(3s.) v. 2025 (43) : 1–7. ISSN-0037-8712 doi:10.5269/bspm.65878

A Study on Generalized Absolute Matrix Summability

Hikmet Seyhan Özarslan

ABSTRACT: In the present paper, a theorem dealing with the $|\bar{N}, p_n|_k$ summability factors of an infinite series has been generalized to the absolute matrix summability under weaker conditions by using a quasi σ -power increasing sequence.

Key Words: Absolute matrix summability, almost increasing sequence, Hölder's inequality, infinite series, Minkowski's inequality, quasi power increasing sequence, summability factor.

Contents

1	Introduction	1
2	Known Result	2
3	Main Result	2
4	Proof of Theorem 3.1	3

1. Introduction

A positive sequence (c_n) is said to be almost increasing if there exists a positive increasing sequence (d_n) and two positive constants A and B such that $Ad_n \leq c_n \leq Bd_n$ (see [1]). A sequence (λ_n) is said to be of bounded variation, denote by $(\lambda_n) \in \mathcal{BV}$, if $\sum_{n=1}^{\infty} |\Delta \lambda_n| = \sum_{n=1}^{\infty} |\lambda_n - \lambda_{n+1}| < \infty$. Let $\sum a_n$ be a given infinite series with the partial sums (s_n) . Let (p_n) be a sequence of positive numbers such that

$$P_n = \sum_{v=0}^n p_v \to \infty \quad as \quad n \to \infty, \quad (P_{-i} = p_{-i} = 0, \quad i \ge 1).$$

Let $A = (a_{nv})$ be a normal matrix, i.e., a lower triangular matrix of nonzero diagonal entries. Then A defines the sequence-to-sequence transformation, mapping the sequence $s = (s_n)$ to $As = (A_n(s))$, where

$$A_n(s) = \sum_{v=0}^n a_{nv} s_v, \quad n = 0, 1, \dots$$

The series $\sum a_n$ is said to be summable $|A, p_n|_k$, $k \ge 1$, if (see [14])

$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n} \right)^{k-1} |A_n(s) - A_{n-1}(s)|^k < \infty.$$

For $a_{nv} = \frac{p_v}{P_n}$, $|A, p_n|_k$ summability reduces to $|\bar{N}, p_n|_k$ summability (see [2]).

Given a normal matrix $A=(a_{nv})$, two lower semimatrices $\bar{A}=(\bar{a}_{nv})$ and $\hat{A}=(\hat{a}_{nv})$ are defined as follows:

$$\bar{a}_{nv} = \sum_{i=v}^{n} a_{ni}, \quad n, v = 0, 1, \dots$$
 (1.1)

$$\hat{a}_{00} = \bar{a}_{00} = a_{00}, \quad \hat{a}_{nv} = \bar{a}_{nv} - \bar{a}_{n-1,v}, \quad n = 1, 2, \dots$$
 (1.2)

2010 Mathematics Subject Classification: 26D15, 40D15, 40F05, 40G99. Submitted November 18, 2022. Published December 05, 2025

and

$$A_n(s) = \sum_{v=0}^n a_{nv} s_v = \sum_{v=0}^n \bar{a}_{nv} a_v$$
 (1.3)

$$\bar{\Delta}A_n(s) = \sum_{v=0}^n \hat{a}_{nv} a_v. \tag{1.4}$$

2. Known Result

In [4], Bor has proved the following theorem by using an almost increasing sequence.

Theorem 2.1 Let (X_n) be an almost increasing sequence, and let there be sequences (β_n) and (λ_n) such that

$$|\Delta \lambda_n| \le \beta_n,\tag{2.1}$$

$$\beta_n \to 0 \quad as \quad n \to \infty,$$
 (2.2)

$$\sum_{n=1}^{\infty} n|\Delta\beta_n|X_n < \infty,\tag{2.3}$$

$$|\lambda_n|X_n = O(1)$$
 as $n \to \infty$. (2.4)

If

$$\sum_{v=1}^{n} \frac{|t_v|^k}{v} = O(X_n) \quad as \quad n \to \infty, \tag{2.5}$$

where (t_n) is the n-th (C,1) mean of the sequence (na_n) , and (p_n) is a sequence such that

$$P_n = O(np_n), (2.6)$$

$$P_n \Delta p_n = O(p_n p_{n+1}), \tag{2.7}$$

then the series $\sum_{n=1}^{\infty} a_n \frac{P_n \lambda_n}{n p_n}$ is summable $|\bar{N}, p_n|_k$, $k \ge 1$.

3. Main Result

Recently, many studies have been done concerning absolute matrix summability methods (see [5,7, 8,9,10,11,12,13]). The purpose of this paper is to generalize Theorem 2.1 to $|A,p_n|_k$ summability under weaker conditions. Therefore we need the concept of quasi σ -power increasing sequence. A positive sequence (γ_n) is said to be quasi σ -power increasing sequence if there exists a constant $K = K(\sigma, \gamma) \ge 1$ such that $Kn^{\sigma}\gamma_n \ge m^{\sigma}\gamma_m$ holds for all $n \ge m \ge 1$ (see [6]). It should be noted that every almost increasing sequence is quasi σ -power increasing sequence for any nonnegative σ , but the converse need not be true as can be seen by taking the example, say $\gamma_n = n^{-\sigma}$ for $\sigma > 0$. Now, we prove the following theorem.

Theorem 3.1 Let $A = (a_{nv})$ be a positive normal matrix such that

$$\bar{a}_{n0} = 1, \quad n = 0, 1, \dots$$
 (3.1)

$$a_{n-1,v} \ge a_{nv}, \quad for \quad n \ge v+1,$$
 (3.2)

$$a_{nn} = O\left(\frac{p_n}{P_n}\right),\tag{3.3}$$

$$|\hat{a}_{n,v+1}| = O\left(v \left| \Delta_v\left(\hat{a}_{nv}\right) \right|\right),\tag{3.4}$$

and (X_n) be a quasi σ -power increasing sequence for some $0 < \sigma < 1$. If all conditions of Theorem 2.1

$$(\lambda_n) \in \mathcal{BV} \tag{3.5}$$

are satisfied, then the series $\sum_{n=1}^{\infty} a_n \frac{P_n \lambda_n}{np_n}$ is summable $|A, p_n|_k$, $k \ge 1$.

If we take $a_{nv} = \frac{p_v}{P_n}$ and (X_n) as an almost increasing sequence, then Theorem 3.1 reduces to Theorem 2.1. In this case, the condition (3.5) is not needed.

We need following lemmas for the proof of Theorem 3.1.

Lemma 3.1 ([6]) Let (X_n) be a quasi σ -power increasing sequence for some $0 < \sigma < 1$. If the conditions (2.2) and (2.3) are satisfied, then

$$nX_n\beta_n = O(1)$$
 as $n \to \infty$, (3.6)

$$\sum_{n=1}^{\infty} X_n \beta_n < \infty. \tag{3.7}$$

Lemma 3.2 ([3]) If the conditions (2.6) and (2.7) are satisfied, then we have

$$\Delta\left(\frac{P_n}{n^2p_n}\right) = O\left(\frac{1}{n^2}\right).$$

4. Proof of Theorem 3.1

Let (I_n) denotes A-transform of the series $\sum_{n=1}^{\infty} a_n \frac{P_n \lambda_n}{np_n}$. By (1.3) and (1.4), we have

$$\bar{\Delta}I_n = \sum_{v=1}^n \hat{a}_{nv} \frac{a_v P_v \lambda_v}{v p_v}$$
$$= \sum_{v=1}^n \hat{a}_{nv} \frac{P_v \lambda_v v a_v}{v^2 p_v}.$$

Using Abel's transformation, we get

$$\begin{split} \bar{\Delta}I_n &= \sum_{v=1}^{n-1} \Delta_v \left(\hat{a}_{nv} \frac{P_v \lambda_v}{v^2 p_v} \right) \sum_{r=1}^v r a_r + \frac{a_{nn} P_n \lambda_n}{n^2 p_n} \sum_{r=1}^n r a_r \\ &= \sum_{v=1}^{n-1} \frac{\hat{a}_{n,v+1} P_v \Delta \lambda_v}{v^2 p_v} (v+1) t_v + \sum_{v=1}^{n-1} \frac{\Delta_v (\hat{a}_{nv}) P_v \lambda_v}{v^2 p_v} (v+1) t_v \\ &+ \sum_{v=1}^{n-1} \hat{a}_{n,v+1} \Delta \left(\frac{P_v}{v^2 p_v} \right) \lambda_{v+1} (v+1) t_v + \frac{a_{nn} P_n \lambda_n}{n^2 p_n} (n+1) t_n \\ &= I_{n,1} + I_{n,2} + I_{n,3} + I_{n,4}. \end{split}$$

To complete the proof of Theorem 3.1, it is sufficient to show that

$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n} \right)^{k-1} |I_{n,r}|^k < \infty, \quad for \quad r = 1, 2, 3, 4.$$

Case-I: For r = 1, we need to show that $\sum_{n=1}^{\infty} \left(\frac{p_n}{p_n}\right)^{k-1} |I_{n,1}|^k < \infty$. By applying Hölder's inequality and the condition (2.6), we have

$$\begin{split} \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} |I_{n,1}|^k &= \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} \left|\sum_{v=1}^{n-1} \frac{\hat{a}_{n,v+1} P_v \Delta \lambda_v}{v^2 p_v} (v+1) t_v \right|^k \\ &= O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} \left(\sum_{v=1}^{n-1} |\hat{a}_{n,v+1}| |\Delta \lambda_v| |t_v| \right)^k \\ &= O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} \left(\sum_{v=1}^{n-1} |\hat{a}_{n,v+1}| |\Delta \lambda_v| |t_v|^k \right) \left(\sum_{v=1}^{n-1} |\hat{a}_{n,v+1}| |\Delta \lambda_v| \right)^{k-1}. \end{split}$$

Here, using (1.2), (1.1) and (3.2), we have

$$\hat{a}_{n,v+1} = \bar{a}_{n,v+1} - \bar{a}_{n-1,v+1}$$

$$= \sum_{i=v+1}^{n} a_{ni} - \sum_{i=v+1}^{n-1} a_{n-1,i}$$

$$= a_{nn} + \sum_{i=v+1}^{n-1} (a_{ni} - a_{n-1,i}) \le a_{nn}.$$

Also, using the fact that $(\lambda_n) \in \mathcal{BV}$ and the condition (2.1), we get

$$\begin{split} \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} |I_{n,1}|^k &= O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} a_{nn}^{k-1} \left(\sum_{v=1}^{n-1} |\hat{a}_{n,v+1}| \beta_v |t_v|^k\right) \\ &= O(1) \sum_{v=1}^{m} \beta_v |t_v|^k \sum_{n=v+1}^{m+1} |\hat{a}_{n,v+1}|. \end{split}$$

By (1.2), (1.1), (3.1) and (3.2), we obtain $|\hat{a}_{n,v+1}| = \sum_{i=0}^{v} (a_{n-1,i} - a_{ni})$. Thence, using (1.1) and (3.1),

$$\sum_{n=v+1}^{m+1} |\hat{a}_{n,v+1}| = \sum_{n=v+1}^{m+1} \sum_{i=0}^{v} (a_{n-1,i} - a_{ni}) \le 1, \tag{4.1}$$

by Abel's transformation, we have

$$\begin{split} \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} |I_{n,1}|^k &= O(1) \sum_{v=1}^m \beta_v |t_v|^k = O(1) \sum_{v=1}^m (v\beta_v) \frac{|t_v|^k}{v} \\ &= O(1) \sum_{v=1}^{m-1} \Delta(v\beta_v) \sum_{r=1}^v \frac{|t_r|^k}{r} + O(1) m \beta_m \sum_{v=1}^m \frac{|t_v|^k}{v} \\ &= O(1) \sum_{v=1}^{m-1} \Delta(v\beta_v) X_v + O(1) m \beta_m X_m \\ &= O(1) \sum_{v=1}^{m-1} (v+1) |\Delta \beta_v| X_v + O(1) \sum_{v=1}^{m-1} \beta_v X_v \\ &+ O(1) m \beta_m X_m = O(1), \quad m \to \infty \end{split}$$

by (2.5), (2.3), (3.7) and (3.6).

Case-II: For r = 2, again by using Hölder's inequality, we get

$$\begin{split} \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{k-1} |I_{n,2}|^k &= \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{k-1} \left| \sum_{v=1}^{n-1} \frac{\Delta_v(\hat{a}_{nv}) P_v \lambda_v}{v^2 p_v} (v+1) t_v \right|^k \\ &= O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{k-1} \left(\sum_{v=1}^{n-1} \frac{P_v}{v p_v} |\Delta_v\left(\hat{a}_{nv}\right)| |\lambda_v| |t_v| \right)^k \\ &= O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{k-1} \left(\sum_{v=1}^{n-1} \left(\frac{P_v}{v p_v} \right)^k |\Delta_v\left(\hat{a}_{nv}\right)| |\lambda_v|^k |t_v|^k \right) \\ &\times \left(\sum_{v=1}^{n-1} |\Delta_v\left(\hat{a}_{nv}\right)| \right)^{k-1} . \end{split}$$

By (1.2) and (1.1), we obtain

$$\Delta_{v}(\hat{a}_{nv}) = \hat{a}_{nv} - \hat{a}_{n,v+1}
= \bar{a}_{nv} - \bar{a}_{n-1,v} - \bar{a}_{n,v+1} + \bar{a}_{n-1,v+1}
= a_{nv} - a_{n-1,v}.$$
(4.2)

and so (1.1), (3.1) and (3.2) imply that

$$\sum_{v=1}^{n-1} |\Delta_v(\hat{a}_{nv})| = \sum_{v=1}^{n-1} (a_{n-1,v} - a_{nv}) \le a_{nn}.$$

$$(4.3)$$

Then, from (3.3)

$$\begin{split} \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} |I_{n,2}|^k &= O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} a_{nn}^{k-1} \left(\sum_{v=1}^{n-1} \left(\frac{P_v}{vp_v}\right)^k |\Delta_v\left(\hat{a}_{nv}\right)| |\lambda_v|^k |t_v|^k \right) \\ &= O(1) \sum_{v=1}^{m} \left(\frac{P_v}{vp_v}\right)^k |\lambda_v|^k |t_v|^k \sum_{n=v+1}^{m+1} |\Delta_v\left(\hat{a}_{nv}\right)|. \end{split}$$

Now, using (4.2) and (3.2), we have

$$\sum_{n=v+1}^{m+1} |\Delta_v(\hat{a}_{nv})| = \sum_{n=v+1}^{m+1} (a_{n-1,v} - a_{nv}) \le a_{vv}$$

and consequently,

$$\begin{split} \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} |I_{n,2}|^k &= O(1) \sum_{v=1}^m \frac{1}{v} |\lambda_v|^{k-1} |\lambda_v| |t_v|^k = O(1) \sum_{v=1}^m \frac{1}{v} |\lambda_v| |t_v|^k \\ &= O(1) \sum_{v=1}^{m-1} \Delta |\lambda_v| \sum_{r=1}^v \frac{|t_r|^k}{r} + O(1) |\lambda_m| \sum_{v=1}^m \frac{|t_v|^k}{v} \\ &= O(1) \sum_{v=1}^{m-1} \beta_v X_v + O(1) |\lambda_m| X_m \\ &= O(1), \quad m \to \infty \end{split}$$

by (3.3), (2.6), (2.1), (2.5), (3.7) and (2.4).

Case-III: For r = 3, using the fact that $\Delta\left(\frac{P_n}{n^2p_n}\right) = O\left(\frac{1}{n^2}\right)$ by Lemma 3.2, also using (3.4), (4.3), (3.3), (4.1), we have

$$\sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{k-1} |I_{n,3}|^k = \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{k-1} \left| \sum_{v=1}^{n-1} \hat{a}_{n,v+1} \Delta \left(\frac{P_v}{v^2 p_v} \right) \lambda_{v+1}(v+1) t_v \right|^k$$

$$= O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{k-1} \left(\sum_{v=1}^{n-1} \frac{1}{v} |\hat{a}_{n,v+1}| |\lambda_{v+1}| |t_v| \right)^k$$

$$= O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{k-1} \left(\sum_{v=1}^{n-1} \frac{1}{v} |\hat{a}_{n,v+1}| |\lambda_{v+1}|^k |t_v|^k \right)$$

$$\times \left(\sum_{v=1}^{n-1} |\Delta_v \left(\hat{a}_{nv} \right) | \right)^{k-1}$$

$$= O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{k-1} a_{nn}^{k-1} \left(\sum_{v=1}^{n-1} \frac{1}{v} |\hat{a}_{n,v+1}| |\lambda_{v+1}|^k |t_v|^k \right)$$

$$= O(1) \sum_{v=1}^{m} \frac{1}{v} |\lambda_{v+1}|^k |t_v|^k \sum_{n=v+1}^{m+1} |\hat{a}_{n,v+1}|$$

$$= O(1) \sum_{v=1}^{m} \frac{1}{v} |\lambda_{v+1}| |t_v|^k.$$

Here, similar to Case-II, we obtain

$$\sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} |I_{n,3}|^k = O(1) \quad as \quad m \to \infty.$$

Case-IV: For r = 4, using the hypotheses of Theorem 3.1 and Lemma 3.1, we get

$$\sum_{n=1}^{m} \left(\frac{P_n}{p_n}\right)^{k-1} |I_{n,4}|^k = \sum_{n=1}^{m} \left(\frac{P_n}{p_n}\right)^{k-1} \left| \frac{a_{nn} P_n \lambda_n}{n^2 p_n} (n+1) t_n \right|^k$$

$$= O(1) \sum_{n=1}^{m} \left(\frac{P_n}{p_n}\right)^{k-1} a_{nn}^k \left(\frac{P_n}{n p_n}\right)^k |\lambda_n|^k |t_n|^k$$

$$= O(1) \sum_{n=1}^{m} \frac{1}{n} |\lambda_n| |t_n|^k = O(1) \quad as \quad m \to \infty,$$

by following analogously to Case-II. This completes the proof of Theorem 3.1.

References

- N. K. Bari, S. B. Stečkin, Best approximations and differential properties of two conjugate functions. Trudy Moskov. Mat. Obšč. 5, 483–522, (1956) (in Russian).
- 2. H. Bor, On two summability methods. Math. Proc. Cambridge Philos. Soc. 97(1), 147-149, (1985).
- 3. H. Bor, Absolute summability factors for infinite series. Indian J. Pure Appl. Math. 19(7), 664-671, (1988).
- 4. H. Bor, A note on absolute Riesz summability factors. Math. Inequal. Appl. 10(3), 619-625, (2007).
- 5. B. Kartal, On an extension of absolute summability. Konuralp J. Math. 7(2), 433-437, (2019).
- 6. L. Leindler, A new application of quasi power increasing sequences. Publ. Math. Debrecen 58(4), 791–796, (2001).
- 7. H. S. Özarslan, A new application of absolute matrix summability. C. R. Acad. Bulgare Sci. 68(8), 967-972, (2015).
- 8. H. S. Özarslan, A new study on generalized absolute matrix summability. Commun. Math. Appl. 7(4), 303-309, (2016).

- 9. H. S. Özarslan, An application of δ -quasi monotone sequence. Inter. J. Anal. Appl. 4(2), 134-139, (2017).
- 10. H. S. Özarslan, Generalized quasi power increasing sequences. Appl. Math. E-Notes 19, 38-45, (2019).
- 11. H. S. Özarslan, A new factor theorem for absolute matrix summability. Quaest. Math. 42(6), 803-809, (2019).
- 12. H. S. Özarslan, An application of absolute matrix summability using almost increasing and δ-quasi-monotone sequences. Kyungpook Math. J. 59(2), 233-240, (2019).
- 13. H. S. Özarslan, E. Yavuz, A new note on absolute matrix summability. J. Inequal. Appl. 474, 7 pp., (2013).
- 14. W. T. Sulaiman, Inclusion theorems for absolute matrix summability methods of an infinite series. IV. Indian J. Pure Appl. Math. 34(11), 1547-1557, (2003).

Hikmet Seyhan Özarslan,
Department of Mathematics,
Erciyes University,
38039 Kayseri, Turkey.
https://orcid.org/0000-0002-0437-032X
E-mail address: seyhan@erciyes.edu.tr