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Results for Self-Inversive Rational Functions

Idrees Qasim

ABSTRACT: In this paper, we find some relations between maximum modulus of a rational function r(z)
satisfying r(z) = B(2)r(1/z) and the maximum modulus of its derivative. We also find analogue of Cohn’s
Theorem for rational functions.
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1. Introduction
n .
Let P,, denote the space of complex polynomials p(z) := > ;27 of degree n > 1. Let T := {z : |z]| = 1},
§=0

D_:={z:|z| <1} and Dy :={z: |z| > 1}. For z; € C with j =1,2,...,n, we write

w(z) = [[(z - 2). (1.1)

and

B(z) is known as finite Blaschke product.
Let p(z) be a polynomial of degree at most n with complex variable z. We consider the following space

of rational functions
Ry = Ru(21,22, ..., 20) = {p(z) } .

w(z)
Throughout this paper, we shall assume that all the poles z1, z2, . .., z,, are in D unless otherwise stated.
For the case when all the poles are in D_, we can obtain analogous results with suitable modification of

our method.

Definition of conjugate transpose

n .
1. For p(z) := Y «a;z?, the conjugate transpose (reciprocal) p* of p is defined by
§=0

)

NI

p'(z) =2"p (
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p(2)

2. For r(z) = —= € R, the conjugate transpose r* of r is defined by

—1>: P (2)

3. p € P, is said to be self-inversive if p*(z) = Ap(z) with |A| = 1. Similarly, » € R, is said to be
self-inversive if 7*(z) = Ar(z) with |A\| = 1. Note that r(z) is self-inversive if and only if p(z) is self
inversive.

4. p € P, is said to be self-reciprocal if p(z) = z"p(1/z). Also, r € R,, is said to be self-reciprocal if

r(z) = B(z)r(1/z).

In 1927, Bernstein [3] proved the following result.

If p € Py, then
/
< .
maxlp' ()] < nmaxp(z)) 2

where the equality holds for polynomials having all zeros at the origin.
In 1969, Malik [5] improved inequality (1.2) and proved the following:

If p € Py, then for z €T
P'(2)] +1Q'(2)] < nmax[p(2)] (13)

z

where Q(z) = znm.

As an easy consequence of inequality (1.3), we have the following result which improves inequality
(1.2) for self-inversive polynomials.

Theorem A. If p € P, is self-inversive, then for z € T,

’ n
< = . 1.4
max [p/(2)] < 5 max [p(2)| (1.4

For a complex number « and for p € P,,, let
Dop(z) =np(2) + (a = 2)p'(2).

D,p(z) is a polynomial of degree at most n — 1 and is known as polar derivative of p with respect to a.
It generalizes the ordinary derivative in the sense that

D,
lim Dap(2) =p'(2).
a—00 o
Aziz and Shah [2] extended inequality (1.2) to the polar derivative of a polynomial and proved the
following result.
Theorem B. If p € P, then for every a with « €e TU Dy and z € T,

[Dap(2)] < nla] max |o(2)]. (15)

Li, Mohapatra and Rodriguez [6] extended inequality (1.2) and (1.4) to rational functions with prescribed
poles and proved the following results.
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Theorem C. If r € R,,, then for z € T

['(2)] < |B'(2)| max |r(=)]. (1.6)

Equality holds for r(z) = uB(z), where u € T.

Theorem D. If r(z) = i((zz)) € R,, and r(z) is self-inversive, then
B'(2)]
()| < | .
malr (9] < =57 ma )

Regarding the number of zeros of a self-inversive polynomial inside a unit circle, we have the following
well-known result [4].

Theorem E(Cohn’s Theorem). Let g(z) be a self inversive polynomial, then g(z) has the same num-
ber of zeros inside the unit circle as does the polynomial ¢[g’(z)]*.

In this paper, we give improvement of inequality (1.6) for self-reciprocal rational functions. Inequality for
polar derivative of a polynomial is deduced which improves inequality (1.5) for the class of polynomials
p(2) satisfying p(z) = 2"p (1/z). Moreover, the analogue of Cohn’s Theorem for rational functions is also
discussed.

2. Main Results

The first result gives the improvement of inequality (1.6) for self-reciprocal rational functions.
Theorem 1. If r(2) = p(z)/w(z) € Ry, where p(z) = E?:o(aj +1ib;j)z7, a; >0, bj >0, z; >1Vj bea
self-reciprocal rational function, then

/ |B'(2)|
max |r'(z)] < 75 K r(2)l; (2.1)

where equality holds for r(z) = B(z) + 2iy/B(z) + 1.

/

For |a] > 1, applying Theorem 1 to rational functions p(z)/(z — )™ and noting that (p(z)(z — a)")" =
—Dup(2)/(z—a)" 1, we get the following improvement of inequality (1.5) for polynomials p(z) satisfying
p(z) =z"p(1/2).

Corollary 1. If p(z) = Y7

j:O(a’j +1ib;)z7, aj >0, b; >0, V j be a self-reciprocal polynomial, then, for
laf =1,

[Dap(z)| < max |p(z)]. (2.2)

When we look at the analogous of Cohn’s theorem for rational functions of the form r(z) = p(z)/w(z),
we see that since r'(2) = [w(2)p/(z) — w'(2)p(2)] /(w(2))?, therefore, the zeros of w(z) also play a role.
However, one would expect that analogous of Cohn’s Theorem might be true, if we restrict zeros of w(z)
in a region. The feasible regions where we can restrict zeros of w(z) are either |z| < 1 or |z| > 1. But
both the cases does not work as is clear from the following two examples:

223241 122422 —1i

r(z) = 2z —1 » 7(z) = z—2

The following result gives the indirect analogue of Cohn’s Theorem for rational functions
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Theorem 2. If 7(z) = p(z)/w(z) is a self-inversive rational function of degree n, having s zeros inside
|z| <1 and n poles in |z| > 1. If degree of p(z) = degree of w(z) and for z € T

p*(2)(w' (2))"] < Jw” (2) (P (2))"]

then [r'(z)]* has exactly s +n + 1 zeros inside |z| < 1.

3. Lemmas

For the proofs of these theorems we need the following lemma due to Li, Mahapatra and Rodrigues

[6].

Lemma 1. For z; € C with |z;| > 1,

=|B'(z2)| for z € T.

4. Proofs of the Theorems

Proof of Theorem 1. Since

o(z) = 2j—oles +ibj)z)  ¥iga;7 _’_iZ;‘L:O b; 2!

therefore, we can write
r(z) = ri(z) +ir2(2),

where 71 (2) and 74(2) are rational functions of degree less than for equal to n. Also, r(z) = B(2)r (1/z),

therefore,
m(z) = B(=)r (%) — B(:) (%)

and

We claim that
|B'(2)]

ma 7y (2)] < ), (1.0
and ”
ma |r )] < 23y ) (4.2

To prove our claim, let
F(z) = aB(z) + @+ ri(2),

where « is a complex number with |o| = 1. Then

This shows that F(z) is a self-inversive rational function of degree n and therefore, by Theorem D, we
have for z € T

i 1B
F'(2)] < = max P (2))
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Equivalently,

0B'(2) +74(2)] < PN smaxaB(z) 4347 (2)
5

<
-2

[2 + max |r1(z)|] . (4.3)
Choosing argument of « such that for z € T',

@B’ (2) + r1(2)] = lal|B'(2)] + 1 (2)]-
Letting |a| — 1 and using this in inequality (4.3) we have for z € T,

B+ 1) < 1BE)] + 2 i (o)
= ri(2)| < |B’2(z)| glea%(|r1(z)|.

This proves inequality (4.1). Similarly, inequality (4.2) follows.

Let |r/(z)| becomes maximum at z = €%, 0 < £ < 27 on T, then
/ — gl (%€
max [ (2)| = |7 (¢°)
= I (e) + ury )
< [ri(e®)] + [ry(e’)]

B (s 1)1+ )

_|B'(2)] (p1(1) 4 pa(1)
= ( fw1)] ) (44

Since 2 [(p1(1))2 + (p2(1))?] > [p1(1) + p2(1)]*, therefore, from inequality (4.4) we have

/ |B'(2)| v2[(p1(1))? + (p2(1))%]
max ()l < —5 (D] :

|B'(2)| Ir(1)]

<

which proves the required result. [

Proof of Theorem 2. We have

Therefore,
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Now,

Jop* (2) (0w ()" < |z (2)(p/ ()] for = € T,

and both sides are analytic. As p(z) has s zeros in |z| < 1 and p(z) is self inversive, therefore, by Cohn’s
Theorem [p’(z)]* has s zeros inside |z| < 1. Also, w(z) has n zeros in |z| > 1, therefore, w*(z) has n zeros
inside |z| < 1. Hence zw*(z)(p'(2))* has s +n + 1 zeros inside |z| < 1. Therefore, by Rouche’s Theorem,
zw*(2)(p'(2))* —zp*(z)(w')* has s+n+1 zeros inside |z| < 1. Thus, [r'(z)]* has s+n+1 zeros inside |z| < 1.

1.
2.

O
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