
Bol. Soc. Paran. Mat. (3s.) v. 2024 (42) : 1–6.
©SPM –ISSN-2175-1188 on line ISSN-0037-8712 in press

SPM: www.spm.uem.br/bspm doi:10.5269/bspm.65843

Results for Self-Inversive Rational Functions

Idrees Qasim

abstract: In this paper, we find some relations between maximum modulus of a rational function r(z)
satisfying r(z) = B(z)r(1/z) and the maximum modulus of its derivative. We also find analogue of Cohn’s
Theorem for rational functions.
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1. Introduction

Let Pn denote the space of complex polynomials p(z) :=
n
∑

j=0

αjzj of degree n ≥ 1. Let T := {z : |z| = 1},

D− := {z : |z| < 1} and D+ := {z : |z| > 1}. For zj ∈ C with j = 1, 2, . . . , n, we write

w(z) =

n
∏

j=1

(z − zj), (1.1)

and

B(z) :=

n
∏

j=1

(

1 − zjz

z − zj

)

.

B(z) is known as finite Blaschke product.
Let p(z) be a polynomial of degree at most n with complex variable z. We consider the following space
of rational functions

Rn := Rn(z1, z2, . . . , zn) :=

{

p(z)

w(z)

}

.

Throughout this paper, we shall assume that all the poles z1, z2, . . . , zn are in D+ unless otherwise stated.
For the case when all the poles are in D−, we can obtain analogous results with suitable modification of
our method.

Definition of conjugate transpose

1. For p(z) :=
n
∑

j=0

αjzj, the conjugate transpose (reciprocal) p∗ of p is defined by

p∗(z) = znp

(

1

z

)

.
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2. For r(z) =
p(z)

w(z)
∈ Rn, the conjugate transpose r∗ of r is defined by

r∗(z) = B(z)r

(

1

z

)

=
p∗(z)

w(z)
.

3. p ∈ Pn is said to be self-inversive if p∗(z) = λp(z) with |λ| = 1. Similarly, r ∈ Rn is said to be
self-inversive if r∗(z) = λr(z) with |λ| = 1. Note that r(z) is self-inversive if and only if p(z) is self
inversive.

4. p ∈ Pn is said to be self-reciprocal if p(z) = znp(1/z). Also, r ∈ Rn is said to be self-reciprocal if
r(z) = B(z)r(1/z).

In 1927, Bernstein [3] proved the following result.

If p ∈ Pn, then

max
z∈T

|p′(z)| ≤ n max
z∈T

|p(z)|, (1.2)

where the equality holds for polynomials having all zeros at the origin.

In 1969, Malik [5] improved inequality (1.2) and proved the following:

If p ∈ Pn, then for z ∈ T
|p′(z)| + |Q′(z)| ≤ n max

z∈T
|p(z)|, (1.3)

where Q(z) = znp

(

1

z

)

.

As an easy consequence of inequality (1.3), we have the following result which improves inequality
(1.2) for self-inversive polynomials.

Theorem A. If p ∈ Pn is self-inversive, then for z ∈ T ,

max
z∈T

|p′(z)| ≤ n

2
max
z∈T

|p(z)|. (1.4)

For a complex number α and for p ∈ Pn, let

Dαp(z) := np(z) + (α − z)p′(z).

Dαp(z) is a polynomial of degree at most n − 1 and is known as polar derivative of p with respect to α.
It generalizes the ordinary derivative in the sense that

lim
α→∞

Dαp(z)

α
= p′(z).

Aziz and Shah [2] extended inequality (1.2) to the polar derivative of a polynomial and proved the
following result.
Theorem B. If p ∈ Pn, then for every α with α ∈ T ∪ D+ and z ∈ T,

|Dαp(z)| ≤ n|α| max
z∈T

|p(z)|. (1.5)

Li, Mohapatra and Rodriguez [6] extended inequality (1.2) and (1.4) to rational functions with prescribed
poles and proved the following results.
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Theorem C. If r ∈ Rn, then for z ∈ T

|r′(z)| ≤ |B′(z)| max
z∈T

|r(z)|. (1.6)

Equality holds for r(z) = uB(z), where u ∈ T .

Theorem D. If r(z) =
p(z)

w(z)
∈ Rn and r(z) is self-inversive, then

max
z∈T

|r′(z)| ≤ |B′(z)|
2

max
z∈T

|r(z)|.

Regarding the number of zeros of a self-inversive polynomial inside a unit circle, we have the following
well-known result [4].
Theorem E(Cohn’s Theorem). Let g(z) be a self inversive polynomial, then g(z) has the same num-
ber of zeros inside the unit circle as does the polynomial c[g′(z)]∗.

In this paper, we give improvement of inequality (1.6) for self-reciprocal rational functions. Inequality for
polar derivative of a polynomial is deduced which improves inequality (1.5) for the class of polynomials
p(z) satisfying p(z) = znp (1/z). Moreover, the analogue of Cohn’s Theorem for rational functions is also
discussed.

2. Main Results

The first result gives the improvement of inequality (1.6) for self-reciprocal rational functions.
Theorem 1. If r(z) = p(z)/w(z) ∈ Rn, where p(z) =

∑n

j=0(aj + ibj)zj, aj ≥ 0, bj ≥ 0, zj > 1 ∀j be a
self-reciprocal rational function, then

max
z∈T

|r′(z)| ≤ |B′(z)|√
2

max
z∈T

|r(z)|, (2.1)

where equality holds for r(z) = B(z) + 2i
√

B(z) + 1.

For |α| > 1, applying Theorem 1 to rational functions p(z)/(z −α)n and noting that (p(z)(z − α)n)′ =
−Dαp(z)/(z −α)n+1, we get the following improvement of inequality (1.5) for polynomials p(z) satisfying
p(z) = znp (1/z).

Corollary 1. If p(z) =
∑n

j=0(aj + ibj)zj, aj ≥ 0, bj ≥ 0, ∀ j be a self-reciprocal polynomial, then, for
|α| ≥ 1,

|Dαp(z)| ≤ n(|α| + 1)√
2

max
z∈T

|p(z)|. (2.2)

When we look at the analogous of Cohn’s theorem for rational functions of the form r(z) = p(z)/w(z),
we see that since r′(z) = [w(z)p′(z) − w′(z)p(z)] /(w(z))2, therefore, the zeros of w(z) also play a role.
However, one would expect that analogous of Cohn’s Theorem might be true, if we restrict zeros of w(z)
in a region. The feasible regions where we can restrict zeros of w(z) are either |z| < 1 or |z| > 1. But
both the cases does not work as is clear from the following two examples:

r(z) =
z2 − 3z + 1

2z − 1
, r(z) =

iz2 + 2z − i

z − 2
.

The following result gives the indirect analogue of Cohn’s Theorem for rational functions
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Theorem 2. If r(z) = p(z)/w(z) is a self-inversive rational function of degree n, having s zeros inside
|z| < 1 and n poles in |z| > 1. If degree of p(z) = degree of w(z) and for z ∈ T

|p∗(z)(w′(z))∗| < |w∗(z)(p′(z))∗|

then [r′(z)]∗ has exactly s + n + 1 zeros inside |z| < 1.

3. Lemmas

For the proofs of these theorems we need the following lemma due to Li, Mahapatra and Rodrigues
[6].

Lemma 1. For zj ∈ C with |zj | > 1,

zB′(z)

B(z)
= |B′(z)| for z ∈ T.

4. Proofs of the Theorems

Proof of Theorem 1. Since

r(z) =

∑n

j=0(aj + ibj)zj

w(z)
=

∑n

j=0 ajzj

w(z)
+ i

∑n

j=0 bjzj

w(z)
,

therefore, we can write

r(z) = r1(z) + ir2(z),

where r1(z) and r2(z) are rational functions of degree less than for equal to n. Also, r(z) = B(z)r (1/z),
therefore,

r1(z) = B(z)r1

(

1

z

)

= B(z)r1

(

1

z

)

,

and

r2(z) = B(z)r2

(

1

z

)

= B(z)r2

(

1

z

)

.

We claim that

max
z∈T

|r′

1(z)| ≤ |B′(z)|
2

|r1(1)|, (4.1)

and

max
z∈T

|r′

2(z)| ≤ |B′(z)|
2

|r2(1)|. (4.2)

To prove our claim, let

F (z) = αB(z) + α + r1(z),

where α is a complex number with |α| = 1. Then

B(z)F

(

1

z

)

= α + αB(z) + B(z)r1

(

1

z

)

= α + αB(z) + r1(z) = F (z).

This shows that F (z) is a self-inversive rational function of degree n and therefore, by Theorem D, we
have for z ∈ T

|F ′(z)| ≤ |B′(z)|
2

max
z∈T

|F (z)|.
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Equivalently,

|αB′(z) + r′

1(z)| ≤ |B′(z)|
2

max
z∈T

|αB(z) + α + r1(z)|

≤ |B′(z)|
2

[

2 + max
z∈T

|r1(z)|
]

. (4.3)

Choosing argument of α such that for z ∈ T ,

|αB′(z) + r′

1(z)| = |α||B′(z)| + |r′

1(z)|.
Letting |α| → 1 and using this in inequality (4.3) we have for z ∈ T ,

|B′(z)| + |r′

1(z)| ≤ |B′(z)| +
|B′(z)|

2
max
z∈T

|r1(z)|

⇒ |r′

1(z)| ≤ |B′(z)|
2

max
z∈T

|r1(z)|.

This proves inequality (4.1). Similarly, inequality (4.2) follows.

Let |r′(z)| becomes maximum at z = eiξ, 0 ≤ ξ < 2π on T , then

max
z∈T

|r′(z)| = |r′(eiξ)|

= |r′

1(eiξ) + ιr′

2(eiξ)|
≤ |r′

1(eiξ)| + |r′

2(eiξ)|

≤ |B′(z)|
2

(|r1(1)| + |r2(1)|)

=
|B′(z)|

2

(

p1(1) + p2(1)

|w(1)|

)

. (4.4)

Since 2
[

(p1(1))2 + (p2(1))2
]

≥ [p1(1) + p2(1)]
2
, therefore, from inequality (4.4) we have

max
z∈T

|r′(z)| ≤ |B′(z)|
2

√

2 [(p1(1))2 + (p2(1))2]

|w(1)|

=
|B′(z)|√

2
|r(1)|

=
|B′(z)|√

2
max
z∈T

|r(z)|,

which proves the required result. �

Proof of Theorem 2. We have

r′(z) =
w(z)p′(z) − p(z)w′(z)

[w(z)]2

Therefore,

[r′(z)]∗ =
[w(z)p′(z) − p(z)w′(z)]∗

[w(z)]2

=
z2n

[

w
(

1
z

)

p′
(

1
z

)

− p
(

1
z

)

w′
(

1
z

)

]

[w(z)]2

=
z

[

znw
(

1
z

)

zn−1p′
(

1
z

)

− znp
(

1
z

)

zn−1w′
(

1
z

)

]

[w(z)]2

=
z [w∗(z)(p′(z))∗ − p∗(z)(w′(z))∗]

[w(z)]2
.
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Now,
|zp∗(z)(w′(z))∗| < |zw∗(z)(p′(z))∗| for z ∈ T,

and both sides are analytic. As p(z) has s zeros in |z| < 1 and p(z) is self inversive, therefore, by Cohn’s
Theorem [p′(z)]∗ has s zeros inside |z| < 1. Also, w(z) has n zeros in |z| > 1, therefore, w∗(z) has n zeros
inside |z| < 1. Hence zw∗(z)(p′(z))∗ has s + n + 1 zeros inside |z| < 1. Therefore, by Rouche’s Theorem,
zw∗(z)(p′(z))∗−zp∗(z)(w′)∗ has s+n+1 zeros inside |z| < 1. Thus, [r′(z)]∗ has s+n+1 zeros inside |z| < 1.

�
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