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Certain Results OF (LCS),-Manifolds Endowed with E-Bochner Curvature Tensor

R. T. Naveen Kumar, P. Siva Kota Reddy and Venkatesha

ABSTRACT: In this paper, we study geometry of (LC'S),-manifold focusing on some conditions of E-Bochner
curvature tensor. First, we describe an E-Bochner pseudo-symmetric (LCS)y,-manifold is never reduces to
E-Bochner semi-symmetric manifold under the condition ((a? — p) # 0). Next, we characterize certain results
of (LC'S)pn-manifold satisfying B¢(U,V)§ =0, B¢(§,V) - B¢ =0 and B¢(&,V)-S =0.
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1. Introduction

In 1989, Matsumoto [7], Mihai and Rosca [9] have introduced and studied the structure of Lorentzian
para Sasakian manifolds (briefly, L P-Sasakian manifolds). Since then, many geometers have weakened
the structure of L P-Sasakian manifolds with different extent. For instance, by giving a global approach
based on the existence of several examples, Shaikh [14] firstly investigated Lorentzian concircular struc-
ture manifolds (briefly, (LCS),-manifolds) and proved that an (LCS),-manifold is a space of constant
curvature (a? — p) [15]. In addition to this, Shaiakh and Ahmad [16] proved that an (LC'S),,-manifold is
always remains invariant under a D-homothetic transformation, which does not holds for an LP-Sasakian
manifold. Moreover Shaikh and Baishya [17,18] have studied the applications of (LC'S),-manifolds to
the general theory of relativity and cosmology. The structure of (LC'S),-manifolds have been weakened
by many geometers viz., Hui [5], Hui and Atceken [6], Prakasha [12], Shaikh et al. [19], Shukla and
Shukla [20], Venkatesha et al. [21], Venkatesha and Naveen Kumar [22] etc. Some related developments
can be found in [10,11,13].

On the other hand, in 1949, Bochner studied Weyl conformal curvature tensor as a Kahler analogue
which is popularly known as the Bochner curvature tensor [2]. Later, the geometric meaning of the
Bochner curvature tensor was given by Blair [1]. Then by considering the Boothby-Wang’s fibration [3],
authors Matsumoto and Chuman have introduced the structure of C-Bochner curvature tensor [8] from
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the Bochner curvature tensor given by

BUVYW = RUV)W+ %H[S(U, WYV — S(V. W)U (1.1)

+9(U,W)QV — g(V,W)QU + S(oU, W)V
=SV, W)U + g(oU, W)QPV — g(¢V, W)QoU
+25(0U, V)W + 2g(6U, V) QW
=SU,W)n(V)E+ SV, W)nU)¢
—n(U)n(W)QV +n(V)n(W)QU]

p+n—1
—W[Q(fba VIW — g(¢V, W)U
+29(6U, V)W)~ LS (g0, )V

~g(V.W)U]+ L [o(U. Wn(V )¢
U)WV = g(V,W)n(U)§ — n(V)n(W)UJ,

where S is the Ricci tensor, @ is the Ricci operator defined by g(QU,V) = S(U,V), p = Tizzl and r
being the scalar curvature of the manifold.

As a generalization of C-Bochner curvature tensor, in 1991 Endo [4] defined the structure of E-Bochner
curvature tensor as:

B(U, V)W = B(U,V)W —nU)B(E V)W (1.2)
—n(V)B(U, )W —n(W)B(U, V),

for all U, V,W belongs to TM"™, where B is the C-Bochner curvature tensor. Again he shown that a
K-contact manifold with vanishing F-Bochner curvature tensor is always be a Sasakian manifold.

The present paper is organized as follows: In Section 2, we recall basic formulas and results of
(LCS),,-manifold which is essential throughout the paper. In Section 3, we study E-Bochner pseudo-
symmetric (LCS),-manifold. Here we prove that either ¢-sectional curvature is a differentiable function
Lpe or the manifold turns into n-Einstein and the E-Bochner pseudo-symmetric (LCS),-manifold is
never reduces to F-Bochner semi-symmetric manifold. In Section 4, we consider (LC'S),-manifold such
that B¢(U,V)¢ = 0. In this case the manifold becomes 7-Einstein and hence scalar curvature and &-
sectional curvature are linearly related to each other. Also the manifold admits an n-parallel Ricci tensor
provided scalar curvature or -sectional curvature are constant. In fact, Section 5 is devoted to the study
of (LCS),-manifold satisfying B¢(§, X)- B¢ = 0. We show that either the scalar curvature and ¢-sectional
curvature are linearly related to each other or the manifold reduces to special type of n-Einstein and also
the manifold admits an n-parallel Ricci tensor. Finally, in Section 6 we obtained the Ricci tensor and
Ricci operator of an (LC'S),-manifold satisfying B¢(£, X)-S = 0.

2. Preliminaries
Let M™ be an Lorentzian manifold with unit timelike concircular vector field &, we have
9(6,8) = -1, g(V.§) =n(V), (2.1)
from which it follows that:
(Vum) (V) = alg(U, V) +nU)n(V)], (o #0), (2.2)

where U,V € TM™, V represent the covariant differential operator corresponding to Lorentzian metric g
and « is a non-zero scalar function satisfying

Vya = (Va) =da(V) = pn(V), (2.3)
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where p being certain scalar function given by p = —(€«). Next if we take ¢V = %va , then it follows
from (2.2) and (2.3) that

OV =V +(V)E, (2.4)
from which it can be seen that ¢ is a symmetric (1, 1) tensor. Thus the Lorentzian manifold M™ together
with the unit timelike concircular vector field £, associated 1-form 1 and (1,1) tensor field ¢ is called
(LCS),-manifold [14]. Especially, if we take o =1 in (LC'S),-manifold, then we obtain the Lorentzian

para-Sasakian structure given by Matsumoto [7]. In an (LCS),-manifold, the following relations hold
[14,15]:

n§) = -1, ¢¢=0, n(eU)= (2.5)
g(@U, V) = g(UV)+nU)n(V), (2.6)
RUVIW = (a® = p)lg(V.W)U — g(U,W)V], (2.7)
(Vue)(V) = alg(U,V)§+2n(U)n(V)E +n(V)UJ, (2.8)

SU.€) = (n-1)(a® = p)(U), (2.9)
S(@U.¢V) = SU,V)+ (n-1)(a® = p)n(U)n(V), (2.10)
Q¢ = (n—1)(a® - p). (2.11)

for any vector fields U, V and W, where R and S denotes respectively the Riemannian curvature tensor
and the Ricci tensor of the (LC'S),-manifold.
Also in an (LC'S),-manifold, E-Bochner curvature tensor satisfies the following relations:

4(a® —p)+2p—4

BvE = "I )0 gnwv) (212)
S )QV ~n(V)QU]
pEn—l

g 29U V)E+ 2n(U)n(V)e].
Aa® —p)+2p—4
n+3
—n(U)n(V)E] + %H[n(V)QU — S(U, V)¢
= —B(U,9)V,
Ala? —p)+2p—1
n+3

[t = 1)(e? = () + QU]

=-B° (Ua f)fa
Be(,)U = 0. (2.15)
Definition 2.1. The {-sectional curvature of an (LCS),-manifold for a unit vector field V' orthogonal
to & is given by K(§, V) = g(R(§,V)E, V).

Be(&,U)V

[29(U, V)¢ = 3n(V)U (2.13)

BE(&,U)¢ [Bn(U)¢ + 3U] (2.14)

Hence from (2.7), we obtain
K(&U) = (a® - p).

Throughout this paper we have assumed that an (LCS),-manifold always admits a non-vanishing
&-sectional curvature ((@? — p) # 0).

3. E-Bochner pseudo-symmetric (LCS),-manifold
Definition 3.1. An n-dimensional Riemannian manifold M™ is said to be E-Bochner pseudo-symmetric
if
R-B® = LgQ(g,B°), (3.1)
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holds on the set Xpe = {x € M™ : B # 0} at x, where Lpe is some differentiable function on Xpe and

B¢ is the E-Bochner curvature tensor.

In particular, if we take L ge = 0, then E-Bochner pseudo-symmetric manifold is reduces to E-Bochner

semi-symmetric manifold.

Theorem 3.2. An (LCS),-manifold is E-Bochner pseudo-symmetric, then either &-sectional curvature

is a differentiable function Lpe or the manifold reduces to n-FEinstein.

Proof. Let us consider an E-Bochner pseudo-symmetric (LCS),-manifold, then it follows from (3.1) that

(R(X, ) - B)U, V)W = Lp[(X NE(B(U, V)W)
Be((X NOU, VYW
=B (U, (X AW
—B(U,V)(X A ¢l

Now the left hand side of equation (3.2) gives that

(a® = p)[(B*(UV)W)X — (X, B*(U,V)W)¢
—n(U)B*(X, V)W —n(W)B*(U,V)X
+9(X,U)B(&, V)W + g(X,W)B“(U, V)¢
—n(V)B*(U, X)W + g(X,V)B*(U,§)W].

Similarly right hand side of (3.2) turns into

LBe [ﬁ(Be(U, V)W)X - g(X, BE(U’ V)W){
—n(U)B*(X, VYW —n(W)B*(U,V)X
+9(X,U)B(§, V)W + g(X, W)B*(U, V)&
—n(V)B¢(U, X)W + g(X,V)B*(U, &)W].
By virtue of (3.3) and (3.4) in (3.2) implies that
0 = ((@=p)—=Lp)n(B (U, VW)X — g(X, B(U,V)W)§
—n(U)B*(X, V)W + g(X,U)B°(&, V)W
—n(W)B(U, V)X + g(X,W)B(U, V)¢
—n(V)B*(U, X)W + g(X,V)B(U,§)W],
which gives either (a? — p) = Lpe or
n(B*(U,V)W)X — g(X, B*(U, V)W)
—n(U)B(X, V)W + g(X,U)B(&, V)W
—n(W)B®(U, V)X + g(X,W)B(U, V)&
—n(V)B(U, X)W + g(X,V)B(U, )W =
Substituting V' = £ into (3.6) and then using (2.12)-(2.15), we obtain

BYU, X)W = G _npzr?p_zl[ (W)g(X,U)E + 3g(X, W)U

HU)g(X, W)€ = 29(U, W)X +(U)n(W)X
P2V )(XE] + (ST, W)X

—9(X, W)QU +n(U)S(X, W)& = n(U)n(W)QX

~n(U)g(X, W)E) + (n —1)(a® = p)(n(U)n(W)X].

(3.2)

(3.7)
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Finally contracting above equation along the vector field U yields that

S(X,W) = Mg(X, W)+ Nn(X)n(W),

(n+1)(21 = 17n)(a® — p) — 2(3n — 1)r +n> + 3n — 12
(n+1)(n+7) ’

(14—9n—n?)(n+1)(a® —p) +n +Tr +n3+2n — 11
(n+1)(n+7) '

where M

N:

O

Since Lpe = (a? — p) and noticing the assumption that the manifold is of non-vanishing &-sectional
curvature ((a? — p) # 0), we obtain Lpge # 0.
Hence we conclude the following corollary:

Corollary 3.3. An E-Bochner pseudo-symmetric (LCS),-manifold with (o — p) # 0 never reduces to
E-Bochner semi-symmetric manifold (Lge # 0).

4. (LCS),-manifold satisfying B¢(U,V){ =0

Let us consider an (LC'S),-manifold satisfying B¢(U, V)¢ = 0, then it follows from an equation (1.2)
that

2B(U,V)§ =n(U)B(E,V)E —n(V)B(U,§)§ = 0. (4.1)
By virtue of (1.1) in (4.1), we get
4(a® —p)+2p—4

0= DB sy — (V] (12)
+n—+3[7l(U)QV -n(V)QU]
_p+n—1

3 29U V)E+ 2(U)n(V)E].

Replacing V' by £ in (4.2) gives that
2n+1)(a® —p)+7r—(n+3)

S(U,wW) = e g(U, W) (4.3)
n —n)(a? - r—(n
R 0

Thus we have state the following result:

Theorem 4.1. An (LCS),-manifold (n > 1) satisfying B¢(U, V)¢ = 0, always turns into n-Einstein
manifold.

Furthermore, on contracting the expression (4.3) yields that

_ 3w =D —p) (-1(n+3)
r= 5 - 5 . (4.4)

This leads us to the following result:

Theorem 4.2. In an (LCS),-manifold (n > 1) satisfying B¢(U,V){ = 0, the scalar curvature and
&-sectional curvature are linearly related to each other.

Next by taking covariant derivative of (4.4) over the arbitrary vector field V', we have

(er) _ 3(n2 - 1)V2V(042 - p) _ 3(7’L2 - 1)(230 - /B)W(V) ) (45)

Hence we can state the following result:
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Theorem 4.3. In an (LCS),,-manifold (n > 1) satisfying B¢(U, V)& = 0, the scalar curvature is constant
if and only if £-sectional curvature is constant.

On replacing U by ¢U and W by ¢W in (4.3) yields the following relation

2n+1)(a? —p)+7r—(n+3)
n+1

S(@U, W) = g9(eU, oW). (4.6)

Differentiating (4.6) covariantly along the arbitrary vector field X, we obtain

2(n+1)(2ap — B)n(X) + dr(X)

(VxS)(0U,oW) = i

9(SU, $W). (4.7)

If we consider an (LC'S),-manifold with constant scalar curvature or ¢-sectional curvature, we have
(Vx9)(oU, oW) = 0.
Thus we can easily get the following result:

Corollary 4.4. An (LCS),-manifold (n > 1), satisfying B(U,V){ = 0 always admits an n-parallel
Ricci tensor provided scalar curvature or &-sectional curvature are constant.

5. (LCS),-manifold satisfying B¢(¢,X)-B° =0
Let us consider an (LC'S),-manifold satistying (B¢(§, X) - B¢)(U, V)W = 0. Then we can easily see that

0 = B¢ X)B(U, V)W — BY(B(&, X)U, V)W (5.1)
—BE(U, BE(¢&, X)V)W — BS(U, V)B(&, X)W.

Using (2.13) in (5.1), we have the following equation

MO D20 = Yo 0, B0,V )W — (B (0, V) W)X 52

+3n(U)B(X, V)W — n(X)n(B(U, V)W)¢
—29(X, U)B(& V)W +n(X)n(U) B (&, V)W
—29(X, V) B (U, W + 3n(V)B*(U, X)W
+n(X)n(V)B(U, W — 29(X, W)B(U, V)¢
+3n(W)B(U, V)X +n(X)n(W)B*(U, V)¢
6

+n—+3[77(Be(U, VIW)QX — S(X, BS(U, V)W)

—n(U)B(QX, V)W + S(X,U)B*({, V)W
—n(V)B(U,QX)W + S(X,V)B(U, )W
—n(W)B(U,V)QX + S(X,W)B¢(U,V)¢] = 0.
Replacing U = W = ¢ in (5.2) and then by taking an account of (2.12)-(2.15), we obtain
—(4(a® = p) +2p — 4)[(4(e” — p) +2p — (V)X (5:3)
+4An(X)QV] + 6[S(X, QV)§ — S(QX, V)E] = 0.

Again replacing X = ¢ in (5.3) and then by using (2.9) gives,
either 4(a® — p) +2p—4=0or

4QV = (4(0” = p) +2p — (V)€ (5.4)
Now consider 4(a? — p) + 2p — 4 = 0, we have
r=m+3)—2n+1)(a®—p). (5.5)

Hence we can state the following:
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Theorem 5.1. In an (LCS),,-manifold satisfying B¢(, X )- B¢ = 0, the scalar curvature and &-sectional
curvature are linearly related to each other.

On the other hand by considering (5.4), we have

r+2(n+1)(a? —p) — (n+3)
2(n+1)

S(VY) = n(Vn(y). (5.6)

Thus we have state the following result:

Theorem 5.2. An (LCS),-manifold satisfying B¢(¢,X) - B¢ = 0, always turns into special type of
n-Einstein manifold.

Further, replacing V and Y by ¢V and ¢Y in (5.6), we get
S(oV, Y ) = 0. (5.7)
On differentiating (5.7) covariantly along the vector field X, gives
(VxS)(¢V,¢Y) = 0. (5.8)
Hence from the above expression, Theorem 5.1. and Theorem 5.2., we can able to conclude the following;:

Corollary 5.3. In an (LCS),-manifold satisfying B¢(§,X) - B¢ = 0, either the scalar curvature and &-
sectional curvature are linearly related to each other or the manifold turns into special type of n-FEinstein
and hence the manifold always admits an n-parallel Ricci tensor.

6. (LCS),-manifold satisfying B°({,X)-S =0

Theorem 6.1. Let M™ be an (LCS),,-manifold satisfying B¢(,Y)-S = 0. Then the Ricci tensor S and
the Ricci operator Q are given by the equations (6.2) and (6.3) respectively.

Proof. In an (LCS),-manifold satisfying B¢(£,Y") - S = 0, we can easily see that
S(B(&,Y)U, V) + S(U,B*(£,Y)V) = 0. (6.1)

On plugging V = ¢ in (6.1) and then by considering(2.9) and (2.13) follows that

S(QY,U) = M S(Y,U)+N'[-29(Y,U) +n(Y)n(U)), (6.2)
r o 6(n+1)Bn+1)(a® —p)+6(r—n—3)
where, M = 6(n+1) ,
N~ (=D = plAnt (e —p) =D +2rtn 1)
6(n+1) '

Contracting above expression over Y and U, we have
r[3(r —n —3) + (a? — p)(Tn? + 13n + 4)]
—(n—=1)2n+1)(a® = p)[(n = 1) + 2(n + 1)((e* — p) = 1)]
3(n+1) '
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