and above calculations, we obtain the following results.

Theorem 3.20 The Gaussian curvature and the mean curvature of the timelike translation surface M
are given as follows, respectively

K = − (κα cosϕ)(κg coshψ − κn sinhψ)

cosh2 θ
,

H =
(κα cosϕ) + (κg coshψ − κn sinhψ)

2 cosh2 θ
.

Corollary 3.6 The timelike translation surface M is flat if and only if

κα cosϕ = 0 or κg coshψ − κn sinhψ = 0.

Proof: By putting K = 0 in the Theorem 3.20, we get the desired result. 2

Corollary 3.7 The timelike translation surface M is minimal if and only if

κα cosϕ = −κg coshψ + κn sinhψ.

Proof: By putting H = 0 in the Theorem 3.20, we get the required result. 2

Theorem 3.21 The normal curvature, geodesic curvature and geodesic torsion of the curve α lying on
the translation surface M are found as follows

καn = κα cosϕ,

καg = κα sinϕ,

ταg = −τα − ϕu,

where κα and τα are curvature and torsion of the curve α, respectively.
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Proof: We know that καn = ⟨α′′, N̄⟩. Since α′ = t, α′′ = καn and using N̄ = cosϕ n + sinϕ b, we get
καn = ⟨καn, cosϕ n+ sinϕ b⟩ = κα cosϕ.

Also, καg = ⟨α′′, N̄ × t⟩, where N̄ × t = cosϕ (n × t) + sinϕ (b × t) = − cosϕ b + sinϕ n. So we get
καg = ⟨καn,− cosϕ b+ sinϕ n⟩ = κα sinϕ.

Finally, ταg = ⟨N̄u, N̄ × t⟩, where N̄u = ∂N̄
∂u = ϕu cosϕ b − ϕu sinϕ n + cosϕ nu + sinϕ bu =

κα cosϕ t − (ϕu + τα) sinϕ n + (ϕu + τα) cosϕ b. Hence, ταg = ⟨N̄u,− cosϕ b + sinϕ n⟩ = −(ϕu +

τα) sin
2 ϕ− (ϕu + τα) cos

2 ϕ = −ϕu − τα. 2

Theorem 3.22 The normal curvature, geodesic curvature and geodesic torsion of the curve β lying on
the translation surface M are found as follows

κβn = κg coshψ − κn sinhψ,

κβg = κg sinhψ − κn coshψ,

τβg = −τg − ψv,

where κn, κg and τg are the normal curvature, geodesic curvature and geodesic torsion of the curve β
lying on the surface σ, respectively.

Proof: We know that κβn = ⟨β′′, N̄⟩. Since β′ = T , β′′ = κgB+κnN and using N̄ = sinhψ N+coshψ B,
we get κβn = ⟨κgB + κnN, sinhψ N + coshψ B⟩ = κg coshψ − κn sinhψ.

Also, κβg = ⟨β′′, N̄ × T ⟩, where N̄ × T = sinhψ (N × T ) + coshψ (B × T ) = sinhψ B + coshψ N . So

we get κβg = ⟨κgB + κnN, sinhψ B + coshψ N⟩ = κg sinhψ − κn coshψ.

Finally, using the Darboux equations we get τβg = ⟨N̄v, N̄ × T ⟩, where N̄v = ∂N̄
∂v = ψv sinhψ B +

ψv coshψ N +sinhψ Nv+coshψ Bv = (κn sinhψ−κg coshψ)T +(ψv+τg) sinhψ B+(ψv+τn) coshψ N.
Hence, τβg = ⟨N̄u, sinhψ B + coshψ N⟩ = −(ψv + τg) cosh

2 ψ + (ψv + τg) sinh
2 ψ = −ψv − τg. 2

Theorem 3.23 The timelike curve α is a geodesic curve on M if and only if either α is a straight line
or the principal normal n and the normal N̄ to the surface M are parallel.

Proof: From Theorem 3.21, we have καg = κα sinϕ. Thus α is a geodesic curve on M if and only if
κα sinϕ = 0 if and only if either κα = 0 or sinϕ = 0 if and only if either α is a straight line or the
principal normal n and the normal N̄ to the surface M are parallel. 2

Theorem 3.24 The timelike curve α is an asymptotic curve on M if and only if either α is a straight
line or the binormal b and the normal N̄ to the surface M are parallel.

Proof: From Theorem 3.21, we have καn = κα cosϕ. Thus α is an asymptotic curve on M if and only
if κα cosϕ = 0 if and only if either κα = 0 or cosϕ = 0 if and only if either α is a straight line or the
binormal b and the normal N̄ to the surface M are parallel. 2

Theorem 3.25 The curve β is an asymptotic curve on M if and only if either β is a straight line or the
angle between the normal N to the surface σ and the normal N̄ to the surface M is given as follows

tanhψ =
κg
κn
.

Proof: From Theorem 3.22, we have κβn = κg coshψ − κn sinhψ. So β is an asymptotic curve on M if
and only if κg coshψ − κn sinhψ = 0 if and only if tanhψ =

κg

κn
, when κn ̸= 0. In case κn = 0, we get

that κg coshψ = 0 which implies κg = 0, then it follows that the curve β is a straight line. 2
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Theorem 3.26 The curve β is a geodesic curve on M if and only if either β is a straight line or the
angle between the normal N to the surface σ and the normal N̄ to the surface M is given as follow

tanhψ =
κn
κg
.

Proof: From Theorem 3.22, we have κβg = κg sinhψ − κn coshψ. So β is a geodesic curve on M if and
only if κg sinhψ − κn coshψ = 0 if and only if tanhψ = κn

κg
, when κg ̸= 0. In case κg = 0 we get that

κn coshψ = 0 which implies κn = 0 further which implies that the curve β is a straight line. 2

Theorem 3.27 If the timelike curve α is an asymptotic curve of the translation surface M then α is a
planar curve.

Proof: We have, N̄ = t×T
cosh θ and N̄ = cosϕ n + sinϕ b, thus cosϕ = ⟨N̄ , n⟩ = 1

cosh θ ⟨t × T, n⟩ =
1

cosh θ ⟨n× t, T ⟩ = − 1
cosh θ ⟨b, T ⟩. Differentiating it with respect to u,

sinϕ ϕu = − tanh θ

cosh θ
θu⟨b, T ⟩+

1

cosh θ
⟨b′, T ⟩

= − tanh θ

cosh θ
θu⟨b, T ⟩+

τα
cosh θ

⟨n, T ⟩

= θu tanh θ cosϕ+ τα sinϕ. (3.18)

Thus, if α is an asymptotic curve then we have cosϕ = 0 or κα = 0, which implies that τα = ϕu = 0,
hence α is a planar curve. 2

Theorem 3.28 If the normal N̄ to the translation surface M is parallel to the principal normal n of the
generating curve α, then α is a geodesic curve on M and β is a straight line, hence M is a cylindrical
surface with the mean curvature H = κα

2 cosh2 θ
.

Proof: The unit normal of translation surface M is given as

N̄ = cosϕ n+ sinϕ b =
t× T

cosh θ
.

Thus, if N̄ is parallel to n then ϕ = 0 so καg = κα sinϕ = 0, which implies that α is a geodesic curve. We
have ⟨T, t⟩ = sinh θ, hence we can write

T = − sinh θ t+ cosh θ b. (3.19)

Now, κβn = ⟨T ′, N̄⟩ = ⟨∂(− sinh θ t+cosh θ b)
∂v , cosϕ n + sinϕ b⟩ = ⟨−θv cosh θ t + θv sinh θ b, n⟩ = 0. Hence

β is an asymptotic curve on the surface M . Similarly, κβg = ⟨T ′, B⟩ = ⟨∂(− sinh θ t+cosh θ b)
∂v , N̄ × T ⟩ =

⟨−θv cosh θ t + θv sinh θ b, n × T ⟩ = ⟨−θv cosh θ t + θv sinh θ b, sinh θ b − cosh θ t⟩ = −θv. Now, using

Corollary 3.5 and καn = κα cosϕ = κα, κ
β
n = 0, we get K = 0 and H =

κα
n

2 cosh2 θ
= κα

2 cosh2 θ
.

Also, since N̄ = n, we get ⟨N̄ , T ⟩ = 0 =⇒ ⟨n, T ⟩ = 0. If we differentiate this with respect to u and
use Frenet equations of α, we get

⟨n′, T ⟩ = 0,

κα⟨t, T ⟩+ τα⟨b, T ⟩ = 0,

κα sinh θ + τα cosh θ = 0, (3.20)

which implies that θ is a function of u only i.e. θv = 0 and κβg = −θv = 0. So β is a straight line and
hence M is a cylindrical surface with mean curvature H = κα

2 cosh2 θ
. 2
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Theorem 3.29 If the normal N̄ to the translation surface M is parallel to the binormal b of the gener-
ating curve α then α is a planar curve and M is a plane.

Proof: When N̄ is parallel to b, cosϕ = 0 and ϕ = 90◦, putting this into (3.18) we obtain that τα = 0,
which implies that α is planar curve and hence b is a fixed vector consequently N̄ is also a fixed vector
which implies M is a plane. 2

Using Theorem 3.24 and 3.29, we find the following result.

Theorem 3.30 The timelike curve α is an asymptotic curve on M if and only if either α is a straight
line or a planar curve.

Theorem 3.31 If the normal N̄ to the translation surface M is parallel to the intrinsic normal B of
the curve β on the surface σ then the generating curve α is a straight line as a result M is a cylindrical

surface with mean curvature H =
κ2
g−τ2

g

2κg
when β is not a geodesic curve on σ, otherwise M is a plane.

Proof: The unit normal of translation surface M is given by

N̄ = sinhψ N + coshψ B =
t× T

cosh θ
.

If N̄ is parallel to B then⟨N̄ , t⟩ = ⟨B, t⟩ = 0. We have ⟨t, T ⟩ = sinh θ, hence we can write

t = sinh θ T + cosh θ N. (3.21)

Now, καn = ⟨t′, N̄⟩ = ⟨∂(sinh θ T+cosh θ B)
∂u , sinhψ N + coshψ B⟩ = ⟨θu cosh θ T + θu sinh θ N,B⟩ = 0.

Hence α is an asymptotic curve on the surface M . Similarly καg = ⟨t′, N̄ × t⟩ = ⟨t′, B × (sinh θ T +
cosh θ N)⟩ = ⟨θu cosh θ T + θu sinh θ N, sinh θ N + cosh θ T ⟩ = θu. Now, using Corollary 3.5 and

κβn = κg coshψ − κn sinhψ = κg, we get K = 0 and H =
κβ
n

2 cosh2 θ
=

κg

2 cosh2 θ
.

Also, since N̄ = B, we get ⟨N̄ , t⟩ = 0 = ⟨B, t⟩. If we differentiate this with respect to v and use
Darboux equations of β lying on σ, we get

⟨B′, t⟩ = 0,

−κg⟨T, t⟩+ τg⟨N, t⟩ = 0,

−κg sinh θ + τg cosh θ = 0, (3.22)

which implies that θ is a function of v only i.e. θu = 0 =⇒ καg = 0. Hence α is a straight line. Now,
if κg = 0 then the mean curvature H =

κg

2 cosh2 θ
= 0, which along with K = 0 implies that M is a

plane. Also when κg ̸= 0, from (3.22), we get that tanh θ =
τg
κg

=⇒ cosh2 θ =
κ2
g

κ2
g−τ2

g
, using this we get

H =
κ2
g−τ2

g

2κg
. Hence, M is a cylindrical surface with mean curvature H =

κ2
g−τ2

g

2κg
.

2

Example 3.2 Let α be a timelike curve in E3
1 given by α(s) = (

√
2 sinh s,

√
2 cosh s, s) and β(t) =

(cosh t, 0, sinh t) be an spacelike curve lying on the surface σ(u, v) = (coshu cosh v, sinhu cosh v, sinh v)
which is a spacelike surface, where α and β are curves given by the arc-length parameters s and t,
respectively. The translation surface generated by the curves α and β is given by M2 : X(s, t) =
α(s) + β(t) = (

√
2 sinh s+ cosh t,

√
2 cosh s, s+ sinh t). See figure 2.
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Figure 2: Translation surface generated by a timelike curve and a curve lying on a spacelike surface.
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