(3s.) **v. 2025 (43)** : 1–10. ISSN-0037-8712 doi:10.5269/bspm.66079

Exploration of pre-open sets in a fuzzy bitopological space via operation approach

Satabdi Ray, Birojit Das, Baby Bhattacharya* and Omer Kisi

ABSTRACT: In this article, we propose an operation $(i,j)^*_{\gamma}$ on the set of all $(i,j)^*$ -fuzzy pre-open set in a given fuzzy bitopological space (X,τ_i,τ_j) . Using the newly introduced operation, we initiate the $(i,j)^*_{\gamma}$ -fuzzy pre-open set and characterize it upto some extent. Also, we explore $(i,j)^*_{\gamma}$ -fuzzy pre-open set in the light of minimality. Finally, we study locally finiteness of a fuzzy bitopological space via $(i,j)^*_{\gamma}$ -fuzzy pre-open set.

Key Words: $(i, j)_{\gamma}^*$ -operation, $(i, j)_{\gamma}^*$ -fuzzy open set, $(i, j)_{\gamma}^*$ -fuzzy pre-open set, minimal $(i, j)_{\gamma}^*$ -fuzzy pre-open set, $(i, j)_{\gamma}^*$ -fuzzy locally finite pre-open set.

Contents

1	Introduction	1
2	$(i,j)_{\gamma}^*$ -Fuzzy Pre-open Set	2
3	Minimal $(i,j)_{\gamma}^*$ -Fuzzy Pre-open Set	3
4	Local Finiteness in Fuzzy Bitopological Space	6

1. Introduction

Najastad [19] initiated α -open set in topological structure and open sets are extended to the concepts like semiopen, pre-open sets by Levine [16] Mashhour [17] and Andrijevic [1]. The study of operation on topological spaces was first explored by Kasahara [15] and also he defined α -closed graphs of an operation. Furthermore, Andrijevic [2] showed that the class of all pre-open sets generates a topology and he proposed the respective closure and interior. Ogata [20,21] introduced the notion γ -operation, τ_{γ} in a topology (X,τ) . Again, maximal open sets in generalized topology was studied by Roy and Sen [24], whereas minimal open sets in topological spaces was initiated and studied by Nakaoka and Oda [18]. Also, the concept of minimality of open sets in fuzzy environment was studied by Ghour [12]. Carpintero et al. [4] did the same study on the class of all b-open sets, whereas Tahiliani [25] studied the same on the class of all β -open sets in a topological space. Very recently, Hussain [13] introduced operations in generalized closed sets with the same approach and studied some of its applications. In literature, there are several interesting research work on this concept in various environments [3,23,6]. In this current study, we extend the notion of operations in fuzzy sense on pre-open sets in fuzzy bitopological spaces. We define and characterize the concept of $(i,j)^*_{\gamma}$ -fuzzy pre-open set through operation approach in a fuzzy bitopological space extensively and then established the concept of minimal $(i,j)^*_{\gamma}$ -fuzzy pre-open set therein.

We brief a fuzzy bitopological space by FBTS and is denoted by (X, τ_i, τ_j) . Before proceeding to the main objective, we require some preparatory concepts which are recalled in this section as follows:

Definition 1.1 [14] Let τ_1, τ_2 be any two fuzzy topologies defined on a non-empty set X. Then, (X, τ_1, τ_2) is said to be a FBTS.

Definition 1.2 [10] In a FBTS (X, τ_i, τ_j) , a fuzzy set δ of X is called a (i, j)-fuzzy open set if either $\delta \in \tau_i$ or $\delta \in \tau_j$.

Submitted November 30, 202. Published July 11, 2025 2010 Mathematics Subject Classification: 54E55, 54A40.

^{*} Corresponding author

In this case, (i, j)-FO(X) and (i, j)-FC(X) denote the set of all (i, j)-fuzzy open sets and (i, j)-fuzzy closed sets respectively.

Definition 1.3 [9] In a FBTS (X, τ_i, τ_j) , a fuzzy set δ of X is called a $(i, j)^*$ -fuzzy open set if δ can be expressed as $\delta = \mu_1 \vee \mu_2$, where $\mu_1 \in \tau_i$ and $\mu_2 \in \tau_j$.

Also here, $(i, j)^*$ -FO(X) and $(i, j)^*$ -FC(X) denote the set of all $(i, j)^*$ -fuzzy open sets and $(i, j)^*$ -fuzzy closed sets respectively.

Definition 1.4 [7] In a FBTS (X, τ_i, τ_j) , a fuzzy subset δ is a $(i, j)^*$ -fuzzy pre-open if $\delta \leq (i, j)^*$ - $int((i, j)^*$ - $cl(\delta))$.

Definition 1.5 [8] A fuzzy subset δ in a FBTS (X, τ_i, τ_j) is said to be $(i, j)^*$ -fuzzy γ -open if $\delta \wedge \lambda$ gives a $(i, j)^*$ -fuzzy pre-open, for each $(i, j)^*$ -fuzzy pre-open set λ in X.

Definition 1.6 [11] Let (X, τ_1, τ_2) be a bitopological space. Then an operation γ on $\tau_1 \cup \tau_2$ is a function $\gamma : \tau_1 \cup \tau_2 \longrightarrow P(X)$ s.t. $V \subset V^{\gamma}, \forall V \in \tau_1 \cup \tau_2$ where the value of γ at V is V^{γ} .

Definition 1.7 [5] Let P(X) be the power set of a crisp set X. A sub class $\tau^* \subset P(X)$ is called an infi-topology on X if

- (i) $\phi, X \in \tau^*$ and
- (ii) τ^* is closed under finite intersection.

The members of τ^* are called infi-open sets and (X,τ^*) is called an infi-topological space.

2. $(i,j)^*_{\gamma}$ -Fuzzy Pre-open Set

The recent articulation of the $(i,j)^*_{\gamma}$ -operation within the context of a fuzzy bitopological space [22] represents the latest advancement in research pertaining to the operational approach. We already know the notion of $(i,j)^*$ -fuzzy pre-open set. Now, we will define the concept of $(i,j)^*_{\gamma}$ -fuzzy pre-open set using $(i,j)^*$ -fuzzy pre-open set and emphasize that the collection of all $(i,j)^*_{\gamma}$ -fuzzy pre-open sets is not closed under the union and intersection. Moreover, we will study some of its basic properties.

Definition 2.1 In a FBTS (X, τ_i, τ_j) , an operation $(i, j)^*_{\gamma}$ on the FBTS (X, τ_i, τ_j) is a function from $(i, j)^*$ -FPO(X) to I^X such that for each $\delta \in (i, j)^*$ -FPO(X), $\delta \leq \delta^{(i, j)^*_{\gamma}}$; where $\delta^{(i, j)^*_{\gamma}}$ is the value of the operation when applied on δ .

 $\label{eq:explicitly} \textit{Explicitly, the operation is denoted by } (i,j)^*_{\sim}:(i,j)^*\text{-}FPO(X)\longrightarrow I^X.$

Example 2.1 Let (X, τ_i, τ_j) be a FBTS where $X = \{a, b\}$, $\tau_i = \{0_X, 1_X, \{(a, 0.5), (b, 0.5)\}\}$, and $\tau_j = \{0_X, 1_X, \}$.

We now define a $(i,j)^*_{\gamma}$ -operation as follows:

$$(i,j)^*_{\gamma}(\delta) = \begin{cases} \delta, & \text{if } r \in \delta \\ (i,j)^* \text{-pcl}(\delta), & \text{otherwise,} \end{cases}$$

where $r = \{\{(a, \alpha), (b, \beta)\} : \alpha \ge 0.8, \beta \ge 0.9\}.$

Here for any fuzzy set δ , we have $\delta \leq \overline{\delta^{(i,j)}_{\gamma}^*}$. Hence the operation defined above is a $(i,j)_{\gamma}^*$ -operation.

Definition 2.2 Let (X, τ_i, τ_j) be a FBTS and f be an $(i, j)^*_{\gamma}$ -operation on (X, τ_i, τ_j) . Then a fuzzy set μ is called $(i, j)^*_{\gamma}$ -fuzzy pre-open set if \forall fuzzy point $x_p \in \mu$, \exists a $(i, j)^*$ -fuzzy pre-open set δ containing x_p s.t. $f(\delta) \leq \mu$ i.e. $\delta^{(i,j)^*_{\gamma}} \leq \mu$.

The complement of a $(i,j)^*_{\gamma}$ -fuzzy pre-open set is known as a $(i,j)^*_{\gamma}$ -fuzzy preclosed set. $(i,j)^*_{\gamma}$ -FPO(X) and $(i,j)^*_{\gamma}$ -FPC(X) denotes the set of all $(i,j)^*_{\gamma}$ -fuzzy pre-open sets and $(i,j)^*_{\gamma}$ -fuzzy preclosed sets respectively.

Theorem 2.1 The empty set 0_X and the whole set 1_X are always $(i,j)^*_{\gamma}$ -fuzzy pre-open set.

Proof: Obvious from the definition of the $(i,j)^*_{\gamma}$ -fuzzy pre-open set.

Theorem 2.2 Every $(i,j)^*_{\gamma}$ -fuzzy pre-open set is a $(i,j)^*$ -fuzzy pre-open set.

Proof: Let us take μ be a $(i,j)^*_{\gamma}$ -fuzzy pre-open set in (X,τ_i,τ_j) and we consider any fuzzy point $x_p \in \mu$. Then \exists a $(i,j)^*$ -fuzzy pre-open set δ containing x_p s.t. $\delta^{(i,j)^*_{\gamma}} \leq \mu$. Consequently, we have $x_p \in \delta \leq \mu$. So x_p belongs to $(i,j)^*$ -interior of μ . Hence μ is $(i,j)^*$ -fuzzy pre-open.

Remark 2.1 Every $(i,j)^*$ -fuzzy pre-open set may not be a $(i,j)^*_{\gamma}$ -fuzzy pre-open set.

Example 2.2 Let $X = \{a, b\}$ and consider two topologies $\tau_i = \{0_X, 1_X, \{(a, 0.3), (b, 0.5)\}\}$, $\tau_j = \{0_X, 1_X, \{(a, 0.7), (b, 0.3)\}\}$ defined on X. Then (X, τ_i, τ_j) is a FBTS. We define a $(i, j)^*$ -operation f on $(i, j)^*$ -FPO(X) as follows:

$$f(\delta) = (i, j)^* - pcl(\delta).$$

Here $(i, j)^*$ -FO(X) = $\{0_X, 1_X, \{(a, 0.3), (b, 0.5)\}, \{(a, 0.7), (b, 0.5)\}, \{(a, 0.7), (b, 0.3)\}\}$. So, $(i, j)^*$ -FPO(X) = $\{0_X, 1_X, \{\{(a, \alpha), (b, \beta)\} : \forall \alpha, \beta \leq 0.5; \forall \alpha, \beta > 0.7; \alpha > 0.3, 0.5 < \beta \leq 0.7\}\}$. Clearly, $\{(a, 0.7), (b, 0.3)\}$ is a $(i, j)^*$ -fuzzy pre-open set here but not a $(i, j)^*_{\gamma}$ -fuzzy pre-open set.

Remark 2.2 The union of two $(i,j)^*_{\gamma}$ -fuzzy pre-open sets may not be a $(i,j)^*_{\gamma}$ -fuzzy pre-open set. Also, the intersection of two $(i,j)^*_{\gamma}$ -fuzzy pre-open set fails to be a $(i,j)^*_{\gamma}$ -fuzzy pre-open set.

Example 2.3 Let us consider the FBTS taken in Example 2.2 and also consider the same operation therein. It can be easily observed that the fuzzy sets $\lambda = \{(x,0.3),(y,0.8)\}$ and $\mu = \{(x,0.5),(y,0.6)\}$ are $(i,j)^*_{\gamma}$ -fuzzy pre-open sets but both their union $\lambda \vee \mu = \{(x,0.5),(y,0.8)\}$ and intersection $\lambda \wedge \mu = \{(x,0.3),(y,0.6)\}$ are not $(i,j)^*_{\gamma}$ -fuzzy pre-open set.

Definition 2.3 A fuzzy $(i,j)_{\gamma}^*$ -operation on (X,τ_i,τ_j) is called regular if for any two $(i,j)^*$ -fuzzy preopen sets μ_1 and μ_2 containing the fuzzy point x_p , \exists a $(i,j)^*$ -fuzzy pre-open set δ containing x_p s.t. $\delta^{(i,j)_{\gamma}^*} \leq \mu_1^{(i,j)_{\gamma}^*} \wedge \mu_2^{(i,j)_{\gamma}^*}$.

Theorem 2.3 In a regular $(i, j)^*_{\gamma}$ -operation, the intersection of any two $(i, j)^*_{\gamma}$ -fuzzy pre-open set is a $(i, j)^*_{\gamma}$ -fuzzy pre-open set.

Proof: Let (X, τ_i, τ_j) be a FBTS and f be a regular $(i, j)^*_{\gamma}$ -operation defined on $(i, j)^*$ -FPO(X). Let us consider λ_1, λ_2 be any two $(i, j)^*_{\gamma}$ -fuzzy pre-open set and a fuzzy point $x_p \in \lambda_1 \wedge \lambda_2$. Then $x_p \in \lambda_1$ and $x_p \in \lambda_2$. So, \exists two $(i, j)^*$ -fuzzy pre-open sets δ_1 and δ_2 such that $f(\delta_1) \leq \lambda_1$ and $f(\delta_2) \leq \lambda_2$. Since f is a regular $(i, j)^*_{\gamma}$ -operation, \exists a $(i, j)^*$ -fuzzy pre-open set μ in X containing x_p s.t. $f(\mu) \leq f(\delta_1) \wedge f(\delta_2)$ and so $f(\mu) \leq \lambda_1 \wedge \lambda_2$. Hence, $\lambda_1 \wedge \lambda_2$ is a $(i, j)^*_{\gamma}$ -fuzzy pre-open set.

Combining Theorem 2.1 and Theorem 2.3, we have the following:

Theorem 2.4 For a regular $(i,j)^*_{\gamma}$ -operation, the set of all $(i,j)^*_{\gamma}$ -fuzzy pre-open sets forms a fuzzy infit topology.

3. Minimal $(i,j)^*_{\gamma}$ -Fuzzy Pre-open Set

In this particular part of this research work, we initiate the concept of minimal $(i, j)^*_{\gamma}$ -fuzzy pre-open set and further characterize the space based on the conception.

Definition 3.1 Let (X, τ_i, τ_j) be a FBTS and f be a $(i, j)^*_{\gamma}$ -operation. Then a non-empty $(i, j)^*_{\gamma}$ -fuzzy pre-open set μ is called a minimal $(i, j)^*_{\gamma}$ -fuzzy pre-open set in X if there does not exists any $(i, j)^*_{\gamma}$ -fuzzy pre-open subset of μ other than the fuzzy set 0_X .

Remark 3.1 A minimal $(i, j)^*_{\gamma}$ -fuzzy pre-open set can not be a subset of any other minimal $(i, j)^*_{\gamma}$ -fuzzy pre-open set. This claim can be verified from the following example:

Example 3.1 Let $X = \{a, b\}$ and consider two topologies $\tau_i = \{0_X, 1_X, \{(a, 0.4), (b, 0.6)\}\}$, $\tau_j = \{0_X, 1_X, \{(a, 0.6), (b, 0.4)\}\}$ defined on X. Then (X, τ_i, τ_j) is a FBTS. We define a $(i, j)^*$ -operation f on $(i, j)^*$ -FPO(X) as follows:

$$f(\delta) = (i, j)^* - cl(\delta).$$

Here $(i,j)^*$ -FO(X) = $\{0_X, 1_X, \{(a,0.4), (b,0.6)\}, \{(a,0.6), (b,0.4)\}, \{(a,0.6), (b,0.6)\}\}$. So, $(i,j)^*$ -FPO(X) = $\{0_X, 1_X, \{\{(a,\alpha), (b,\beta)\} : \forall \alpha, \beta > 0.4; \alpha > 0.4, \beta \leq 0.4\}\}$. Calculation for $(i,j)^*_{\gamma}$ -fuzzy pre-open sets gives us $(i,j)^*_{\gamma}$ -FPO(X) = $\{0_X, 1_X, \{(a,0.4), (b,0.6)\}, \{(a,0.6), (b,0.4)\}\}$. Clearly, here both the fuzzy sets $\{(a,0.4), (b,0.6)\}$ and $\{(a,0.6), (b,0.4)\}$ are minimal $(i,j)^*_{\gamma}$ -fuzzy pre-open set but they are not subset of each other.

Theorem 3.1 Let $(i,j)^*_{\gamma}: (i,j)^*$ -FPO(X) $\longrightarrow I^X$ be a regular operation in (X,τ_i,τ_j) . If μ is any minimal $(i,j)^*_{\gamma}$ -fuzzy pre-open set and δ is a $(i,j)^*_{\gamma}$ -fuzzy pre-open set, then either $\mu \wedge \delta = 0_X$ or $\mu \leq \delta$.

Proof: There is nothing to prove in the case $\mu \wedge \delta = 0_X$.

So, we consider the case $\mu \wedge \delta \neq 0_X$. Since μ is a minimal $(i,j)^*_{\gamma}$ -fuzzy pre-open set, hence μ is a $(i,j)^*_{\gamma}$ -fuzzy pre-open set. Then from theorem 2.3, $\mu \wedge \delta$ is also a $(i,j)^*_{\gamma}$ -fuzzy pre-open set. By the minimality condition, we have $\mu \leq \mu \wedge \delta$. Therefore, $\mu \leq \delta$.

Theorem 3.2 Let (X, τ_i, τ_j) be a FBTS and $(i, j)^*_{\gamma} : (i, j)^* - FPO(X) \longrightarrow I^X$ be a regular operation in (X, τ_i, τ_j) . If μ is a minimal $(i, j)^*_{\gamma}$ -fuzzy pre-open set containing x_p , then $\mu \leq \nu$, for all $(i, j)^*_{\gamma}$ -fuzzy pre-open set ν which contains x_p .

Proof: Here both μ and ν are $(i,j)_{\gamma}^*$ -fuzzy pre-open sets containing a fuzzy point x_p . Let μ is not a fuzzy subset of ν . Then $\mu \wedge \nu$ is a $(i,j)_{\gamma}^*$ -fuzzy pre-open set since $(i,j)_{\gamma}^*$ is a regular operation. So, $\mu \wedge \nu$ is not a fuzzy subset of ν and $\nu \wedge \mu \neq 0_X$ (as $x_p \in \mu, \nu$). Hence $\mu \wedge \nu$ is a minimal $(i,j)_{\gamma}^*$ -fuzzy pre-open set, which leads to a contradiction. Eventually, we obtain $\mu \leq \nu$.

From the above theorem, we find the following result:

Corollary 3.1 If $(i, j)_{\gamma}^* : (i, j)^* - FPO(X) \longrightarrow I^X$ be a regular operation in a FBTS (X, τ_i, τ_j) and μ be any minimal $(i, j)_{\gamma}^*$ -fuzzy pre-open set in X, then

$$\mu = \bigwedge \{ \nu : \nu \text{ is a } (i,j)_{\gamma}^* \text{-fuzzy pre-open set containing } x_p \}.$$

for any fuzzy point $x_p \in \mu$.

Theorem 3.3 For a regular operation $(i,j)^*_{\gamma}:(i,j)^*$ - $FPO(X)\longrightarrow I^X$ in a FBTS (X,τ_i,τ_j) , there exists exactly one non-empty minimal $(i,j)^*_{\gamma}$ -fuzzy pre-open set .

Proof: Let us assume that, there are two different minimal $(i,j)_{\gamma}^*$ -fuzzy pre-open sets λ and δ in a FBTS (X,τ_i,τ_j) . Then both λ and δ are $(i,j)_{\gamma}^*$ -fuzzy open sets and so $\lambda \wedge \delta$ is also $(i,j)_{\gamma}^*$ -fuzzy pre-open set. Considering the fact that λ is a minimal $(i,j)_{\gamma}^*$ -fuzzy pre-open set, we have $\lambda \leq \delta$ from the Theorem 3.4 and we have $\delta \leq \lambda$, considering δ as a minimal $(i,j)_{\gamma}^*$ -fuzzy pre-open set. Combining both of them, we have $\lambda = \delta$.

Theorem 3.4 Let $(i,j)^*_{\gamma}:(i,j)^*$ - $FPO(X)\longrightarrow I^X$ be a regular operation in (X,τ_i,τ_j) . Then μ is a minimal $(i,j)^*_{\gamma}$ -fuzzy pre-open set iff $\mu \leq (i,j)^*_{\gamma}$ -pcl (ν) and $(i,j)^*_{\gamma}$ -pcl $(\mu) = (i,j)^*_{\gamma}$ -pcl (ν) , for any non-empty fuzzy subset ν of μ .

Proof: Let us consider a fuzzy point $x_p \in \mu$ and δ be a $(i,j)^*_{\gamma}$ -fuzzy pre-open set containing x_p . Then $\mu \leq \delta$ and $\nu = \mu \wedge \nu \leq \delta \wedge \nu$. Hence $\mu \wedge \nu \neq 0_X$ and so $x_p \in (i,j)^*_{\gamma}$ -pcl(ν). Then $\mu \leq (i,j)^*_{\gamma}$ -pcl(ν). This implies $(i,j)^*_{\gamma}$ -pcl(μ) $\leq (i,j)^*_{\gamma}$ -pcl(ν). Also, for any non-empty fuzzy subset ν of μ , we have $(i,j)^*_{\gamma}$ -pcl(μ) $\leq (i,j)^*_{\gamma}$ -pcl(μ). Thus, $(i,j)^*_{\gamma}$ -pcl(μ) = $(i,j)^*_{\gamma}$ -pcl(ν).

Conversely, let μ is not a minimal $(i,j)^*_{\gamma}$ -fuzzy pre-open set. So, \exists a non-empty $(i,j)^*_{\gamma}$ -fuzzy pre-open set ν which is not a fuzzy pre-open set of μ in X. Thus there is a fuzzy point $x_p \in \mu$ such that $x_p \notin \nu$ and hence $(i,j)^*_{\gamma}$ -pcl $(x_p) \subseteq 1_X - \nu$, that is $(i,j)^*_{\gamma}$ -pcl $(x_p) \neq (i,j)^*_{\gamma}$ -pcl (μ) , which leads to a contradiction. Consequently, μ is a minimal $(i,j)^*_{\gamma}$ -fuzzy pre-open set.

Theorem 3.5 Let $(i,j)^*_{\gamma}$ be a regular operation in (X,τ_i,τ_j) . If μ is a minimal $(i,j)^*_{\gamma}$ -fuzzy pre-open set with $x_p \in 1_X - \mu$ and $\chi_x = \bigwedge \{\delta \in (i,j)^*_{\gamma} - FPO(X) : x_p \in \delta\}$. Then either $\chi_x \wedge \mu = 0_x$ or $\lambda \leq \chi_x$.

Proof: The following two cases may arise:

Case I : If $\mu \leq \delta$ with $x_p \in \delta$, then $\mu \leq \bigwedge \{\delta \in (i,j)^* - FO(X) : x_p \in \delta\}$. That is, $\mu \leq \chi_x$. Case II : If $\delta < \mu$ with $x_p \in \delta$, then \exists a $(i,j)_{\gamma}^*$ -fuzzy pre-open set δ containing x_p such that $\mu \wedge \delta = 0_x$ and hence $\chi_x \wedge \mu = 0_x$.

Theorem 3.6 If $(i,j)^*_{\gamma}$ be an operation defined in a FBTS (X,τ_i,τ_j) and μ be a proper $(i,j)^*_{\gamma}$ -fuzzy pre-open set, then \exists a minimal $(i,j)^*_{\gamma}$ -fuzzy pre-open set δ s.t. $\delta \leq \mu$.

Proof: Let μ be a proper $(i,j)_{\gamma}^*$ -fuzzy pre-open set in (X,τ_i,τ_j) . Then the following cases arise: Case I : If μ is a minimal $(i,j)_{\gamma}^*$ -fuzzy pre-open set, then by assuming $\mu=\delta$, the proof is straightforward. Case II : If μ is not a minimal $(i,j)_{\gamma}^*$ -fuzzy pre-open set, then \exists a proper $(i,j)_{\gamma}^*$ -fuzzy pre-open set ν of μ . If ν is a minimal $(i,j)_{\gamma}^*$ -fuzzy pre-open set, then by setting $\delta=\nu$ we have, $\delta\leq\mu$. If ν is not a minimal $(i,j)_{\gamma}^*$ -fuzzy pre-open set, then we continue the process until we get a minimal $(i,j)_{\gamma}^*$ -fuzzy pre-open set. Since the process will stop after some steps (say, n), we will get a minimal $(i,j)_{\gamma}^*$ -fuzzy pre-open set $\delta=\mu_n$ such that $\delta\leq\mu$. Hence the proof.

Definition 3.2 Let $(i,j)^*_{\gamma}: (i,j)^*$ -FPO(X) $\longrightarrow I^X$ be an operation defined on a FBTS (X,τ_i,τ_j) . Then a fuzzy set μ is called a $(i,j)^*_{\gamma}$ -fuzzy γ -open set if the intersection of μ with every $(i,j)^*_{\gamma}$ -fuzzy pre-open set gives a $(i,j)^*_{\gamma}$ -fuzzy pre-open set.

From the definition it is evident:

Theorem 3.7 Every $(i,j)^*_{\gamma}$ -fuzzy γ -open set is a $(i,j)^*_{\gamma}$ -fuzzy pre-open set.

Remark 3.2 A $(i,j)^*_{\gamma}$ -fuzzy pre-open set is not always a $(i,j)^*_{\gamma}$ -fuzzy γ -open set.

Example 3.2 Let $X = \{a, b\}$ and consider two topologies defined on X which are

$$\tau_i = \{0_X, 1_X, \{(a, 0.6), (b, 0.2)\}\}\$$
and $\tau_j = \{0_X, 1_X, \{(a, 0.4), (b, 0.5)\}\}.$

Then (X, τ_i, τ_j) is a FBTS.

We define a $(i,j)^*_{\gamma}$ -operation f on $(i,j)^*$ -FPO(X) as follows:

$$f(\lambda) = \lambda$$

Here $(i, j)^*$ -FO(X) = $\{0_X, 1_X, \{(a, 0.6), (b, 0.2)\}, \{(a, 0.4), (b, 0.5)\}, \{(a, 0.6), (b, 0.5)\}\}$. So, $(i, j)^*$ -FPO(X) = $\{0_X, 1_X, \{\{(a, \alpha), (b, \beta)\} : \forall \alpha, \beta < 0.5; \alpha \geq 0.4, \beta \geq 0.5; \alpha < 0.4, \beta > 0.8\}\}$. Calculation for $(i, j)^*_{\gamma}$ -fuzzy pre-open sets gives us $(i, j)^*_{\gamma}$ -FPO(X) = $\{0_X, 1_X, \{\{(a, \alpha), (b, \beta)\} : \forall \alpha, \beta < 0.5; \alpha \geq 0.4, \beta \geq 0.5; \alpha < 0.4, \beta > 0.8\}\}$ and $(i, j)^*_{\gamma}$ -fuzzy γ -open sets are $0_X, 1_X, \{(a, \alpha), (b, \beta) : \forall \alpha, \beta < 0.5\}$. Clearly, $\{(a, 0.5), (b, 0.5)\}$ is not a $(i, j)^*_{\gamma}$ -fuzzy γ -open set though it is a $(i, j)^*_{\gamma}$ -fuzzy pre-open set.

Theorem 3.8 Every $(i,j)^*_{\gamma}$ -fuzzy pre-open set is a $(i,j)^*_{\gamma}$ -fuzzy γ -open set in a singleton FBTS (X,τ_i,τ_j) .

Proof: Assume that, δ and λ are two $(i,j)^*_{\gamma}$ -fuzzy pre-open sets in a FBTS (X,τ_i,τ_j) . Since X is singleton, then either $\delta \leq \lambda$ or $\lambda \leq \delta$. This implies that $\delta \wedge \lambda = \delta$ or λ . So, $\delta \wedge \lambda$ is always a $(i,j)^*_{\gamma}$ -fuzzy pre-open set. Therefore, δ is a $(i,j)^*_{\gamma}$ -fuzzy γ -open set in (X,τ_i,τ_j) .

Definition 3.3 Let (X, τ_i, τ_j) be a FBTS and $(i, j)^*_{\gamma} : (i, j)^* \text{-}FPO(X) \longrightarrow I^X$ be an operation defined on a FBTS (X, τ_i, τ_j) . Then X is called a $(i, j)^*_{\gamma}$ -fuzzy locally finite space if for every fuzzy point $x_p \in X$, $\exists \ a \ (i, j)^*_{\gamma}$ -fuzzy pre-open set $\lambda \neq 1_X$ in X s.t. $x_p \leq \lambda$.

Theorem 3.9 Let (X, τ_i, τ_j) be a FBTS which is $(i, j)^*_{\gamma}$ -fuzzy locally finite and $(i, j)^*_{\gamma}$ be a regular operation defined on $(i, j)^*$ -FPO(X). If μ be any non-empty $(i, j)^*_{\gamma}$ -fuzzy open set then \exists at least one minimal $(i, j)^*_{\gamma}$ -fuzzy pre-open set λ s.t. $\lambda \leq \mu$.

Proof: Let us consider a fuzzy point $x_p \in \mu$. X being a $(i, j)^*_{\gamma}$ -fuzzy locally finite space, \exists a $(i, j)^*_{\gamma}$ -fuzzy pre-open set δ s.t. $x_p \leq \delta$. As $(i, j)^*_{\gamma}$ is a regular operation, $\delta \wedge \mu \neq 0_X$ is also a $(i, j)^*_{\gamma}$ -fuzzy pre-open set. So, there is a minimal $(i, j)^*_{\gamma}$ -fuzzy pre-open set λ s.t. $\lambda \leq \delta \wedge \mu$. Hence we have $\lambda \leq \mu$.

4. Local Finiteness in Fuzzy Bitopological Space

In this particular section, we introduce α -locally finite set in a given FBTS via operation approach and characterize this notion up to some extent.

Definition 4.1 A fuzzy set μ in a FBTS (X, τ_i, τ_j) is called an empty fuzzy set of order α if $\mu(x) \leq \alpha$ for each $x \in X$ and $\alpha \in [0, 1)$.

A fuzzy set μ is said to be non-empty fuzzy set of order α if $\exists x_0 \in X$ s.t. $\mu(x_0) > \alpha$ where $\alpha \in [0,1)$.

Definition 4.2 Let (X, τ_i, τ_j) be a FBTS and $\alpha \in [0, 1)$. A family $\{\lambda_n : n \in \Lambda\}$ of fuzzy sets in (X, τ_i, τ_j) is called α -point finite if $\forall x \in X$, $\lambda_n(x) > \alpha$ for atmost finitely many $n \in \Lambda$.

Definition 4.3 Let (X, τ_i, τ_j) be a FBTS and $\alpha \in [0, 1)$. A family $\{\lambda_n : n \in \Lambda\}$ of fuzzy sets in (X, τ_i, τ_j) is called $(i, j)^*_{\gamma}$ -fuzzy α -locally finite set in X if $\forall x \in X \exists$ an $(i, j)^*_{\gamma}$ -fuzzy pre-open set δ s.t. $\delta(x) = 1_X$ and $\delta \wedge \lambda_n$ is non-empty of order α for atmost finitely many $n \in \Lambda$.

Example 4.1 Let $X = \{a, b\}$ and $\tau_i = \{0_X, 1_X, \{(a, 0.5), (b, 0.5)\}\}$, $\tau_j = \{0_X, 1_X, \{(a, 0.7), (b, 0.2)\}\}$ be two fuzzy topologies defined on X. Then (X, τ_i, τ_j) is a FBTS. We define a $(i, j)^*$ -operation f on $(i, j)^*$ -FPO(X) as follows:

$$f(\lambda) = (i, j)^* - cl(\lambda).$$

 $Here \ (i,j)^* - FO(X) = \{0_X, 1_X, \{(a,0.5), (b,0.5)\}, \{(a,0.7), (b,0.2)\}, \{(a,0.7), (b,0.5)\}\}.$

So, $(i, j)^*$ -FPO(X) = $\{0_X, 1_X, \{\{(a, \alpha), (b, \beta)\} : \forall \alpha, \beta > 0.8; \alpha > 0.3, \beta \leq 0.8\}\}$. By the calculation, $(i, j)^*_{\gamma}$ -FPO(X) = $\{0_X, 1_X, \{(a, 0.5), (b, 0.5)\}\}$.

Let $\lambda_n = \{\{(x, 1/n), (y, 1/n)\} : n \in \Lambda\}$ be a family of fuzzy sets.

Let us consider, $\alpha = 0.15$ then $\exists (i, j)_{\gamma}^*$ -fuzzy pre-open set δ s.t. $\delta(x) = 1_X$ and $\delta \wedge \lambda_n$ is non-empty of order α for λ_1 , λ_2 , λ_3 , λ_4 , λ_5 , λ_6 . Hence, $\{\lambda_n : n \in \Lambda\}$ is $(i, j)_{\gamma}^*$ -fuzzy α -locally finite set.

Theorem 4.1 In (X, τ_i, τ_j) , every $(i, j)^*_{\gamma}$ -fuzzy α -locally finite is α -point finite.

Proof: Let $\{\lambda_n : n \in \Lambda\}$ be any family of fuzzy sets which is $(i,j)_{\gamma}^*$ -fuzzy α -locally finite in X. Then $\forall x \in X \exists$ an $(i,j)_{\gamma}^*$ -fuzzy pre-open set δ in X s.t. $\delta(x) = 1_X$ and $\delta \wedge \lambda_n$ is non-empty of order α for atmost finitely many $n \in \Lambda$. That means, for each $x \in X$, $(\delta \wedge \lambda_n)(x) > \alpha$ for atmost finitely many $n \in \Lambda$. Hence for each $x \in X$, $\lambda_n \geq (\delta \wedge \lambda_n)(x) > \alpha$ for atmost finitely many $n \in \Lambda$. Therefore, $\{\lambda_n : n \in \Lambda\}$ is α -point finite.

Theorem 4.2 Let (X, τ_i, τ_j) be a FBTS and $\alpha \in [0, 1)$. If $\{\lambda_n : n \in \Gamma\}$ and $\{\mu_m : m \in \Lambda\}$ are any two $(i, j)^*_{\gamma}$ -fuzzy α -locally finite families of fuzzy sets in X, then $\{\lambda_n \wedge \mu_m : (m, n) \in \Gamma \times \Lambda\}$ is also $(i, j)^*_{\gamma}$ -fuzzy α -locally finite.

Proof: Let $\{\lambda_n : n \in \Gamma\}$ and $\{\mu_m : m \in \Lambda\}$ are any two $(i,j)^*_{\gamma}$ -fuzzy α -locally finite families of fuzzy sets in X then for each $x \in X$, \exists two $(i,j)^*_{\gamma}$ -fuzzy pre-open sets δ and β s.t. $\delta(x) = 1_X$, $\beta(x) = 1_X$ and $\delta \wedge \lambda_n$, $\beta \wedge \mu_m$ are non-empty of order α for atmost finitely many $n \in \Gamma, m \in \Lambda$.

Let us consider for each $y \in X$, $[(\delta \wedge \beta) \wedge (\lambda_n \wedge \lambda_m)](y) > \alpha$ is true for infinitely many $(n, m) \in \Gamma \times \Lambda$. It implies that $[(\delta \wedge \lambda_n) \wedge (\beta \wedge \mu_m)] > \alpha$ for infinitely many $(n, m) \in \Gamma \times \Lambda$ which contradicts that $\delta \wedge \lambda_n$ and $\beta \wedge \mu_m$ are non-empty of order α for atmost finitely many $n \in \Gamma, m \in \Lambda$. Hence, $\{\lambda_n \wedge \mu_m : (m, n) \in \Gamma \times \Lambda\}$ is $(i, j)^*_{\gamma}$ -fuzzy α -locally finite.

Definition 4.4 In a FBTS (X, τ_i, τ_j) , a family $\{\lambda_n : n \in \Lambda\}$ of fuzzy sets is called $(i, j)^*_{\gamma}$ -fuzzy α -discrete if $\forall x \in X \exists an (i, j)^*_{\gamma}$ -fuzzy pre-open set δ in X s.t. $\delta(x) = 1_X$ and $\delta \wedge \lambda_n$ is non-empty of order α for atmost one member $n \in \Lambda$ and $\alpha \in [0, 1)$.

Theorem 4.3 In a FBTS (X, τ_i, τ_j) , every $(i, j)^*_{\gamma}$ -fuzzy α -discrete family is $(i, j)^*_{\gamma}$ -fuzzy α -locally finite.

Proof: Let us consider a family of fuzzy sets $\{\lambda_n : n \in \Lambda\}$ which is $(i,j)_{\gamma}^*$ -fuzzy α -discrete. Then $\forall x \in X$, \exists an $(i,j)_{\gamma}^*$ -fuzzy pre-open set δ in X s.t. $\delta(x) = 1_X$ and $\delta \wedge \lambda_n$ is non-empty of order α for atmost one member $n \in \Lambda$. Hence for each $x \in X$, $\delta(x) = 1_X$ and $\delta \wedge \lambda_n$ is non-empty of order α for atmost finitely many $n \in \Lambda$.

Theorem 4.4 Let (X, τ_i, τ_j) be a FBTS. If $\{\lambda_n : n \in \Lambda\}$ be $(i, j)^*_{\gamma}$ -fuzzy α -locally finite family in X then $\{(i, j)^*_{\gamma}\text{-pcl}(\lambda_n) : n \in \Lambda\}$ is also $(i, j)^*_{\gamma}$ -fuzzy α -locally finite family.

Proof: Let $\{\lambda_n : n \in \Lambda\}$ be $(i,j)_{\gamma}^*$ -fuzzy α -locally finite family then for each $x \in X$, \exists an $(i,j)_{\gamma}^*$ -fuzzy pre-open set $\delta \in X$ s.t. $\delta(x) = 1_X$ and $\delta \wedge \lambda_n$ is non-empty of order α for atmost finitely many $n \in \Lambda$. Hence there exists $x_0 \in X$ such that $(\delta \wedge \lambda_n)(x_0) > \alpha$ for atmost finitely many $n \in \Lambda$. This implies that $(i,j)_{\gamma}^*$ -pcl $(\lambda_n)(x_0) \geq \lambda_n(x_0) \geq (\delta \wedge \lambda_n)(x_0) > \alpha$ for atmost finitely many $n \in \Lambda$. Consequently, $\{(i,j)_{\gamma}^*$ -pcl $(\lambda_n) : n \in \Lambda\}$ is $(i,j)_{\gamma}^*$ -fuzzy α -locally finite family.

Theorem 4.5 Let $\{\lambda_n : n \in \Lambda\}$ be a $(i,j)^*_{\gamma}$ -fuzzy α -locally finite family in (X,τ_i,τ_j) then $\bigvee \{(i,j)^*_{\gamma}$ - $pcl(\lambda_n) : n \in \Lambda'\}$ is a $(i,j)^*_{\gamma}$ -fuzzy preclosed set for each subset Λ' of Λ .

Proof: Let $\Lambda' \subset \Lambda$ and $\beta = \bigvee \{(i,j)_{\gamma}^* - cl(\lambda_n) : n \in \Lambda'\}$. We now prove $1_X - \beta$ is an $(i,j)_{\gamma}^*$ -fuzzy pre-open set in (X, τ_i, τ_j) . Let $x \in X$ such that $(1_X - \beta)(x) > 0$. Then

$$\left(1_X - \bigvee_{n \in \Lambda'} (i, j)_{\gamma}^* - cl(\lambda_n)\right)(x) = \bigwedge_{n \in \Lambda'} \left(1_X - ((i, j)_{\gamma}^* - pcl(\lambda_n))\right)(x)$$
$$= \inf_{n \in \Lambda'} \left\{1_X - ((i, j)_{\gamma}^* - pcl(\lambda_n))(x)\right\}$$
$$> 0.$$

Hence $1_X - ((i, j)_{\gamma}^* - pcl(\lambda_n))(x) > 0$ for each $n \in \Lambda'$.

From the above theorem, we have $\delta \wedge (i,j)_{\gamma}^*$ - $pcl(\lambda_n)$ is non-empty of order α for atmost finitely many $n \in \Lambda'$, say $n_1, n_2,...,n_p \in \Lambda'$.

So, there exists
$$x_0 \in X$$
 such that $(\delta \wedge (i,j)_{\gamma}^* - pcl(\lambda_n))(x_0) > \alpha$ for $n_1, n_2, ..., n_p$ and $(\delta \wedge (i,j)_{\gamma}^* - pcl(\lambda_n))(x_0) \le \alpha$ for $n \ne n_1, n_2, ..., n_p$. (I)

Let $\mu = \delta \wedge \left(\bigwedge_{i=1}^p (1_X - (i,j)_{\gamma}^* - pcl(\lambda_i)) \right)$. Then μ is an $(i,j)_{\gamma}^*$ -fuzzy pre-open set and

$$\mu(x) > (1_x - \beta)(x).$$
i.e. $\left[\delta \wedge \left(\bigwedge_{i=1}^p (1_X - (i,j)_\gamma^* - pcl(\lambda_i))\right)\right](x) > \bigwedge_{n \in \Lambda'} \left(1_X - ((i,j)_\gamma^* - pcl(\lambda_n))\right)(x).$

Let us assume that

$$\bigwedge_{n \in \Lambda'} \left(1_X - ((i,j)_{\gamma}^* - pcl(\lambda_n)) \right)(x) = \inf_{n \in \Lambda'} \left\{ 1_X - ((i,j)_{\gamma}^* - pcl(\lambda_n))(x) \right\}$$

$$= \left(1_X - ((i,j)_{\gamma}^* - pcl(\lambda_{n_0})) \right)(x) \text{ for some } n_0 \in \Lambda'.$$

Then
$$\delta(x) \wedge \left(\bigwedge_{i=1}^{p} (1_X - (i, j)_{\gamma}^* - pcl(\lambda_i)) \right)(x) > \left(1_X - ((i, j)_{\gamma}^* - pcl(\lambda_{n_0})) \right)(x)$$

and $\left(\bigwedge_{i=1}^{p} (1_X - (i, j)_{\gamma}^* - pcl(\lambda_{n_i})) \right)(x) > \left(1_X - ((i, j)_{\gamma}^* - pcl(\lambda_{n_0})) \right)(x).$ (III)
If $n_0 = n_i$ for some $i = 1, 2, 3, ..., p$, then from (III) we have,

 $(1_X - (i, j)_{\gamma}^* - pcl(\lambda_{n_i}))(x) > (1_X - ((i, j)_{\gamma}^* - pcl(\lambda_{n_0})))(x)$ for each i = 1, 2, 3, ..., p.

This gives $(1_X - ((i,j)_{\gamma}^* - pcl(\lambda_{n_0})))(x) > (1_X - ((i,j)_{\gamma}^* - pcl(\lambda_{n_0})))(x)$, which is a contradiction. Now if $n_0 \neq n_i$ for i = 1,2,3,...,p, then we have,

 $\left(\bigwedge_{i=1}^{p} (1_{X} - (i, j)_{\gamma}^{*} - pcl(\lambda_{n_{i}})) \right)(x) \ge \left(1_{X} - ((i, j)_{\gamma}^{*} - pcl(\lambda_{n_{0}})) \right)(x) \text{ for } n_{0} \ne n_{1}, n_{2}, \dots n_{p}.$ (IV

From (I) we obtain, $\min\{\delta(x), (i, j)_{\gamma}^* - pcl(\lambda_n)\} \le \alpha$ for each $x \in X$ and for $n_0 \ne n_1, n_2, \dots n_p$.

This implies that $(i,j)^*_{\gamma} - pcl(\lambda_{n_0})(x) \leq \alpha$ for each $x \in X$ and for $n_0 \neq n_1, n_2, ... n_p$.

From (IV), we have

$$\bigwedge_{i=1}^{p} \left(1_X - \left((i, j)_{\gamma}^* - pcl(\lambda_{n_i}) \right) \right) (x) \ge 1_X - \alpha$$

and

$$(1_X - ((i, j)^*_{\gamma} - pcl(\lambda_{n_i})))(x) \ge 1_X - \alpha \text{ for } i = 1, 2, 3, ..., p.$$

This impies that, $(i,j)_{\gamma}^*$ - $pcl(\lambda_n)(x) \le \alpha$ for $n = n_1, n_2, ... n_p$. Again, (I) gives $(\delta \wedge (i,j)_{\gamma}^*$ - $pcl(\lambda_n))(x) > \alpha$ for $n_1, n_2, ..., n_p$.

Thus $(i,j)^*_{\gamma}$ -pcl $(\lambda_n)(x) > \alpha$ for $n_1, n_2,...,n_p$, which is a contradiction.

Therefore, $\mu(x) = (1_X - \beta)(x)$. So, β is a $(i, j)^*_{\gamma}$ -fuzzy preclosed set. Hence the proof is completed.

Theorem 4.6 In (X, τ_i, τ_j) , a $(i, j)^*_{\gamma}$ -fuzzy α -locally finite family $\{\lambda_n : n \in \Lambda\}$ of fuzzy sets is closure preserving.

Proof: Let $\{\lambda_n : n \in \Lambda\}$ be a $(i,j)_{\gamma}^*$ -fuzzy α -locally finite family of fuzzy sets in a FBTS (X,τ_i,τ_j) . Then $\lambda_n \leq \bigvee_{n \in \Lambda} \lambda_n$ which gives $(i,j)_{\gamma}^*$ - $pcl(\lambda_n) \leq (i,j)_{\gamma}^*$ - $pcl(\bigvee_{n \in \Lambda} \lambda_n)$ for each $n \in \Lambda$.

Then $\bigvee_{n\in\Lambda} \left((i,j)_{\gamma}^* - pcl(\lambda_n) \right) \leq (i,j)_{\gamma}^* - pcl(\bigvee_{n\in\Lambda} \lambda_n).$

Also, we know that, $\lambda_n \leq (i,j)^*_{\gamma} - pcl(\lambda_n)$ for each $n \in \Lambda$, which implies that

$$\bigvee_{n \in \Lambda} \lambda_n \le \bigvee_{n \in \Lambda} \left((i, j)_{\gamma}^* - pcl(\lambda_n) \right).$$

Thus by the above theorem, we obtain that $\bigvee_{n\in\Lambda} \left((i,j)_{\gamma}^* - pcl(\lambda_n)\right)$ is a $(i,j)_{\gamma}^*$ -fuzzy preclosed set containing $\bigvee_{n\in\Lambda} \lambda_n$. So, $(i,j)_{\gamma}^* - pcl(\bigvee_{n\in\Lambda} \lambda_n) \leq \bigvee_{n\in\Lambda} \left((i,j)_{\gamma}^* - pcl(\lambda_n)\right)$.

Then, $(i,j)^*_{\gamma}$ - $pcl(\bigvee_{n\in\Lambda}\lambda_n) = \bigvee_{n\in\Lambda} ((i,j)^*_{\gamma} - pcl(\lambda_n))$. Eventually, $\{\lambda_n : n\in\Lambda\}$ is closure preserving.

Theorem 4.7 Let (X, τ_i, τ_j) be a FBTS. If $\{\lambda_n : n \in \Lambda\}$ be a $(i, j)^*_{\gamma}$ -fuzzy α -locally finite family of $(i, j)^*_{\gamma}$ fuzzy preclosed sets, then $\bigvee_{n \in \Lambda} \lambda_n$ is a $(i, j)^*_{\gamma}$ fuzzy preclosed set.

Proof: Let $\{\lambda_n : n \in \Lambda\}$ be a $(i,j)_{\gamma}^*$ -fuzzy α -locally finite family of $(i,j)_{\gamma}^*$ fuzzy preclosed sets, then $\lambda_n = (i,j)_{\gamma}^* - pcl(\lambda_n)$ for each $n \in \Lambda$. From the above theorem, we have $\{\lambda_n : n \in \Lambda\}$ is closure preserving. So, $\bigvee_{n \in \Lambda} \left((i,j)_{\gamma}^* - pcl(\lambda_n) \right) = (i,j)_{\gamma}^* - pcl(\bigvee_{n \in \Lambda} \lambda_n)$. This gives $\bigvee_{n \in \Lambda} \lambda_n = (i,j)_{\gamma}^* - pcl(\bigvee_{n \in \Lambda} \lambda_n)$. Therefore, $\bigvee_{n \in \Lambda} \lambda_n$ is a $(i,j)_{\gamma}^*$ fuzzy preclosed set.

Acknowledgments

The authors would like to thank the referees for their careful reading of the manuscript and recommendation regarding the publication of the paper

References

- 1. Andrijevic, D., Semi-preopen sets, Math. Vesnik., 24-32, (1986).
- 2. Andrijevic, D., On the Topology Generated by Pre-open Sets, Math. Vesnik, 39, 367-376, (1987).
- 3. Asaad, B. A., Ahmed, N., Operation on semi generalized open sets with its separation axioms, Int. J. Pure Appl. Math., 118(3), 701-711, (2018).
- 4. Carpintero, C., Rajesh, N., Roses, E., Operation approaches on b-open sets and applications, Bol. Soc. Paran. Mat., 20(1), 21-33, (2012).
- Das, B., Saha, A.K., Bhattacharya, B., On Infi-topological Spaces, The Journal of Fuzzy Mathematics, 25(2), 437-448, 2017.
- 6. Das, B., Bhattacharya, B., On fuzzy γ_{μ} -open sets in generalized fuzzy topological spaces, Proyecciones Journal of Mathematics, 41(3), 733 749 (2022).
- Das, B., Bhattacharya, B., Chakraborty, J., Tripathy, B. C., Generalized fuzzy closed sets in a fuzzy bitopological space via γ-open sets, Afrika Matematika, 32(2), 1-13, (2021).
- 8. Das, B., Chakraborty, J., Paul, G., Bhattacharya, B., A new approach for some applications of generalized fuzzy closed sets, Computational and Applied Mathematics, 40(2), 1-14, (2021).
- 9. Das, B., Chakraborty, J., Bhattacharya, B., A new type of generalized closed set via γ-open set in a fuzzy bitopological space, Proyecciones Journal of Mathematics, 38(3), 511-536, (2019).
- 10. Das, B., Bhattacharya, B., On (i,j) generalized fuzzy γ -closed Set in fuzzy bitopological spaces, Soft Computing for Problem Solving: SocProS 2017, 1, 661-673, 2018.
- 11. Fathi, H. K., Khalaf M. A., Operations on bitopological spaces, Fasciculi Mathematici, 45, 47-57, (2010).
- 12. Ghour, S. A., Some generalizations of minimal fuzzy open sets, Acta Mathematica Universitatis Comenianae, 75(1), 107-117, (2006).
- 13. Hussain, S., On generalized open sets, Hacettepe Journal of Mathematics and Statistics, 47(6), 1438-1446, (2018).
- 14. Kandil, A, Nouh, A. A., El-Sheikh, S. A., On fuzzy bitopological spaces, Fuzzy Sets and Systems, 74, 353-363, (1995).
- 15. Kasahara, S., Operation-compact spaces, Mathematica Japonica, 24, 97-105, (1979).
- 16. Levine, N., Generalized closed sets in topology, Rend. Circ. Math. Palerno, 2, 89–96, (1970)
- 17. Mashhour, A. S., EI-Monsef, M. E., EI-Deep, S. N., On Precontinuous and Weak Continuous Mappings, Proc., Math. Phys., Soc., 53, 47-53, (1982).
- 18. Nakaoka, F., Oda, N., Some applications of minimal open sets, Int. J. Math. Math. Sci., 27(8), 471-476, (2001).
- 19. Njastad, O., On some classes of nearly open sets, Pacific J. Math., 15, 961-970, (1965).
- 20. Ogata, H., Remarks on some operation-separation axioms, Bull. Fukuoka Univ. Ed. Part III, 40, 41-43, (1991).
- 21. Ogata, H., Operations on topological spaces and associated topology, Math. Japon., 36, 175-184, (1991).
- Ray, S., Das, B., Bhattacharya, B., Kisi, O., Granados, C., Application of Operation approach in fuzzy bitopological spaces, Soft Computing, (in press), 2024
- 23. Roy, B., Applications of operations on minimal generalized open sets, Afrika Matematika, 29, 1097-1104, (2018).
- Roy, B., Sen, R., On maximal μ-open and minimal μ-closed sets via generalized topology, Acta Math. Hung., 136, 233-239, (2012).
- 25. Tahiliani, S., Operation approach to β-open sets and applications, Math. Comm., 16, 577-591, (2011)

Satabdi Ray,

Department of Mathematics,

National Institute of Technology Agartala, Tripura, 799046

India.

 $E ext{-}mail\ address: }$ satabdiray3@gmail.com

Birojit Das,

Department of Mathematics,

National Institute of Technology Jalandhar, Punjab

India.

 $E\text{-}mail\ address: \texttt{dasbirojit@gmail.com}$

and

Baby Bhattacharya,

Department of Mathematics,

National Institute of Technology Agartala, Tripura, 799046

India.

 $E ext{-}mail\ address: babybhatt75@gmail.com}$

and

Omer Kisi,

 $Department\ of\ Mathematics,$

Bartin University, Bartin,

Turkey.

 $E ext{-}mail\ address: okisi@bartin.edu.tr}$