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abstract: In this present paper, we will envisaged the existence and uniqueness of solutions for a boundary
value problem for a nonlinear fractional differential equation involving with ψ-Caputo fractional derivative.
Our results are proved under Banach contraction principle and Krasnoselkii’s fixed point theorem.
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1. Introduction

Fractional calculus (FC) and fractional differential equations (FDEs) have emerged as the most impor-
tant and prominent areas of interdisciplinary interest in recent years. FC has a history of more than 300
years, its applicability in different domains has been realized only recently. In the last three decades, the
subject witnessed exponential growth and a number of researchers around the globe are actively working
on this topic see [7, 8, 9].
Almeida [1] generalized the definition of Caputo fractional derivative by considering the Caputo frac-
tional derivative of a function with respect to another function ψ and studied some useful properties of
the fractional calculus. The advantage of this new definition of the fractional derivative is that a higher
accuracy of the model could be achieved by choosing a suitable function ψ.
Recently, in [5] Benlabess, Benbachir and Lakrib gave some sifficient conditions for existence of solutions
to the linear fractional boundary value problem:

{

Dα
0+u(t) = f(t, u(t)), t ∈ J := [0, 1], 2 < α ≤ 3,

Dα−1
0+ u(0) = 0, Dα−2

0+ u(1) = 0, u(0) = 0.

Where Dα
0+ is the standard Riemann-Liouville fractional differential operator of order α and the non

linear function f : [0, 1] × [0,+∞) → R is continuous.
Motivated by the mentioned works, this paper generalize the results obtained in [5] involving ψ−Caputo
type fractional derivative of order 2 < α ≤ 3 and it deals the existence of solutions for the following
nonlinear fractional boundary value problem:

{

CDα;ψ
0+ u(t) = f(t, u(t)), t ∈ J := [0, 1],

u(0) = u′(0) = 0 and CDα−1;ψ
0+ u(1) = 1.

(1.1)
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Where CDα;ψ
0+ is the ψ-Caputo fractional derivative of order 2 < α ≤ 3 and

f : J × [0,∞) → R is a given continuous function.
The paper is organized as follows. In section 2, we introduce notations, definitions and preliminary facts
which are used .In section 3, we introduce the basic assumptions and the state the main result on the
existence and uniqueness of nonlinear fractional boundary value problem.

2. Preliminaries

We start this section by introducing some necessary definition and basic results required for further
developments. We denoted by C(J,R) the Banach space of all continuous functions from J = [0, 1] into
R with the norm ||u||∞ = sup

t∈J

|u(t)|.

Definition 2.1. (ψ-Riemann-Liouville fractional integral [4])
Let α > 0, f be an integrable function defined on [a, b] and ψ : [a, b] → R that is an increasing differentiable
function such that ψ′(t) 6= 0, for all t ∈ [a, b].
The ψ-Riemann-Liouville fractional integral operator of order α of a function f is defined by

Iα;ψ
a f(t) =

1

Γ(α)

∫ t

a

ψ′(s)(ψ(t) − ψ(s))α−1f(s)ds.

Definition 2.2. (ψ-Riemann-Liouville fractional derivative [4])
Let n ∈ N, f, ψ ∈ C

n([a, b]) be two functions such that ψ is increasing with ψ′(t) 6= 0, for all t ∈ [a, b].
ψ-Riemann-Liouville fractional derivative of order α of a function f is defined by

Dα;ψ
a f(t) =

(

1

ψ′(t)

d

dt

)n

(In−α;ψ
a f(t))

=
1

Γ(n− α)

(

1

ψ′(t)

d

dt

)n ∫ t

a

ψ′(s)(ψ(t) − ψ(s))n−α−1f(s)ds,

where n = [α] + 1 and [α] denotes the integer part of α.

Definition 2.3. (ψ-Caputo fractional derivative [4])
Let n ∈ N, f, ψ ∈ C

n([a, b]) be two functions such that ψ is increasing with ψ′(t) 6= 0, for all t ∈ [a, b].
ψ-Caputo fractional derivative of order α of a function f is defined by

CDα;ψ
a f(t) = (In−α;ψ

a f
[n]
ψ )(t)

=
1

Γ(n− α)

∫ t

a

ψ′(s)(ψ(t) − ψ(s))n−α−1f
[n]
ψ (s)ds,

where n = [α] + 1, for α /∈ N. And f
[n]
ψ (t) =

(

1
ψ′(t)

d
dt

)n

f(t) on [a, b].

From the definition, it is clear that when α = n ∈ N, we have

CDα;ψ
a f(t) = f

[n]
ψ (t).

We note that if f ∈ C
n([a, b]). The ψ-Caputo fractional derivative of order α of f is determined as

CDα;ψ
a f(t) = Dα;ψ

a

(

f(t) −

n−1
∑

k=0

f
[k]
ψ (a+)

k!
(ψ(t) − ψ(a))k

)

.

Theorem 2.4. [4] Let f ∈ C
n([a, b]) and α > 0. Then we have

Iα;ψ
a

CDα;ψ
a f(t) = f(t) −

n−1
∑

k=0

f
[k]
ψ (a+)

k!
(ψ(t) − ψ(a))k.

In particular, given α ∈ (0, 1) we have:

Iα;ψ
a

CDα;ψ
a f(t) = f(t) − f(a).
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Theorem 2.5. Given a function f ∈ C([a, b]) and α > 0, we have:

CDα−1;ψ
a+ Iα;ψ

a+ f(x) =

∫ x

a

f(t)ψ′(t)dt.

Proof. By definition,

CDα−1;ψ
a+ Iα;ψ

a+ f(x) =
1

Γ(n− α+ 1)

∫ x

a

ψ′(t)(ψ(x) − ψ(t))n−αF
[n]
ψ (t)dt,

with

F
[n]
ψ (x) =

f(a)

Γ(α− n+ 1)
(ψ(x) − ψ(a))α−n +

1

Γ(α− n+ 1)

∫ x

a

(ψ(x) − ψ(t))α−nf ′(t)dt.

Then,

CDα−1;ψ
a+ Iα;ψ

a+ f(x) =
f(a)

Γ(n− α+ 1)Γ(α− n+ 1)

∫ x

a

ψ′(t)(ψ(x) − ψ(t))n−α(ψ(t) − ψ(a))α−ndt

+
1

Γ(n− α+ 1)Γ(α− n+ 1)

∫ x

a

∫ t

a

ψ′(t)(ψ(x) − ψ(t))n−α(ψ(t) − ψ(τ ))α−n

f ′(τ )dτdt

=
f(a) × (ψ(x) − ψ(t))n−α

Γ(n− α+ 1)Γ(α− n+ 1)

∫ x

a

ψ′(t)

(

1 −
ψ(t) − ψ(a)

ψ(x) − ψ(a)

)n−α

(ψ(t) − ψ(a))α−ndt

+
1

Γ(n− α+ 1)Γ(α− n+ 1)

∫ x

a

∫ t

a

ψ′(t)(ψ(x) − ψ(t))n−α(ψ(t) − ψ(τ ))α−n

f ′(τ )dτdt.

Using the change of variables u = ψ(t)−ψ(a)
ψ(x)−ψ(a) and the Dirichlet’s formula, we deduce:

CDα−1;ψ
a+ Iα;ψ

a+ f(x) =
f(a) × (ψ(x) − ψ(a))

Γ(n− α+ 1)Γ(α− n+ 1)

∫ 1

0

(1 − u)n−αuα−ndu

+
1

Γ(n− α+ 1)Γ(α− n+ 1)

∫ x

a

f ′(t)

{
∫ x

t

ψ′(τ )(ψ(x) − ψ(τ ))n−α

(ψ(τ ) − ψ(t))α−ndτ
}

dt

= f(a) × (ψ(x) − ψ(a)) +
1

Γ(n− α+ 1)Γ(α− n+ 1)

∫ x

a

f ′(t)

∫ x

t

ψ′(τ )

(

1 −
ψ(τ ) − ψ(t)

ψ(x) − ψ(t)

)n−α(
ψ(τ ) − ψ(t)

ψ(x) − ψ(t)

)α−n

dτdt

= f(a) × (ψ(x) − ψ(a)) +

∫ x

a

f ′(t)(ψ(x) − ψ(t))dt.

Thus,

CDα−1;ψ
a+ Iα;ψ

a+ f(x) =

∫ x

a

f(t)ψ′(t)dt.

�

Lemma 2.6. Given n ≤ k ∈ N, we have:

CDα;ψ
a+ (ψ(t) − ψ(a))k =

k!

Γ(k + 1 − α)
(ψ(t) − ψ(a))k−α,

and
CDα;ψ

b− (ψ(b) − ψ(t))k =
k!

Γ(k + 1 − α)
(ψ(b) − ψ(t))k−α.
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Proof. See [2]. �

Theorem 2.7. (Krasnselskii’s fixed point theorem)
Let S be a closed convex nom-empty subset of a Banach space X. Suppose that A,B map S into X such
that

1. Au+Bv ∈ S, ∀u, v ∈ S,

2. A is a contraction mapping,

3. B is continuous and B(S) is contained in a compact set.

Then there exists u ∈ S such that Au+Bu = u.

3. Existence of solutions

First of all, we define what we mean by a solution for the boundary value problem (1).

Definition 3.1. A function u ∈ C(J,R) is said to be a solution of (1) if, u satisfies the equation

CDα;ψ
0+ u(t) = f(t, u(t)), t ∈ J,

and the conditions
u(0) = u′(0) = 0 and CDα−1;ψ

0+ u(1) = 1.

Lemma 3.2. For a given h : J → R continuous, the unique solution of the nonlinear fractional differen-
tial equation

{

CDα;ψ
0+ u(t) = h(t), t ∈ J,

u(0) = u′(0) = 0 and CDα−1;ψ
0+ u(1) = 1,

(3.1)

is given by:

u(t) =
−Γ(4 − α)(ψ(1) − ψ(0))α−3

2
(ψ(t) − ψ(0))2 ×

(
∫ 1

0

h(s)ψ′(s)ds

)

+ Iα;ψ
0+ h(t). (3.2)

Proof. Taking the ψ-Riemann-Liouville fractional integral of order α to the first equation of (2), we get:

u(t) = c0 + c1(ψ(t) − ψ(0)) + c2(ψ(t) − ψ(0))2 + Iα;ψ
0+ h(t)dt.

Since u(0) = 0 and u′(0) = 0, we deduce that c0 = c1 = 0. Then

u(t) = c2(ψ(t) − ψ(0))2 + Iα;ψ
0+ h(t)dt.

With the condition CDα−1;ψ
0+ u(1) = 1 and theorem (2.2), we have:

CDα−1;ψ
0+ u(t) =

2c2

Γ(4 − α)
(ψ(t) − ψ(0))3−α +

∫ t

0

h(s)ψ′(s)ds,

so,

c2 = −

(
∫ 1

0

h(s)ψ′(s)ds

)

Γ(4 − α)

2
(ψ(1) − ψ(0))α−3.

Thus, we get the integral equation (3) and the converse follows by direct computation which completes
the proof. �

Now, we shall present our main result concerning the existence of solutions of problem (1).
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Theorem 3.3. Let f : J × [0,∞) → R be a continuous function such that:
(Hf ) : There exists a constant L > 0, such that

|f(t, u(t)) − f(t, v(t))| ≤ L|u(t) − v(t)|, ∀u, v ∈ R, ∀t ∈ J.

If we have, that

L(ψ(1) − ψ(0))α
{

Γ(4 − α)

2
+

1

Γ(α+ 1)

}

< 1. (3.3)

Then problem (1) has a unique solution on J .

Proof. Suppose that:

Pu(t) =
−Γ(4 − α)(ψ(1) − ψ(0))α−3

2
(ψ(t) − ψ(0))2 ×

(
∫ 1

0

f(s, u(s))ψ′(s)ds

)

+
1

Γ(α)

∫ t

0

ψ′(s)(ψ(t) − ψ(s))α−1f(s, u(s))ds.

Then,

|Pu(t) − Pv(t)| ≤
Γ(4 − α)(ψ(1) − ψ(0))α−3

2
(ψ(t) − ψ(0))2 ×

(
∫ 1

0

|f(s, u(s)) − f(s, v(s))|ψ′(s)ds

)

+
1

Γ(α)

∫ t

0

ψ′(s)(ψ(t) − ψ(s))α−1|f(s, u(s)) − f(s, v(s))|ds

≤
LΓ(4 − α)(ψ(1) − ψ(0))α

2
||u− v||∞ +

L

Γ(α+ 1)
(ψ(1) − ψ(0))α||u− v||∞

= L(ψ(1) − ψ(0))α
{

Γ(4 − α)

2
+

1

Γ(α+ 1)

}

||u− v||∞.

Since P is a contraction. By Banach fixed point theorem P has a unique fixed point which is a unique
solution of problem (1). �

Theorem 3.4. If f satisfies (Hf ) and there exists a constant β > 0 such that:

|f(t, u| ≤ β, ∀t ∈ J, ∀x ≥ 0.

And if there exists γ > 0

β

(

Γ(4 − α)

2
+

1

Γ(α+ 1)

)

(ψ(1) − ψ(0))α ≤ γ, (3.4)

then the problem (1) has at least one solution on J .

Proof. We define a subset S of X by:

S = {u ∈ C(J,R), ||u||∞ ≤ γ}.

Define two operators A : S → X and B : S → X by:

Au(t) = =
−Γ(4 − α)(ψ(1) − ψ(0))α−3

2
(ψ(t) − ψ(0))2 ×

(
∫ 1

0

f(s, u(s))ψ′(s)ds

)

+
1

2Γ(α)

∫ t

0

ψ′(s)(ψ(t) − ψ(s))α−1f(s, u(s))ds,
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and

Bu(t) =
1

2Γ(α)

∫ t

0

ψ′(s)(ψ(t) − ψ(s))α−1f(s, u(s))ds.

Then the equation (3) is transformed into the operator equation as

u(t) = Au(t) +Bu(t).

We show that the operators A and B satisfy all the conditions of theorem (2.3) in several steps.
Step 1. Let u, v ∈ S. Then

|Au(t) +Bv(t)| =

∣

∣

∣

∣

−Γ(4 − α)(ψ(1) − ψ(0))α−3

2
(ψ(t) − ψ(0))2 ×

(
∫ 1

0

f(s, u(s))ψ′(s)ds

)

+
1

2Γ(α)

∫ t

0

ψ′(s)(ψ(t) − ψ(s))α−1f(s, u(s))ds

+
1

2Γ(α)

∫ t

0

ψ′(s)(ψ(t) − ψ(s))α−1f(s, v(s))ds

∣

∣

∣

∣

≤
βΓ(4 − α)(ψ(1) − ψ(0))α

2
+
β(ψ(1) − ψ(0))α

Γ(α+ 1)

= β

(

Γ(4 − α)

2
+

1

Γ(α+ 1)

)

(ψ(1) − ψ(0))α ≤ γ.

Step 2. Let u, v ∈ S. Then

|Au(t) −Av(t)| ≤
LΓ(4 − α)(ψ(1) − ψ(0))α

2
||u− v||∞ +

L(ψ(1) − ψ(0))α

Γ(α+ 1)
||u− v||∞

= L

(

Γ(4 − α)

2
+

1

Γ(α+ 1)

)

(ψ(1) − ψ(0))α||u− v||∞

< 1 (by condition (4)).

Step 3. Let (un)n be a sequence such that un → u ∈ C(J,R).
For t ∈ J , we have:

|Bun(t) −Bu(t)| ≤
1

2Γ(α)

∫ t

0

ψ′(s)(ψ(t) − ψ(s))α−1|f(s, un(s) − f(s, u(s))|ds

≤
L(ψ(1) − ψ(0))α

2Γ(α+ 1)
||un − u||∞.

Therefore
||Bun(t) −Bu(t)||∞ → 0 as ||un − u||∞ → 0.

In order to show that B is compact. Let us take a bounded set Ω ⊂ S. We are required to show that
B(Ω) is relatively compact in C(J,R).
For arbitrary u ∈ Ω and t ∈ J . We have:

||Bu|| ≤
β(ψ(1) − ψ(0))α

2Γ(α+ 1)
= cste.

Now, for equi-continuity of B take t1, t2 ∈ J with t1 < t2, and let u ∈ Ω. Thus, we get

|Bu(t2) −Bu(t1)| ≤
β

2Γ(α+ 1)
{(ψ(t2) − ψ(0))α + (ψ(t1) − ψ(0))α}.

From the last estimate, we deduce that ||Bu(t2) − Bu(t1)|| → 0 when t2 → t1. Therefore, B is equi-
continuous. Thus, by Ascoli-Arzela theorem, the operator B is compact. Hence the problem (1) has at
least one solution on J . �
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4. Example

For t ∈ [0, 1] and x ≥ 0, let define:

f(t, x) =
x

et + 1
and ψ(x) = x2.

Then

|f(t, x) − f(t, y)| ≤
1

11
|x− y|,

which proves that f is a contraction.
To apply theorem (3.1), we should verify that:

1

11

{

Γ(4 − α)

2
+

1

Γ(α+ 1)

}

< 1.

Which is the case since, we have:

• For α = 14
5 , then 1

11

{

Γ( 6
5

)

2 + 1
Γ( 19

5
)

}

= 0.05517 < 1.

• For α = 8
3 , then 1

11

{

Γ( 4
3

)

2 + 1
Γ( 11

3
)

}

= 0.114441 < 1.

By theorem (3.1) we conclude that for f given by x
et+1 problem (1) admits at least one solution.

5. Conclusion

In this article, we proved the existence and uniqueness of solutions for a boundary value problem for
a nonlinear fractional differential equation involving with ψ-Caputo fractional derivative. We use the
Banach contraction principle and Krasnoselkii’s fixed point theorem in order to prove our results.

6. Acknowledgements

The authors would like to express their sincere apreciation to the referees for their very helpful
suggestions and many kind comments.

References

1. R. Almeida, A Caputo fractional derivative of a function with respect to another function,Nonlinear Science and
Numerical Simulation, 44 (2017), 460–481.

2. R. Almeida, A.B. Malinowska, M.M.T. Monteiro, Fractional differential equations with a Caputo derivative with respect
to a kernel function and their applications, Math. Meth. Appl, 41(2018), 336–352.

3. Z. Baitiche, C. Derbazi, M. Benchohra, ψ-Caputo fractional differential equations with multi-point boundary conditions
by topological degree theory, RNA, 3 (2020), 167–178.

4. A. Benlabess, M. Benbachir and M. Lakrib, Boundary value problems for nonlinear fractional differential equations, 30

(2015), 157–168.

5. I. Podlubny, Fractional differential equations, Mathematics in science and engineering, 198 (1999), 41–119.

6. D. Baleanu, H. Jafari, H. Khan and S. J. Johnston, Results for mild solution for fractional coupled hybrid boundary
value problem. Open math, 13 (2005), 601–608.

7. D. Baleanu, H. Jafari, H. Khan and R.A. Alipour, On existence results for solutions of a coupled system of hybrid
boundary value problems with hybrid conditions, Adv. Differ. Equ, 1 (2015), 1–14.

8. V. Daftardar-Gejji, Fractional calculus and fractional differential equations. Springer Nature Singapore, 2019.

9. B. C. Dhage, On α−condensing mappings in Banach algebras, Math Student, 63 (1994), 146–152.



8 M. Elomari, F. E. Bourhim, A. Kassidi and A. El Mfadel

Laboratory of Applied Mathematics Scientific Calculus,

Sultan Moulay Slimane University, BP 523, 23000, Beni Mellal,

Morocco.

E-mail address: m.elomari@usms.ma

E-mail address: fati.zahra.bourhim98@gmail.com

E-mail address: Abderrazakassidi@gmail.com

E-mail address: a.elmfadel@usms.ma


	Introduction
	Preliminaries
	Existence of solutions
	Example
	Conclusion
	Acknowledgements

