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New bounds for spectral radius and the geometric-arithmetic energy of graphs
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abstract: In this paper, new bounds on the GA-energy of graphs are established. Moreover, we show the
our bounds are stronger than some previously known lower and upper bounds in the literature.
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1. Introduction

Throughout this paper, G = (V (G), E(G)) denotes an undirected finite simple graph without isolated
vertices. By n and m we denote the cardinality of the set of vertices of G and the cardinality of the set
of edges of G, respectively. We denote by N(v) the set of all vertices adjacent to v ∈ V (G). The degree
of vertex v ∈ V (G) is di = dvi = |N(v)|. As usual Cn and Kn denotes the cycle and complete graphs on
n vertices, respectively.

The geometric-arithmetic index or GA-index is defined in [14] by

GA(G) =
∑

uv∈E(G)

2
√
dudv

du + dv
.

Suppose λ1 ⩾ λ2 ⩾ · · · ⩾ λn be the eigenvalues of adjacency matrix A(G). We know that

detA =

n∏
i=1

λi.

If det(A) = 0, we call G singular, otherwise we call it non-singular. The energy of a graph G is defined
as

E(G) =

n∑
i=1

| λi | .

This concept was introduced by Gutman and is intensively studied in chemistry, since it can be used to
approximate the total π-electron energy of a molecule (see [4,5,15] ).

The geometric-arithmetic matrix (GA-matrix) of a graph G, Aga(G), is defined in [11] as following

gij =

 2
√

didj

di+dj
if vivj ∈ E(G)

0 otherwise.
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We denote the eigenvalues of Aga(G) by κ1 ⩾ κ2 ⩾ · · · ⩾ κn. For any odd integer k ≥ 1, let

Nk(G) =

n∑
i=1

|κi|k (1.1)

where k may be an odd integer, but also any real-valued number. The special case k = 1, is the geometric-
arithmetic energy (GA-energy), denoted by Ega(G). Rodriguez and Sigaretta [11] studied the properties
the geometric-arithmetic energy.

Then, in this paper, we establish new bounds for the spectral radius GA-adjacency matrix and the
GA- energy. Some of these bounds improve previous results.

2. Preliminaries

In this section, we recall some results that will be used in the sequel.

Lemma 2.1 ( [2]) For positive real numbers yi such that 0 < y1 ≤ · · · ≤ yi ≤ · · · ≤ ys ≤ · · · ≤ yn, we
have

n∑
j=1

yj − n
√
y1y2 . . . yn ≥ Q (

√
ys −

√
yi)

2
(2.1)

where

Q =

{
2i(n−s+1)
n+i−s+1 if i+ s ≤ n+ 1,

n− s+ 1, if i+ s ≥ n+ 1.

Lemma 2.2 ( [16]) If a1, a2, . . . , an are non-negative numbers, then

n

 1

n

n∑
i=1

ai −

(
n∏

i=1

ai

)1/n
 ≤ n

n∑
i=1

ai −

(
n∑

i=1

√
ai

)2

≤ n(n− 1)

 1

n

n∑
i=1

ai −

(
n∏

i=1

ai

)1/n
 . (2.2)

Lemma 2.3 [7] Let x1, . . . , xn be non-negative numbers and let X = 1
n

∑n
i=1 xi and Y = (

∏n
i=1 xi)

1/n
.

Then
1

n(n− 1)

∑
i<j

(√
xi −

√
xj

)2 ≤ X − Y ≤ 1

n

∑
i<j

(√
xi −

√
xj

)2
.

Lemma 2.4 [13] If 0 < a < A, and a1, . . . , an ∈ [a,A], then(
1

n

n∑
i=1

ai

)(
1

n

n∑
i=1

1

ai

)
≤ (a+A)2

4Aa
. (2.3)

The proof of the following theorem can be found in [8].

Theorem 2.1 Suppose ϕ1 ⩾ ϕ2 ⩾ · · · ⩾ ϕn be roots of an arbitrary polynomial φn(ϕ)and

ϕ̄ =
1

n

n∑
i=1

ϕi,

Λ = n

n∑
i=1

ϕ2
i −

( n∑
i=1

ϕi

)2

.

Then, we have

ϕ̄+
1

n

√
Λ

n− 1
⩽ ϕ1 ⩽ ϕ̄+

1

n

√
(n− 1)Λ,

ϕ̄− 1

n

√
i− 1

n− i+ 1
Λ ⩽ ϕi ⩽ ϕ̄+

1

n

√
n− i

i
Λ, 2 ⩽ i ⩽ n− 1, (2.4)

ϕ̄− 1

n

√
(n− 1)Λ ⩽ ϕn ⩽ ϕ̄− 1

n

√
Λ

n− 1
.
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The next lemma plays a vital role in obtaining the results of this paper.

Lemma 2.5 [11] For Aga(G) matrix with eigenvalues κ1 ⩾ κ2 ⩾ · · · ⩾ κn, we have

n∑
i=1

κi = 0,

n∑
i=1

κ2
i = tr(A2

ga),

n∑
i=1

κ2
i ≤ 2m, and

n∑
i=1

κ4
i = tr(A4

ga).

3. Spectral properties of the geometric-arithmetic matrix

In what follows, we give some lower and upper bounds on spectral of the geometric-arithmetic matrix.
We first present a relation between κ1 and tr(A2

ga) in a graph G.

Theorem 3.1 If G be a graph, then

κ1(G) ≤
√

(n− 1)(tr(A2
ga)

n
. (3.1)

Proof. Note that κ1 ≥ κ2 ≥ · · · ≥ κn are eigenvalues of Aga(G). Using Cauchy-Schwarz inequality
we obtain (

n∑
i=2

κi

)2

≤ (n− 1)

n∑
i=2

κ2
i . (3.2)

By Lemma 2.5, we have
∑n

i=2 κi = −κ1 and
∑n

i=2 µ
2
i = tr(A2

ga)− κ2
1. Then from (3.2), we have

(−κ1)
2 ≤ (n− 1)(tr(A2

ga)− κ2
1)

that is, κ1 ≤
√

(n−1)(tr(A2
ga)

n . □

Corollary 3.1 ( [11]) If G be a graph, then κ1 ≤ n− 1.

Proof. Using 2m =
∑n

i=1 di ≤ n∆ ≤ n(n − 1) and the upper bound tr(A2
ga) ≤ 2m [11], we obtain

tr(A2
ga) ≤ n(n−1) and this leads to

√
(n−1)(tr(A2

ga)

n ≤ n−1. It follows from Theorem 3.1 that κ1 ≤ n−1.
□

Next result is an immediate consequence of Theorem 2.1 and Lemma 2.5.

Lemma 3.1 If G be a graph of order n ≥ 2, then

κ1 ≥

√
tr(A2

ga)

n(n− 1)
, (3.3)

κn−1 ≤

√
tr(A2

ga)

n(n− 1)
(3.4)

and

−

√
tr(A2

ga)

n(n− 1)
≤ κ2 ≤

√
(n− 2)tr(A2

ga)

2n
,

−
√

(n− 1)tr(A2
ga)

n
≤ κn ⩽ −

√
tr(A2

ga)

n(n− 1)
.

Corollary 3.2 ( [12]) For any graph G, GA(G) ≥ nκ2
1

2(n−1) .

Proof. Using the inequality tr(A2
ga) ≤ 2GA(G) [12], we get

√
(n−1)(tr(A2

ga)

n ≤
√

2(n−1)GA(G)
n , and

Theorem 3.1 leads to the desired bound. □
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4. Bounds for the geometric-arithmetic energy

In this section, we establish new bounds for the GA-energy. The first result gives a relation between
the geometric-arithmetic energy and tr(A2

ga).

Theorem 4.1 If G be a connected graph of order n ≥ 2, then

Ega(G) ≥ 2

√
tr(A2

ga)

n(n− 1)
. (4.1)

Proof : Let κ1, . . . , κp be the positive eigenvalues of Aga. By Lemma 2.5, we have

Ega(G) = 2

p∑
i=1

κi.

We deduce from Lemma 3.1 that

Ega(G) = 2

p∑
i=1

κi ≥ 2κ1 ≥ 2

√
tr(A2

ga)

n(n− 1)
,

as desired. □

Corollary 4.1 ( [11]) For any graph connected graph G of order n ≥ 2, Ega(G) ≥ tr(A2
ga)

n(n−1) .

Proof : As in the proof of Corollary 3.1, we have tr(A2
ga) ≤ n(n − 1) and hence

√
tr(A2

ga) ≤√
n(n− 1) < 2

√
n(n− 1). Hence 2 >

√
tr(A2

ga)

n(n−1) . Now Theorem 4.1 implies that Ega(G) >
tr(A2

ga)

n(n−1) .

□
The following result relates GA-energy and the tr(A2

ga).

Theorem 4.2 Let G be a connected graph of order n ≥ 2 and let κ′
1, . . . , κ

′
n be the eigenvalues of GA-

matrix such that |κ′
1| ≥ |κ′

2| ≥ · · · ≥ |κ′
n|. Then

Ega(G) ≤
√
ntr(A2

ga)−
n

2
(|κ′

1| − |κ′
n|)

2
. (4.2)

The bound is sharp for G ∼= K̄n, G ∼= n
2K2 and G ∼= C4.

Proof : Lagrange’s inequality [10] implies that

0 ≤ ntr(A2
ga)− Ega(G)2 = n

n∑
i=1

|κ′
i|2 −

(
n∑

i=1

|κ′
i|

)2

=
∑

1≤i<j≤n

(
|κ′

i| − |κ′
j |
)2

.

It follows that

ntr(A2
ga)− Ega(G)2 ≥

n−1∑
i=2

(
(|κ′

1| − |κ′
i|)

2
+ (|κ′

i| − |κ′
n|)

2
)
+ (|κ′

1| − |κ′
n|)

2
.

Jennsen’s inequality [9] gives

ntr(A2
ga)− Ega(G)2 ≥ n− 2

2
(|κ′

1| − |κ′
n|)

2
+ (|κ′

1| − |κ′
n|)

2
=

n

2
(|κ′

1| − |κ′
n|)

2
, (4.3)

and this leads to the desired result. □
The next result is an immediate consequence of Theorem 4.2.
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Corollary 4.2 ( [11]) For any graph G of order n ≥ 2, Ega(G) ≤
√

ntr(A2
ga).

In the following, we give a result relating the geometric-arithmetic energy and tr(A2
ga).

Theorem 4.3 If G is a connected graph of order n ≥ 2 and |κ1| ≥ |κ2| ≥ · · · ≥ |κn| are the absolute
eigenvalues of Aga(G), then

Ega(G) ≥
√

ntr(A2
ga)− ω(n)(|κ1| − |κn|)2. (4.4)

The equality holds if and only if |κ1| = |κ2| = · · · = |κn|. Moreover, the equality holds if G ∈
{Kn, C4,

n
2K2}.

Proof : For real numbers xi and yi and constants x, y,X and Y , such that 1 ≤ i ≤ n, x ≤ xi ≤ X and
y ≤ yi ≤ Y , it is proved in [1] that

∣∣n n∑
i=1

xiyi −
n∑

i=1

xi

n∑
i=1

yi
∣∣ ≤ ω(n)(X − x)(Y − y), (4.5)

where ω(n) = n[n2 ]
(
1− 1

n [
n
2 ]
)
. Equality in (4.5) holds if and only if x1 = x2 = · · · = xn and y1 = y2 =

· · · = yn. Takeing xi = yi = |κi| for each 1 ≤ i ≤ n, x = y = |κn| and X = Y = |κ1| in Inequality (4.5),
we get ∣∣n n∑

i=1

(κi)
2 −

(
n∑

i=1

|κi|

)2 ∣∣ ≤ ω(n)(|κ1| − |κn|)2.

Since Ega(G) ≤
√
ntr(A2

ga) (see [11]), we get

ntr(A2
ga)− Ega(G)2 ≤ ω(n)(|κ1| − |κn|)2,

and this leads to the desired bound.
Since equality in (4.5) holds if and only x1 = x2 = · · · = xn and y1 = y2 = · · · = yn. Hence, equality

in (4.4) holds if and only if |κ1| = |κ2| = · · · = |κn|. □
Since, n[n2 ]

(
1− 1

n [
n
2 ]
)
≤ n2

4 , the next result is an immediate consequence of Theorem 4.3.

Corollary 4.3 [11] For any connected graph G of order n ≥ 2, Ega(G) ≥
√
ntr(A2

ga)− n2

4 (|κ1| − |κn|)2.

The following results relate the geometric-arithmetic energy to tr(A2
ga) and |detAga|.

Theorem 4.4 If G is a connected graph of order n ≥ 2, then

Ega(G) ≥
tr(A2

ga)

n− 1
+ (n− 1)

(
(n− 1)|detAga|

tr(A2
ga)

)1/n−1

. (4.6)

Proof : Applying the arithmetic-geometric mean inequality, we have

Ega(G) = κ1 +

n∑
i=2

|κi| ≥ κ1 + (n− 1)

(
n∏

i=2

|κi|

)1/n−1

= κ1 + (n− 1)

(
|detAga|

κ1

)1/n−1

.

Let us consider the function g(y), as

g(y) = y + (n− 1)

(
|detAga|

y

)1/n−1

.
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It is easy to observe that for y ≥ |detAga|)1/n, g(y) is increasing. From the above and the fact that

κ1 ≥ tr(A2
ga)

n−1 (see [11]), we arrive at

Ega(G) ≥
tr(A2

ga)

n− 1
+ (n− 1)

(
(n− 1)|detAga|

tr(A2
ga)

)1/n−1

.

This completes the proof. □
It is obvious that the bound in (4.6) is better than the bound in Corollary 4.1.
In the next theorem, a relationship between the geometric-arithmetic energy and |detAga| is provided.

Theorem 4.5 If G is a connected graph of order n ≥ 2, then

Ega(G) ≤ n|detAga|1/n (|κ1|+ |κn|)2

4|κ1||κn|
.

Proof : Seeting ai = |κi| for 1 ≤ i ≤ n, the inequality (2.3) transforms into

1

n2
(|κ1|+ |κ2|+ · · ·+ |κn|)

(
1

|κ1|
+

1

|κ2|
+ · · ·+ 1

|κn|

)
≤ (|κ1|+ |κn|)2

4|κ1||κn|
. (4.7)

By applying the arithmetic-geometric mean inequality to the positive numbers 1
|κ1| ,

1
|κ2| , . . . ,

1
|κn| we get

1

|κ1|
+

1

|κ2|
+ · · ·+ 1

|κn|
≥ n

|κ1 + κ2 + · · ·+ κn|1/n
=

n

|detAga|1/n
. (4.8)

Based on (4.8) and (4.7), we obtain

1

n

Ega(G)

|detAga|1/n
≤ (|κ1|+ |κn|)2

4|κ1||κn|

that is, Ega(G) ≤ n| detAga|1/n(|κ1|+|κn|)2
4|κ1||κn| , as desired. □

The next theorem reveals a connection among the geometric-arithmetic energy, tr(Aga)
2 and |detAga|.

Theorem 4.6 If G is a connected graph of order n ≥ 2, then

Ega(G) ≤
√
(n− 1)tr(Aga)2 + n (|detAga|)2/n.

Proof : Setting ai = κ2
i , i = 1, . . . , n, in inequality (2.2), we have

nS ≤ n

n∑
i=1

κ2
i −

(
n∑

i=1

|κi|

)2

≤ n(n− 1)S (4.9)

that is,

nS ≤ ntr(Aga)
2 − (Ega(G))

2 ≤ n(n− 1)S

where S =
(

1
n

∑n
i=1 κ

2
i −

(∏n
i=1 κ

2
i

)1/n)
=

tr(Aga)
2

n − (|detAga|)2/n .
□
By the same argument as before and by Inequality (4.9), we can prove the next result.

Corollary 4.4 ( [11]) For any graph G of order n ≥ 2,

Ega(G) ≥
√
tr(Aga)2 + n(n− 1) (|detAga|)2/n. (4.10)
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In the next result, we determine a lower bound on the geometric-arithmetic energy in terms of order,
tr(A2

ga) and |detAga|.

Theorem 4.7 If G is a connected graph of order n ≥ 3, then

Ega(G) ≥
√

tr(A2
ga) + n(n− 1) (| detAga|)2/n +

4

(n+ 1)(n− 2)

∑
i<j≤k<l

(√
|κi||κj | −

√
|κk||κl|

)2
. (4.11)

The equality holds if G ∼= Kn.

Proof : By definition, we have

Ega(G) =

n∑
i=1

|κi|2 + 2
∑
i<j

|κi||κj |. (4.12)

Setting N = n(n−1)
2 and

(x1, x2, . . . , xN ) = (|κ1||κ2|, |κ1||κ3|, . . . , |κ1||κn|, . . . , |κ2||κn|, . . . , |κn−1||κn|)

in Lemma 2.3, we obtain

∑
1≤i<j≤n

|κi||κj | ≥
n(n− 1)

2

(
N∏
i=1

|κi|

)2/n

+
2

n2 − n− 2

∑
i<j≤k<l

(√
|κi||κj | −

√
|κk||κl|

)2

yielding

2
∑

1≤i<j≤n

|κi||κj | ≥ n(n− 1) (detAga)
2/n

+
4

(n+ 1)(n− 2)

∑
i<j≤k<l

(√
|κi||κj | −

√
|κk||κl|

)2

.

Combining the above inequality with (4.12) leads to the desired inequality. □

Since
(√

|κi||κj | −
√
|κk||κl|

)2
≥ 0, we have

Ega(G) ≥
√

tr(A2
ga) + n(n− 1) (| detAga|)2/n +

4

(n+ 1)(n− 2)

∑
i<j≤k<l

(√
|κi||κj | −

√
|κk||κl|

)2
≥
√

tr(Aga)2 + n(n− 1) (| detAga|)2/n.

Thus, the bound in (4.11) is better than the bound in (4.10).
The proof of the next lower bound can be found in [11].

Ega(G) ≥ n (|detAga|)1/n . (4.13)

The following results relate the geometric-arithmetic energy and |detAga|.

Theorem 4.8 Let G be a connected graph of order n ≥ 3 and let |κ′
1| ≥ |κ′

2| ≥ · · · ≥ |κ′
n| be the absolute

eigenvalue of Aga(G). If Aga(G) is a non-singular graph, then

Ega(G) ≥ n (|detAga|)1/n +

(√
|κ′

n| −
√
|κ′

1|
)2

. (4.14)
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Proof : Setting ai = |κi|, s = n and i = 1, in Inequality (2.1), we get that Q = 1 and hence

n∑
i=1

|κ′
i| ≥ n n

√
|κ′

1||κ′
2| . . . |κ′

n|+
(√

|κ′
n| −

√
|κ′

1|
)2

= n (|detAga|)1/n +

(√
|κ′

n| −
√

|κ′
1|
)2

.

□

Since for non-singular matrix Aga(G), we have
(√

|κ′
n| −

√
|κ′

1|
)2

> 0, the bound (4.14) is better

than the bound in (4.13) for non-singular graphs.

Theorem 4.9 Let G be a connected graph of order n ≥ 2. Then

Ega(G) ⩾
(tr(A2

ga))
2

n∑
i=1

(|κi|)3
. (4.15)

Proof : For 1 ≤ i ≤ n, let hi and ki be non-negative real numbers. By Hölder’s inequality we have

n∑
i=1

hiki ⩽

( n∑
i=1

hr
i

) 1
r
( n∑

i=1

ksi

) 1
r

. (4.16)

If we take hi = |κi|
1
2 , ki = |κi|

3
2 , r = 2 and s = 2, in Inequality (4.16), we obtain

n∑
i=1

|κi|2 =

n∑
i=1

|κi|
1
2

(
|κi|3

) 1
2 ⩽

( n∑
i=1

|κi|
) 1

2
( n∑

i=1

|κi|3
) 1

2

. (4.17)

Since G is a connected graph of order n ≥ 2, we have

n∑
i=1

|κi|3 ̸= 0, and Inequality (4.17) gives

n∑
i=1

|κi| ⩾

( n∑
i=1

|κ2
i |
)2

n∑
i=1

(|κi|)3
.

This inequality leads to the desired bound. □

Since for any connected graph G of order n ≥ 2 we have
√
(tr(A2

ga))(tr(A
4
ga)) ≥

n∑
i=1

(|κi|)3, the next

result is an immediate consequence of Theorem 4.9.

Corollary 4.5 ( [11]) For any nontrivial connected graph G, ≥
√

(tr(A2
ga))

3

(tr(A4
ga))

.

Theorem 4.10 Let G be a connected graph of order n ≥ 2 and let a, b, c be non-negative real numbers
such that 4a = b+ c+ 2. Then

Ega(G) ≥ (Na(G))
2√

Nb(G)Nc(G)
. (4.18)

Proof : We use the following inequality published in [17]. For positive real numbers zj j = 1, 2 . . . , n,
and non-negative real numbers a, b, c, such that 4a = b+ c+ 2, n∑

j=1

(zj)
a

4

≤

 n∑
j=1

zj

2
n∑

j=1

(zj)
b

n∑
j=1

(zj)
c. (4.19)
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Moreover, if (b, c) ̸= (1, 1), then the equality in (4.19) holds if and only if z1 = z2 = · · · = zn.
Let κ1 ≥ κ2 ≥ · · · ≥ κℓ be the non-zero GA- eigenvalues of the graph G. Since G is a connected graph

of order at least two, κ1 > 0 and κ2 < 0. For zj = |κj |, j = 1, 2, . . . , ℓ, the inequality (4.19) transforms
into  ℓ∑

j=1

(|κj |)a
4

≤

 ℓ∑
j=1

|κj |

2
ℓ∑

j=1

(|κj |)b
ℓ∑

j=1

(|κj |)c (4.20)

that is
(Na)

4 ≤ (Ega(G))
2
NbNc

and this leads to the desired bound. □
Theorem 4.10 has the following consequence for b = 0, c = 2 which implies a = 1.

Corollary 4.6 Let G be a connected graph of order n ≥ 2 and let Aga(G) has τ zero eigenvalues. Then

Ega(G) ≤
√
2(n− τ)tr(A2

ga). (4.21)

Note that if we take, b = 2, c = 4 in Theorem 4.10, we obtain

Ega(G) ≥

√√√√(tr(A2
ga)
)3

tr(A4
ga)

.

Conclusion

In this paper, we studied the eigenvalues of the geometric-arithmetic matrix and established bounds
for the spectral radius of this matrix. Finally, we obtained new bounds for the geometric-arithmetic
energy and shown that some of our bounds improved the previously published bounds.
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