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New bounds for spectral radius and the geometric-arithmetic energy of graphs

Hajar Shooshtari* and Murat Cancan

ABSTRACT: In this paper, new bounds on the GA-energy of graphs are established. Moreover, we show the
our bounds are stronger than some previously known lower and upper bounds in the literature.
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1. Introduction

Throughout this paper, G = (V(G), E(G)) denotes an undirected finite simple graph without isolated
vertices. By n and m we denote the cardinality of the set of vertices of G and the cardinality of the set
of edges of G, respectively. We denote by N(v) the set of all vertices adjacent to v € V(G). The degree
of vertex v € V(G) is d; = dv; = [N(v)|. As usual C,, and K,, denotes the cycle and complete graphs on
n vertices, respectively.

The geometric-arithmetic index or GA-index is defined in [14] by

2vd,d,

wweE(G)

Suppose A1 = A2 = -+ > A, be the eigenvalues of adjacency matrix A(G). We know that

i=1

If det(A) = 0, we call G singular, otherwise we call it non-singular. The energy of a graph G is defined
as

E@) =3 Ixl.

This concept was introduced by Gutman and is intensively studied in chemistry, since it can be used to
approximate the total m-electron energy of a molecule (see [4,5,15] ).
The geometric-arithmetic matrix (GA-matrix) of a graph G, Aga(G), is defined in [11] as following

2./did; .
if vv; € E(G
gij = § it wj € E(G)

0 otherwise.
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We denote the eigenvalues of Ay, (G) by k1 > Ko > -+ - > Ky, For any odd integer k > 1, let

Ne(@) = |il? (1.1)

i=1

where k£ may be an odd integer, but also any real-valued number. The special case k = 1, is the geometric-
arithmetic energy (GA-energy), denoted by &,,(G). Rodriguez and Sigaretta [11] studied the properties
the geometric-arithmetic energy.

Then, in this paper, we establish new bounds for the spectral radius GA-adjacency matrix and the
GA- energy. Some of these bounds improve previous results.

2. Preliminaries
In this section, we recall some results that will be used in the sequel.

Lemma 2.1 ([2]) For positive real numbers y; such that 0 <y < --- <y; < -+ <yg < -+ < yp, we

have N
>y = nia e > Q (Vs — Vi) (2.1)
j=1
where 4
0= Bloootd ifi+s<n+1,
n—s+1, ifi+s>n+1.
Lemma 2.2 ([16]) If a1,aq,...,a, are non-negative numbers, then
n(nZai—<Hai) ) SnZai—<Z\/a7> <n(n-1) (nZai—<Hai> ) (2.2)
i=1 i=1 i=1 i=1 i=1 i=1
Lemma 2.3 [7] Let 1, ...,x, be non-negative numbers and let X = 13" x; and Y = (I]}, xi)l/n.
Then ] 1
2 2
mZ(\/@—x@) SX-Y <= (VEi - V)

i<j i<
Lemma 2.4 [15]If0<a< A, and ay,...,a, € [a, A], then
1 & 1 -1 (a+ A)?
i NP I = Y I 2.3
(n;a><n;ai>_ 4Aa (23)
The proof of the following theorem can be found in [8].

Theorem 2.1 Suppose ¢1 = ¢o = -+ = ¢y, be roots of an arbitrary polynomial o, (¢)and

o1&
¢:;;¢i,

Then, we have

_ 1 A -1
o+~ <1 <o+ —v(n— 1A,
nYyn-—1 n
_ 1 1 —1 -1 /n—1
i < it <i<n—
] nVn—ir1 \¢z\¢+n i A, 2<i<n—1, (24)
1 -1 A
n nYyn-—1
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The next lemma plays a vital role in obtaining the results of this paper.

Lemma 2.5 [11] For Ay.(G) matriz with eigenvalues k1 > ko = -+ 2 Ky, we have

n n n

Z ki =0, Z KT = tr(Af]a), Z ki < 2m, and z”: Ky = tr(Aga).
i=1

i=1 i=1 i=1
3. Spectral properties of the geometric-arithmetic matrix

In what follows, we give some lower and upper bounds on spectral of the geometric-arithmetic matrix.
We first present a relation between r; and tr(AZ,) in a graph G.

Theorem 3.1 If G be a graph, then

k1 (G) < M. (3.1)

n

Proof. Note that k1 > kg > -+ > K, are eigenvalues of Ay, (G). Using Cauchy-Schwarz inequality

we obtain ,
(Z Iii> <(n- 1)2%?. (3.2)
i=2 i=2

By Lemma 2.5, we have Y7, r; = —k1 and 1", uf = tr(A2,) — #7. Then from (3.2), we have
(=r1)" < (n = 1)(tr(AZ,) — &7)

(n—=1)(tr(A

2
that is, k1 < 9”'). O

Corollary 3.1 ([11]) If G be a graph, then k1 <n — 1.

Proof. Using 2m = )", d; < nA < n(n — 1) and the upper bound ¢r(A2,) < 2m [11], we obtain

tr(A2,) < n(n—1) and this leads to (n=1)(r(AZ,)

- < n-—1. It follows from Theorem 3.1 that k; < n—1.
O

Next result is an immediate consequence of Theorem 2.1 and Lemma 2.5.

Lemma 3.1 If G be a graph of order n > 2, then

K1 = n(n — 1) y (33)
. tr(A2,) (3.4)
net n(n —1) '

and

(n—2)tr(A2,)

— tr(AZ,) o tr(AZ,)

n - n(n—1)

Corollary 3.2 ([12]) For any graph G, GA(G) > ST

Proof. Using the inequality tr(A2,) < 2GA(G) [12], we get ¢(n71)(;T(A3“') < \/Q(R_lilGA(G), and
Theorem 3.1 leads to the desired bound. J
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4. Bounds for the geometric-arithmetic energy

In this section, we establish new bounds for the GA-energy. The first result gives a relation between
the geometric-arithmetic energy and tr(A2,).

Theorem 4.1 If G be a connected graph of order n > 2, then

tr(A2,)
Ea(G) > 24 —222. 4.1
(@) 2 2T (41)
Proof: Let k1,..., K, be the positive eigenvalues of Ag4,. By Lemma 2.5, we have

p
E4a(G) =2 k.
=1

We deduce from Lemma 3.1 that

tr(Aga)

p
= ;> > —_
Ega(G) 2;/{1 > 2y > 2 1)

as desired. OJ

2
Corollary 4.1 ( [11]) For any graph connected graph G of order n > 2, £,,(G) > %fj‘i;.

Proof: As in the proof of Corollary 3.1, we have tr(A2,) < n(n — 1) and hence ,/tr(A2,) <
o)

2
Vn(n—1) < 2y/n(n—1). Hence 2 > \/%. Now Theorem 4.1 implies that 4 (G) > Z((:jl).

O

The following result relates GA-energy and the tr(A2,).

Theorem 4.2 Let G be a connected graph of order n > 2 and let k', ...,k be the eigenvalues of GA-
matriz such that |k}| > |k4] > -+ > |kl,]. Then

EnlG) < \futr(42,) = 3 1]~ (1.2

The bound is sharp for G = K,, G 5K and G = Cy.
Proof: Lagrange’s inequality [10] implies that
n n 2
0 < ntr(A3,) = €4a(G)? =n Y |wi* = (Z |f€§|> = > (-1
i=1 i=1 1<i<j<n

It follows that

|
-

n

ntr(A2,) = Ega(G)? 2 37 ((Imil = 1m0 + (Isf] = 15,7 + (k4] = Iip])*.

=2
Jennsen’s inequality [9] gives
n—2 2 2 N 2
ntr(Ag,) = €ga(G)* = == (Is1] = w0 )" + (I81] = w37 = 5 (I84] = |w0])” (4.3)

and this leads to the desired result. [J
The next result is an immediate consequence of Theorem 4.2.
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Corollary 4.2 ([11]) For any graph G of order n > 2, £44,(G) <y /ntr(AZ,).

In the following, we give a result relating the geometric-arithmetic energy and tr(AZ2,).

Theorem 4.3 If G is a connected graph of order n > 2 and |k1| > |k2| > -+ > |kn| are the absolute
eigenvalues of Ayq(G), then

EgalG) = \[ntr(A2,) — w(n)(|s1| = [in])2. (4.4)
The equality holds if and only if |k1| = |k2| = --- = |kn|. Moreover, the equality holds if G €
{K’na 047 %KQ}

Proof: For real numbers z; and y; and constants z,y, X and Y, such that 1 <i <n, z <z; < X and
y <y; <Y, it is proved in [1] that

}nzxzyzfzxzzyﬂ Sw(n)(X —z)(Y —y), (4.5)
i=1 =1 =1

where w(n) = n[2] (1 — 1[2]). Equality in (4.5) holds if and only if 21 =23 =+ =z, and y; = yo =
C=Yn- Takelng x; =y; = |ki| foreach 1 <i<m,z=y=|k,|and X =Y = |/£1\ in Inequality (4.5),
we get
n n 2
2
3 = (3o ) | <t
i=1

=1

Since £y (G) < (/ntr(A2,) (see [11]), we get

ntr(Aqa) gga(G)z <w(n)(|k1] - |”n|)2v

and this leads to the desired bound.

Since equality in (4.5) holds if and only z; = 29 = -+ =z, and y1 = y2 = - -+ = y,. Hence, equality
in (4.4) holds if and only if |k1| = |ke| =+ = |ky|- O
Since, n[%] (1 — 7[7]) < ’f, the next result is an immediate consequence of Theorem 4.3.

Corollary 4.3 [11] For any connected graph G of order n > 2, £,,(G) > \/ntr(Aga) - "72(|/<;1| — |Knl)?.
The following results relate the geometric-arithmetic energy to tr(A2,) and | det Ag,|.

Theorem 4.4 If G is a connected graph of order n > 2, then

tr(A2,) (n— 1)|det Agq\ /"
£40(G) > D) ) (t(M) . (46)

Proof: Applying the arithmetic-geometric mean inequality, we have

Yt | det A\ /™!
— ga
Ega(G)—n1+Z|m|>m+ (n—1) (HH,> =k1+(n—1) (m> :

=2
Let us consider the function g(y), as

| det Agq| ) v .

g(y)=y+(n—1)( ;
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It is easy to observe that for y > |det Agq|)™/™,

Hth(‘)

n—1

g(y) is increasing. From the above and the fact that

(see [11]), we arrive at

Ega(G) =

tr(A2,) (n— 1)|det Agq|\ /"
“”1)( ir(A2,) > |

This completes the proof. [
It is obvious that the bound in (4.6) is better than the bound in Corollary 4.1.
In the next theorem, a relationship between the geometric-arithmetic energy and | det A, | is provided.

Theorem 4.5 If G is a connected graph of order n > 2, then

n| det Agal'/™ (51| + |nl)?
Afra ||

Ega(G) <

Proof: Seeting a; = |k;| for 1 < i < n, the inequality (2.3) transforms into

1 1 1 (151] + [#n])?
— (k1| + |ko| + -+ |k +—+ o+t — | < 4.7
sl ol oot bl (b e ) < e )
By applying the arithmetic-geometric mean inequality to the positive numbers |K—11‘, ‘,%2', - In%l we get
1 1 1 n n
[k1]  |K2] |kn| = |K1 Ko+ RV | det Agg [/ (4.8)

Based on (4.8) and (4.7), we obtain

1 £(G)  _ (sl +]ma])?
n|det Age|V/™ = 4lk1]|Kn]

1/n 2
that is, £, (G) < M9t Asel TUmIHRD" - og desired. O

4[k1]|kn]
The next theorem reveals a connection among the geometric-arithmetic energy, tr(Ay,)? and | det Agq|.

Theorem 4.6 If G is a connected graph of order n > 2, then

£30(C) < \/(n — 1)tr(Aye)? + (| det Aga)/".

Proof: Setting a; = k?,i = 1,...,n, in inequality (2.2), we have

S<an£ —(ZMZ) <nn-1)8 (4.9)

that is,

nS < ntr(Aga)? — (£4a(G))? < n(n—1)8
where § = (1 X0, 72 = (ITjy #2) /") = 44222 — (det Aga])*/".
O
By the same argument as before and by Inequality (4.9), we can prove the next result.

Corollary 4.4 ([11]) For any graph G of order n > 2,

£4a(G) > \/tr(Aga)Q +n(n —1) (| det Aga))?™. (4.10)
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In the next result, we determine a lower bound on the geometric-arithmetic energy in terms of order,
tr(A2,) and |det Ag,|.

Theorem 4.7 If G is a connected graph of order n > 3, then

2 2/n 4 2
sga«;)z\/tr<Aga>+n<n—1>(|detAga|>/ t ey L (VIslsl- Visdsl) @)

i<j<k<l
The equality holds if G = K,,.

Proof: By definition, we have

Z|m|2+22|m||ﬁj| (4.12)

i<j
Setting N = n(";l) and
(1,22, ... on) = (|8al[Rel, [RallRsls - Rl - R2l[Ral, - o [An—1|]n])

in Lemma 2.3, we obtain
2/n
S ey > =Y (Hw)
1<i<j<n
2 2
pots 5 (sl - Vi)

i<j<k<l
yielding

2 > killrgl > n(n — 1) (det Agq)*"

1<i<j<n
4 \/7
+W ( kil | —\/|/fk||f<«'l)

1<j<k<l

Combining the above inequality with (4.12) leads to the desired inequality. O
2
Since (\/|/<;Z||/<;j| — \/\mk||/<;l|> > 0, we have

— 3 (VIRlls] - Vsl

> 2 _ 2/”
£4(G) > \/trmga) (= 1) (| det Agu )" + o
1<j<k<l

> \/tr(Aga)2 + 1 — 1) (| det Aya)?/".

Thus, the bound in (4.11) is better than the bound in (4.10).
The proof of the next lower bound can be found in [11].

E4a(G) = n (| det Aga|)/™. (4.13)
The following results relate the geometric-arithmetic energy and |det Agq|.

Theorem 4.8 Let G be a connected graph of order n > 3 and let || > |kh| > -+ > |k]| be the absolute
eigenvalue of Ago(G). If Aga(G) is a non-singular graph, then

E4a(G) > n (| det A )™ + <\/|/-; |ﬁ1> (4.14)
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Proof: Setting a; = |k;|, s =n and i = 1, in Inequality (2.1), we get that @ = 1 and hence

n 2
S > n i /Imd g + (\/w - \/na>
=1

(| det Ayal)/" + (m \/nl)

2
Since for non-singular matrix Agq(G), we have (\/\m;l\ - \/|/@’1|) > 0, the bound (4.14) is better
than the bound in (4.13) for non-singular graphs.

O

Theorem 4.9 Let G be a connected graph of order n > 2. Then
(tr(AZ.))?

n
D (Imil)®

i=1

Ega(G) > 90 (4.15)

Proof: For 1 <i <mn, let h; and k; be non-negative real numbers. By Holder’s inequality we have

Sk< (350) (S0) o
i=1 i=1 i=1

If we take h; = |ki|2, ki = |ri|2, r = 2 and s = 2, in Inequality (4.16), we obtain
n n . N 1 n 1
S bl = 3 el () (Z al) (k) (1.17)
i=1 i=1 i=1

Since G is a connected graph of order n > 2, we have Z |k:]® # 0, and Inequality (4.17) gives
i=1

This inequality leads to the desired bound. O

Since for any connected graph G of order n > 2 we have \/ (tr(A2,))(tr(AL,) Z |:))?, the next

result is an immediate consequence of Theorem 4.9.

Corollary 4.5 ([11]) For any nontrivial connected graph G, > 1/%.

Theorem 4.10 Let G be a connected graph of order n > 2 and let a,b, c be non-negative real numbers
such that 4a = b+ c+ 2. Then )
(Na(G))

EgalG) > —22 21 4.18
N e 1
Proof: We use the following inequality published in [17]. For positive real numbers z; j =1,2...,n,

and non-negative real numbers a, b, ¢, such that 4a = b+ c + 2,

4
n n n

S| < (s Z DIEND (4.19)

=1 j=1 j=1 j=1
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Moreover, if (b,c¢) # (1,1), then the equality in (4.19) holds if and only if 23 = 20 = -+ = z,.

Let k1 > Ko > -+ > K¢ be the non-zero GA- eigenvalues of the graph G. Since G is a connected graph
of order at least two, k1 > 0 and ko < 0. For z; = |k;|, j = 1,2,...,¢, the inequality (4.19) transforms
into
4 ‘ >y

¢
Z )" ] < Z|”j| Z |5 bz |51)° (4.20)

j=1 j=1 j=1

~

that is
(Na)4 < (gga(G))2 NyN,

and this leads to the desired bound. OJ
Theorem 4.10 has the following consequence for b = 0, ¢ = 2 which implies a = 1.

Corollary 4.6 Let G be a connected graph of order n > 2 and let Ago(G) has T zero eigenvalues. Then
Ega(G) < \/2(n —T)tr(A2,). (4.21)

Note that if we take, b = 2, ¢ = 4 in Theorem 4.10, we obtain

Conclusion

In this paper, we studied the eigenvalues of the geometric-arithmetic matrix and established bounds
for the spectral radius of this matrix. Finally, we obtained new bounds for the geometric-arithmetic
energy and shown that some of our bounds improved the previously published bounds.
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