(3s.) **v. 2025 (43)** : 1–8. ISSN-0037-8712 doi:10.5269/bspm.66217

Weakly μ -Countable compactness and Weakly $\mu\mathcal{H}$ -Countable compactness

Abdo Qahis* and Takashi Noiri

ABSTRACT: In this paper, we introduce and study the notions of weakly μ -countably compact spaces in generalized topology and weakly μ -countably compact spaces with respect to hereditary class \mathcal{H} . Several of their properties and relations are presented here. In addition, some preservation properties of functions are studied and investigated.

Key Words: generalized topology, hereditary class, μ -countable cvovering, weakly μ -countably compact, weakly $\mu\mathcal{H}$ -countably compact.

Contents

1	Introduction and preliminaries	1
2	weakly μ -countably compact and weakly $\mu\mathcal{H}$ -countably compact spaces	2
3	Functions on weakly $\mu\mathcal{H}$ -countably compact spaces	5
4	Weakly $\mu\mathcal{H}$ -countable compact sets relative to a space	6

1. Introduction and preliminaries

According to [2], a generalized topology (briefly GT) on a nonempty set X is a subset μ of the power set exp X such that $\emptyset \in \mu$ and the union of the elements of an arbitrary subset of μ belongs to μ . We call the pair (X, μ) a generalized topological space (briefly GTS) on X. The elements of μ are called μ -open sets and their complements are called μ -closed sets. If A is a subset of a GTS (X, μ) , then the μ -closure of A, $c_{\mu}(A)$, is the intersection of all μ -closed sets containing A and the μ -interior of A, $i_{\mu}(A)$, is the union of all μ -open sets contained in A (see [2] and [3]). Clearly, A is μ -closed if and only if $A = c_{\mu}(A)$, $c_{\mu}(A)$ is the smallest μ -closed set containing A, $i_{\mu}(A)$ is the largest μ -open set contained in A. In this paper, we consider $X = \bigcup \mathcal{U}$ for any cover \mathcal{U} of μ -open subsets of X. In particular, X is called a weakly μ -compact space if for every μ -open cover of X, the finite union of the μ -closures of whose members covers X, see [10]. More generalizations of these notions with respect to a hereditary class \mathcal{H} can be seen in [5,1,7]. A hereditary class \mathcal{H} is a nonempty subset of the power set exp X that satisfies the following property: if $A \in \mathcal{H}$ and $B \subset A$, then $B \in \mathcal{H}$, see [4]. A hereditary class \mathcal{H} is called an ideal if \mathcal{H} satisfies the additional condition: for $A, B \in \mathcal{H}$ implies $A \cup B \in \mathcal{H}$, see [6]. Given a generalized topological space (X, μ) with a hereditary class \mathcal{H} , for a subset A of X, the generalized local function of A with respect to \mathcal{H} and μ [4] is defined as $A^* = \{x \in X \mid A \cap V \notin \mathcal{H} \text{ for any } V \in \mu \text{ containing } x\}$. For $A \subseteq X$, define $c_{\mu}^*(A) = A \cup A^*$ and the family $\mu^* = \{A \subset X : X \setminus A = c^*(X \setminus A)\}$ is a GT on X which is finer than μ . The elements of μ^* are called μ^* -open sets and their complement are called μ^* -closed sets. We call (X, μ, \mathcal{H}) a hereditary generalized topological space and briefly we denote it by HGTS. In this paper, we define the notions of weakly μ -countably compact and weakly $\mu\mathcal{H}$ -countably compact spaces as generalizations of weakly μ -compact and weakly $\mu\mathcal{H}$ -compact ($\mu\mathcal{H}$ -countably compact) spaces, respectively. Finally, in this section, we recall the following definitions and facts for their importance in the material of the present paper.

Definition 1.1 [10] Let A be a subset of a GTS (X, μ) . Then A is said to be:

1. μ -regular open if $A = i_{\mu}(c_{\mu}(A))$;

Submitted December 08, 2022. Published September 22, 2025 2010 Mathematics Subject Classification: 54A05, 54A08, 54D10.

^{*} Corresponding author.

- 2. μ -regular closed if $X \setminus A$ is μ -regular open.
- **Definition 1.2** [10] Let (X, μ) be a GTS and A be a subset of X. A point $x \in X$ is called a $\theta\mu$ -accumulation point of A if $c_{\mu}(U) \cap A \neq \emptyset$ for every μ -open subset U of X containing x. The set of all $\theta\mu$ -accumulation points of A is called the θ_{μ} -closure of A and is denoted by $(c_{\mu})_{\theta}(A)$. In addition, A is said to be μ_{θ} -closed if $(c_{\mu})_{\theta}(A) = A$. The complement of a μ_{θ} -closed set is said to be μ_{θ} -open.
- **Definition 1.3** [10] A GTS (X, μ) is said to be μ -regular if for each μ -open subset U of X and each $x \in U$, there exist a μ -open subset V of X and a μ -closed subset F of X such that $x \in V \subset F \subset U$.
- **Proposition 1.1** [10] Let (X, μ) be a μ -disconnected GTS. Then (X, μ) is weakly μ -compact if and only if every μ -clopen set is weakly μ -compact.
- **Proposition 1.2** [9] Let (X, μ) and (Y, ν) be GTSs and σ be the generalized product topology on $X \times Y$. The projection function $P_X : (X \times Y, \sigma) \to (X, \mu)$ (resp. $P_Y : (X \times Y, \sigma) \to (Y, \nu)$) is (σ, μ) -continuous (resp. (σ, ν) -continuous).
- **Lemma 1.1** [10] Let A and B be subsets of a GTS (X, μ) such that $A \subset B$. Then $c_{\mu_B}(A) = c_{\mu}(A) \cap B$.
- **Definition 1.4** [8] Let (X, μ) and (Y, ν) be two GTSs. A function $f: (X, \mu) \to (Y, \nu)$ is said to be (μ, ν) -continuous if for every $V \in \nu$, $f^{-1}(V) \in \mu$
- **Definition 1.5** [11] Let (X, μ) and (Y, ν) be two GTSs. A function $f: (X, \mu) \to (Y, \nu)$ is said to be (μ, ν) -open if for every $U \in \mu$, $f(U) \in \nu$

2. weakly μ -countably compact and weakly $\mu\mathcal{H}$ -countably compact spaces

In this section we define and study the notions of weakly μ -countably compact and weakly μ -countably compact spaces. Most of the results in this section are proved with respect to weakly μ -countably compact spaces. By taking $\mathcal{H} = \{\emptyset\}$, we get directly the results for weakly μ -countably compact spaces.

- **Definition 2.1** A GTS (X, μ) is said to be weakly μ -countably compact if for every countable μ -open cover $\{V_{\lambda} : \lambda \in \Delta\}$ of X, there is a finite subset Δ_0 of Δ such that $X = \bigcup \{c_{\mu}(V_{\lambda}) : \lambda \in \Delta_0\}$.
- **Definition 2.2** A HGTS (X, μ, \mathcal{H}) is said to be weakly $\mu\mathcal{H}$ -countably compact or weakly μ -countably compact with respect to a hereditary class \mathcal{H} if for every countable μ -open cover $\{V_{\lambda} : \lambda \in \Delta\}$ of X, there is a finite subset Δ_0 of Δ such that $X \setminus \bigcup \{c_{\mu}(V_{\lambda}) : \lambda \in \Delta_0\} \in \mathcal{H}$.

It is clear that a GTS (X, μ) is weakly μ -countably compact if and only if $(X, \mu, \{\emptyset\})$ is weakly $\mu\{\emptyset\}$ -countably compact. And if a GTS (X, μ) is a weakly μ -countably compact space, then a HGTS (X, μ, \mathcal{H}) is a weakly $\mu\mathcal{H}$ -countably compact space. The following example shows that the converse is not true in general.

- **Example 2.1** Let $\mu = \{V \subseteq (0,1) : V \text{ is uncountable }\} \cup \{\emptyset\}$ be a GT on X = (0,1) and $\mathcal{H} = \{X \setminus V : V \in \mu\}$ be a hereditary class on X. The family $\{V_n = (\frac{1}{n}, 1) : n \in \mathbb{N}\}$ is a countable μ -open cover of X. For any finite subset Δ_0 of \mathbb{N} and $i \in \Delta_0$, we have $c_{\mu}(V_i) = V_i$. Therefore, $X \neq \bigcup_{i \in \Delta_0} c_{\mu}(V_i)$, so (X, μ) is not weakly μ -countably compact. Now, let $\{V_{\lambda} : \lambda \in \Delta\}$ be a countable μ -open cover of X and X be any finite subset of X. Since $X \setminus V_{\lambda} \in \mathcal{H}$ and $X \setminus \bigcup_{\lambda \in \Delta_0} c_{\mu}(V_{\lambda}) \subseteq X \setminus V_{\lambda} \in \mathcal{H}$. This means (X, μ, \mathcal{H}) is weakly μ +-countably compact.
- **Theorem 2.2** Let μ be a GT on a nonempty set X and H_f be the set of all finite subsets of X. A GTS (X,μ) is weakly μ -countably compact if and only if the (X,μ,\mathcal{H}_f) is a weakly $\mu\mathcal{H}_f$ -countably compact space.

Proof: (\Rightarrow) : It is obvious.

(\Leftarrow): Suppose (X, μ, \mathcal{H}_f) is weakly $\mu \mathcal{H}_f$ -countably compact and let $\{V_\lambda : \lambda \in \Delta\}$ be a countable μ -open cover of X. By assumption, there is a finite subset Δ_0 of Δ such that $X \setminus \bigcup \{c_\mu(V_\lambda) : \lambda \in \Delta_0\} \in \mathcal{H}_f$. So, $X \setminus \bigcup \{c_\mu(V_\lambda) : \lambda \in \Delta_0\} = \{x_1, x_2, ..., x_n\}$. For each x_i , $1 \le i \le n$, there is V_{λ_i} such that $x_i \in V_{\lambda_i}$. Thus $X = (\bigcup_{\lambda \in \Delta_0} c_\mu(V_\lambda)) \cup (\bigcup_{i=1}^n c_\mu(V_{\lambda_i}))$. Hence, (X, μ) is weakly μ -countably compact.

Theorem 2.3 For a HGTS (X, μ, \mathcal{H}) , the following statements are equivalent:

- 1. (X, μ, \mathcal{H}) is weakly $\mu\mathcal{H}$ -countably compact:
- 2. for any countable μ -regular open cover $\{U_{\lambda} : \lambda \in \Delta\}$ of X, there is a finite subset Δ_0 of Δ such that $X \setminus \bigcup \{c_{\mu}(U_{\lambda}) : \lambda \in \Delta_0\} \in \mathcal{H}$.

Proof: $(1) \Rightarrow (2)$: It is obvious form the definition.

(2) \Rightarrow (1): Let $\{V_{\lambda} : \lambda \in \Delta\}$ be a countable μ -open cover of X. Then the family $\{U_{\lambda} = i_{\mu}(c_{\mu}(V_{\lambda})) : \lambda \in \Delta\}$ is a countable μ -regular open cover of X. From assumption, there is a finite subset Δ_0 of Δ such that $X \setminus \bigcup \{c_{\mu}(U_{\lambda}) : \lambda \in \Delta_0\} \in \mathcal{H}$. But $X \setminus \bigcup \{c_{\mu}(V_{\lambda}) : \lambda \in \Delta_0\} \subseteq X \setminus \bigcup \{c_{\mu}(U_{\lambda}) : \lambda \in \Delta_0\} \in \mathcal{H}$ which means $X \setminus \bigcup \{c_{\mu}(V_{\lambda}) : \lambda \in \Delta_0\} \in \mathcal{H}$ and so (X, μ, \mathcal{H}) is weakly $\mu\mathcal{H}$ -countably compact.

Theorem 2.4 A GTS (X, μ) is weakly μ -countably compact if and only if for any countable μ -regular open cover $\{U_{\lambda} : \lambda \in \Delta\}$ of X, there exits a finite subset Δ_0 of Δ such that $X = \bigcup \{c_{\mu}(U_{\lambda}) : \lambda \in \Delta_0\}$.

Theorem 2.5 A HGTS (X, μ, \mathcal{H}) is weakly $\mu\mathcal{H}$ -countably compact if and only if for any countable family $\{F_{\lambda} : \lambda \in \Delta\}$ of μ -closed subsets of X having the property that $\bigcap \{i_{\mu}(F_{\lambda}) : \lambda \in \Delta_{0}\} \notin \mathcal{H}$ for any finite subset Δ_{0} of Δ , then $\bigcap \{F_{\lambda} : \lambda \in \Delta\} \neq \emptyset$.

Proof: Assume that (X, μ, \mathcal{H}) is weakly $\mu\mathcal{H}$ -countably compact and $\{F_{\lambda} : \lambda \in \Delta\}$ is a countable family of μ -closed subsets of X such that $\bigcap \{i_{\mu}(F_{\lambda}) : \lambda \in \Delta_{0}\} \notin \mathcal{H}$ for any finite subset Δ_{0} of Δ . Suppose that $\bigcap \{F_{\lambda} : \lambda \in \Delta\} = \emptyset$, then $\{X \setminus F_{\lambda} : \lambda \in \Delta\}$ is a countable μ -open cover of X. From assumption, there is a finite subset Δ_{0} of Δ such that $X \setminus \bigcup \{c_{\mu}(X \setminus F_{\lambda}) : \lambda \in \Delta_{0}\} \in \mathcal{H}$. Hence $\bigcap \{i_{\mu}(F_{\mu}) : \lambda \in \Delta_{0}\} \in \mathcal{H}$ which contradicts the assumption. Thus $\bigcap \{F_{\lambda} : \lambda \in \Delta\} \neq \emptyset$.

Conversely, let $\{V_{\lambda} : \lambda \in \Delta\}$ be a countable μ -open cover of X. Assume that for any finite subset Δ_0 of Δ , we have $X \setminus \bigcup \{c_{\mu}(V_{\lambda}) : \lambda \in \Delta_0\} \notin \mathcal{H}$, and so $\bigcap \{i_{\mu}(X \setminus V_{\lambda}) : \lambda \in \Delta_0\} \notin \mathcal{H}$. By assumption, $\bigcap \{(X \setminus V_{\lambda}) : \lambda \in \Delta\} \neq \emptyset$, this is contrary to the fact that $\{V_{\lambda} : \lambda \in \Delta\}$ is a μ -open cover of X. Thus (X, μ, \mathcal{H}) is weakly $\mu\mathcal{H}$ -countably compact.

Theorem 2.6 A GTS (X, μ) is a weakly μ -countably compact space if and only if for any countable family $\{F_{\lambda} : \lambda \in \Delta\}$ of μ -closed subsets of X having the property that $\bigcap \{i_{\mu}(F) : \lambda \in \Delta_0\} \neq \emptyset$ for any finite subset Δ_0 of Δ , then $\bigcap \{F : \lambda \in \Delta\} \neq \emptyset$.

Theorem 2.7 The following properties are equivalent for a HGTS (X, μ, \mathcal{H}) :

- 1. (X, μ, \mathcal{H}) is weakly $\mu\mathcal{H}$ -countably compact;
- 2. for any countable family of $\{F_{\lambda} : \lambda \in \Delta\}$ of μ -closed subsets of X such that $\bigcap \{F_{\lambda} : \lambda \in \Delta\} = \emptyset$, there exists a finite subset Δ_0 of Δ such that $\bigcap \{i_{\mu}(F_{\lambda}) : \lambda \in \Delta_0\} \in \mathcal{H}$;
- 3. for any countable family of $\{F_{\lambda} : \lambda \in \Delta\}$ of μ -regular closed subsets of X such that $\bigcap \{F_{\lambda} : \lambda \in \Delta\} = \emptyset$, there exists a finite subset Δ_0 of Δ such that $\bigcap \{i_{\mu}(F_{\lambda}) : \lambda \in \Delta_0\} \in \mathcal{H}$.

Proof: (1) \Rightarrow (2): Let $\{F_{\lambda} : \lambda \in \Delta\}$ be a countable family of μ -closed subsets of X such that $\bigcap \{F_{\lambda} : \lambda \in \Delta\} = \emptyset$, which means that $\{X \setminus F_{\lambda} : \lambda \in \Delta\}$ is a countable μ -open cover of X. By assumption, there is a finite subset Δ_0 of Δ such that $X \setminus \bigcup \{c_{\mu}(X \setminus F_{\lambda}) : \lambda \in \Delta_0\} \in \mathcal{H}$, and so $\bigcap \{i_{\mu}(F_{\lambda}) : \lambda \in \Delta_0\} \in \mathcal{H}$. (2) \Rightarrow (3): It is obvious.

(3) \Rightarrow (1): Let $\{V_{\lambda} : \lambda \in \Delta\}$ be a countable μ -open cover of X. Then the family $\{i_{\mu}(c_{\mu}(V_{\lambda})) : \lambda \in \Delta\}$ is a countable μ -regular open cover of X, which means that, $\{c_{\mu}(i_{\mu}(X \setminus V_{\lambda})) : \lambda \in \Delta\}$ is a countable family of μ -regular closed subsets of X and $\bigcap \{c_{\mu}(i_{\mu}(X \setminus V_{\lambda})) : \lambda \in \Delta\} = \emptyset$. By assumption, there is a finite subset Δ_0 of Δ such that $\bigcap \{i_{\mu}(c_{\mu}(i_{\mu}(X \setminus V_{\lambda}))) : \lambda \in \Delta_0\} \in \mathcal{H}$. Since $X \setminus \bigcup \{c_{\mu}(V_{\lambda}) : \lambda \in \Delta_0\} = \bigcap \{i_{\mu}(X \setminus V_{\lambda}) : \lambda \in \Delta_0\} \subseteq \bigcap \{i_{\mu}(c_{\mu}(i_{\mu}(X \setminus V_{\lambda}))) : \lambda \in \Delta_0\}$ and \mathcal{H} is a hereditary class, we get $X \setminus \bigcup \{c_{\mu}(V_{\lambda}) : \lambda \in \Delta_0\} \in \mathcal{H}$ and this completes the proof.

Theorem 2.8 The following properties are equivalent for a GTS (X, μ) :

- 1. (X, μ) is weakly μ -countably compact;
- 2. for any countable family of $\{F_{\lambda} : \lambda \in \Delta\}$ of μ -closed subsets of X such that $\bigcap \{F_{\lambda} : \lambda \in \Delta\} = \emptyset$, there is a finite subset Δ_0 of Δ such that $\bigcap \{i_{\mu}(F_{\lambda}) : \lambda \in \Delta_0\} = \emptyset$;
- 3. for any countable family of $\{F_{\lambda} : \lambda \in \Delta\}$ of μ -regular closed subsets of X such that $\bigcap \{F_{\lambda} : \lambda \in \Delta\} = \emptyset$, there is a finite subset Δ_0 of Δ such that $\bigcap \{i_{\mu}(F_{\lambda}) : \lambda \in \Delta_0\} = \emptyset$.

A subset A of a GTS (X, μ) is μ_{θ} -open if and only if for each $x \in A$, there exists a μ -open set U such that $x \in U \subseteq c_{\mu}(U) \subseteq A$ (see [10]). By using this notion we get the following results.

Theorem 2.9 If a HGTS (X, μ, \mathcal{H}) is a weakly $\mu\mathcal{H}$ -countably compact, then for every countable μ_{θ} -open cover $\{V_{\lambda} : \lambda \in \Delta\}$ of X there is a finite Δ_0 subset of Δ such that $X \setminus \bigcup \{V_{\lambda} : \lambda \in \Delta_0\} \in \mathcal{H}$.

Proof: Assume that (X, μ, \mathcal{H}) is a weakly $\mu\mathcal{H}$ -countably compact space and let $\{V_{\lambda} : \lambda \in \Delta\}$ be a countable μ_{θ} -open cover of X. Then for each $x \in X$, there exists $\lambda_x \in \Delta$ such that $x \in V_{\lambda_x}$. Since V_{λ_x} is μ_{θ} -open, there exists a μ -open set U_{λ_x} such that $x \in U_{\lambda_x} \subseteq c_{\mu}(U_{\lambda_x}) \subseteq V_{\lambda_x}$. Hence $\{U_{\lambda_x} : x \in X\}$ is a countable μ -open cover of X. By assumption on the space (X, μ, \mathcal{H}) , there exists a finite subset Δ_0 of Δ such $X \setminus \bigcup \{c_{\mu}(U_{\lambda_x}) : \lambda_x \in \Delta_0\} \in \mathcal{H}$. Since, $c_{\mu}(U_{\lambda_x}) \subseteq V_{\lambda_x}$ for every $\lambda_x \in \Delta_0$ which means that $X \setminus \bigcup \{V_{\lambda_x} : \lambda_x \in \Delta_0\} \subseteq X \setminus \bigcup \{c_{\mu}(U_{\lambda_x}) : \lambda_x \in \Delta_0\}$ which implies $X \setminus \bigcup \{V_{\lambda_x} : \lambda_x \in \Delta_0\} \in \mathcal{H}$.

Theorem 2.10 If a GTS (X, μ) is a weakly μ -countably compact, then for every countable μ_{θ} -open cover $\{V_{\lambda} : \lambda \in \Delta\}$ of X there is a finite Δ_0 subset of Δ such that $X = \bigcup \{V_{\lambda} : \lambda \in \Delta_0\}$.

Lemma 2.1 [10] A GTS (X, μ) is a μ -regular if and only if every μ -open subset of X is μ_{θ} -open.

Corollary 2.1 Let (X, μ, \mathcal{H}) be a μ -regular HGTS. Then (X, μ, \mathcal{H}) is weakly $\mu\mathcal{H}$ -countably compact if and only if (X, μ, \mathcal{H}) is $\mu\mathcal{H}$ -countably compact.

Proof: The proof follows from Theorem 2.9 and Lemma 2.1.

Corollary 2.2 Let (X, μ) be a μ -regular GTS. Then (X, μ) is weakly μ -countably compact if and only if (X, μ) is μ -countably compact.

Proof: The proof follows from Theorem 2.10 and Lemma 2.1.

Corollary 2.3 If a HGTS (X, μ^*, \mathcal{H}) is a weakly $\mu^*\mathcal{H}$ -countably compact space, then (X, μ, \mathcal{H}) is weakly $\mu\mathcal{H}$ -countably compact.

3. Functions on weakly $\mu\mathcal{H}$ -countably compact spaces

We study the effect of functions on weakly μ -countably compact spaces and weakly $\mu\mathcal{H}$ -countably compact spaces.

Lemma 3.1 [10] A function $f:(X,\mu,\mathcal{H})\to (Y,\nu)$ is (μ,ν) -continuous if and only if $c_{\mu}(f^{-1}(B))\subset f^{-1}(c_{\nu}(B))$ for every subset B of Y.

Theorem 3.1 Let $f:(X,\mu,\mathcal{H})\to (Y,\nu)$ be a (μ,ν) -continuous function. If A is weakly $\mu\mathcal{H}$ -countably compact relative to X, then f(A) is weakly $\nu f(\mathcal{H})$ -countably compact relative to Y.

Proof: Let $\{V_{\lambda} : \lambda \in \Delta\}$ be any countable ν -open cover of f(A). Since f is (μ, ν) -continuous, $\{f^{-1}(V_{\lambda}) : \lambda \in \Delta\}$ is a countable μ -open cover of A. By assumption, A is weakly $\mu\mathcal{H}$ -countably compact relative to X and so there is a finite subset Δ_0 of Δ such that $A \setminus \bigcup \{c_{\mu}(f^{-1}(V_{\lambda})) : \lambda \in \Delta_0\} \in \mathcal{H}$. By applying Lemma 3.1, we get $A \setminus \bigcup \{f^{-1}(c_{\nu}(V_{\lambda})) : \lambda \in \Delta_0\} \subseteq A \setminus \bigcup \{c_{\mu}(f^{-1}(V_{\lambda})) : \lambda \in \Delta_0\}$ which means $f(A) \setminus f(\bigcup \{f^{-1}(c_{\nu}(V_{\lambda})) : \lambda \in \Delta_0\}) \subseteq f(A \setminus \{f^{-1}(\bigcup c_{\nu}(V_{\lambda})) : \lambda \in \Delta_0\})$ and so $f(A) \setminus \bigcup \{c_{\nu}(V_{\lambda}) : \lambda \in \Delta_0\} \in f(\mathcal{H})$. Thus f(A) is weakly $\nu f(\mathcal{H})$ -countably compact relative to Y.

Corollary 3.1 Let $f:(X,\mu,\mathcal{H})\to (Y,\nu)$ be a (μ,ν) -continuous surjective function. If (X,μ,\mathcal{H}) is a weakly $\mu\mathcal{H}$ -countably compact space, then (Y,ν) is weakly $\nu f(\mathcal{H})$ -countably compact.

Theorem 3.2 Let $f:(X,\mu) \to (Y,\nu)$ be a (μ,ν) -continuous function. If A is weakly μ -countably compact relative to X, then f(A) is weakly ν -countably compact compact relative to Y.

Corollary 3.2 Let $f:(X,\mu) \to (Y,\nu)$ be a (μ,ν) -continuous surjective function. If (X,μ) is weakly μ -countably compact, then (Y,ν) is weakly ν -countably compact.

Proposition 3.1 Let $f:(X,\mu,\mathcal{H})\to (Y,\nu)$ be a (μ,ν) -continuous surjection and (X,μ,\mathcal{H}) be a weakly $\mu\mathcal{H}$ -countably compact space. If Y is a finite space, then (Y,ν) is weakly ν -countably compact.

Proof: Suppose that (X, μ, \mathcal{H}) is a weakly $\mu\mathcal{H}$ -countably compact space and $f:(X, \mu, \mathcal{H}) \to (Y, \nu)$ be a (μ, ν) -continuous surjection. By Corollary 3.1A, $(Y, \nu, f(\mathcal{H}))$ is weakly $\nu f(\mathcal{H})$ -countably compact. Since Y is finite, $f(\mathcal{H})$ is the class of finite subsets and by Theorem 2.2, (Y, ν) is weakly ν -countably compact.

Corollary 3.3 Let $f:(X,\mu) \to (Y,\nu,\mathcal{H})$ be a (μ,ν) -open bijective function. If (Y,ν,\mathcal{H}) is a weakly $\nu\mathcal{H}$ -countably compact space, then $(X,\mu,f^{-1}(\mathcal{H}))$ is a weakly $\mu f^{-1}(\mathcal{H})$ -countably compact space.

Proof: The proof follows directly from the fact that if $f:(X,\mu)\to (Y,\nu)$ is a (μ,ν) -open bijective function, then $f^{-1}:(Y,\nu)\to (X,\mu)$ is (ν,μ) -continuous. Applying Corollary 3.1A completes the proof.

The following corollary follows directly from Proposition 1.2.

Corollary 3.4 Let (X, μ) and (Y, ν) be GTSs and σ be the generalized product topology on $X \times Y$. If $X \times Y$ is weakly σ -countably compact, then (X, μ) is weakly μ -countably compact and (Y, ν) is weakly ν -countably compact.

Proof: Since the projection function $P_X: (X \times Y, \sigma) \to (X, \mu)$ (resp. $P_Y: (X \times Y, \sigma) \to (Y, \nu)$) is (σ, μ) -continuous (resp. (σ, ν) -continuous), then by applying Corollary 3.2A, we obtain that (X, μ) is weakly μ -countably compact (resp. (Y, ν) is weakly ν -countably compact).

4. Weakly $\mu\mathcal{H}$ -countable compact sets relative to a space

Next we define the weakly μ -countably compact and weakly $\mu\mathcal{H}$ -countably compact subsets relative to a space and study their interesting properties.

- **Definition 4.1** A subset A of GTS (X, μ) is said to be weakly μ -countably compact relative to X if for every countable μ -open cover $\{V_{\lambda} : \lambda \in \Delta\}$ of A, there is a finite subset Δ_0 of Δ such that $A \subseteq \bigcup \{c_{\mu}(V_{\lambda}) : \lambda \in \Delta_0\}$.
- **Definition 4.2** Let (X, μ, \mathcal{H}) be a HGTS. A subset A of X is said to be weakly $\mu\mathcal{H}$ -countably compact relative to X if for every countable μ -open cover $\{V_{\lambda} : \lambda \in \Delta\}$ of A, there is a finite subset Δ_0 of Δ such that $A \setminus \bigcup \{c_{\mu}(V_{\lambda}) : \lambda \in \Delta_0\} \in \mathcal{H}$.

Theorem 4.1 Let (X, μ, \mathcal{H}) be weakly $\mu\mathcal{H}$ -countably compact. If F is a μ -clopen subset of X, then F is weakly $\mu\mathcal{H}$ -countably compact relative to X.

Proof: Let F be a μ -clopen subset of X and $\{V_{\lambda}: \lambda \in \Delta\}$ be any countable μ -open cover of F. Since $X \setminus F$ is μ -open, the collection $\{V_{\lambda}: \lambda \in \Delta\} \cup \{X \setminus F\}$ is a countable μ -open cover of X and (X, μ, \mathcal{H}) is weakly $\mu\mathcal{H}$ -countably compact. Therefore, there is a finite subset Δ_0 of Δ such that $X \setminus \left[\left(\bigcup \{c_{\mu}(V_{\lambda}): \lambda \in \Delta_0\}\right) \cup \{C_{\mu}(X \setminus F)\}\right] \in \mathcal{H}$. Since $c_{\mu}(X \setminus F) = X \setminus F$, then $X \setminus \left[\left(\bigcup \{c_{\mu}(V_{\lambda}): \lambda \in \Delta_0\}\right) \cup \{X \setminus F\}\right] = \left(X \setminus \bigcup \{c_{\mu}(V_{\lambda}): \lambda \in \Delta_0\}\right) \cap F \in \mathcal{H}$ which means that $F \setminus \bigcup \{c_{\mu}(V_{\lambda}): \lambda \in \Delta_0\} \in \mathcal{H}$. Hence F is weakly $\mu\mathcal{H}$ -countably compact relative to X.

Theorem 4.2 Let (X, μ) be weakly μ -countably compact. If F is a μ -clopen subset of X, then F is weakly μ -countably compact compact relative to X.

Theorem 4.3 Let (X, μ, \mathcal{H}) be a HGTS. If every proper μ -regular closed subset of X is weakly $\mu\mathcal{H}$ -countably compact relative to X, then (X, μ, \mathcal{H}) is weakly $\mu\mathcal{H}$ -countably compact.

Proof: Let $\{V_{\lambda} : \lambda \in \Delta\}$ be any countable μ -open cover of X. Pick $\lambda_0 \in \Delta$ such that $V_{\lambda_0} \neq \emptyset$. So, the set $X \setminus i_{\mu}(c_{\mu}(V_{\lambda_0}))$ is proper μ -regular closed. By assumption, there is a finite subset Δ_0 of Δ such that $(X \setminus i_{\mu}(c_{\mu}(V_{\lambda_0}))) \setminus \bigcup \{c_{\mu}(V_{\lambda}) : \lambda \in \Delta_0 \setminus \{\lambda_0\}\} \in \mathcal{H}$. Therefore, $X \setminus [(\bigcup \{c_{\mu}(V_{\lambda}) : \lambda \in \Delta_0 \setminus \{\lambda_0\}\}) \cup c_{\mu}(V_{\lambda_0})] \subset (X \setminus i_{\mu}(c_{\mu}(V_{\lambda_0}))) \setminus \bigcup \{c_{\mu}(V_{\lambda}) : \lambda \in \Delta_0 \setminus \{\lambda_0\}\}$ which means $X \setminus \bigcup \{c_{\mu}(V_{\lambda}) : \lambda \in \Delta_0\} \subset (X \setminus i_{\mu}(c_{\mu}(V_{\lambda_0}))) \setminus \bigcup \{c_{\mu}(V_{\lambda}) : \lambda \in \Delta_0 \setminus \{\lambda_0\}\}$. Hence $X \setminus \bigcup \{c_{\mu}(V_{\lambda}) : \lambda \in \Delta_0\} \in \mathcal{H}$ and (X, μ, \mathcal{H}) is weakly $\mu\mathcal{H}$ -countably compact.

Theorem 4.4 Let (X, μ) be a GTS. If every proper μ -regular closed subset of X is weakly μ -countably compact relative to X, then (X, μ) is weakly μ -countably compact.

Proposition 4.1 Let A and B be subsets of a HGTS (X, μ, \mathcal{H}) . If A is μ -clopen and B is weakly $\mu\mathcal{H}$ -countably compact relative to X, then $A \cap B$ is weakly $\mu\mathcal{H}$ -countably compact relative to X.

Proof: Let $\{V_{\lambda} : \lambda \in \Delta\}$ be a countable μ -open cover of $A \cap B$. Then $\{V_{\lambda} : \lambda \in \Delta\} \cup \{X \setminus A\}$ is a countable μ -open cover of B. From assumption, there is a finite subset Δ_0 of Δ such that $B \setminus \left[\left(\bigcup \{c_{\mu}(V_{\lambda}) : \lambda \in \Delta_0\} \right) \cup \{c_{\mu}(X \setminus A)\} \right] \in \mathcal{H}$. Since $c_{\mu}(X \setminus A) = X \setminus A$, then $B \setminus \left[\left(\bigcup \{c_{\mu}(V_{\lambda}) : \lambda \in \Delta_0\} \right) \cup \{X \setminus A\} \right] = B \cap \left[X \setminus \bigcup \{c_{\mu}(V_{\lambda}) : \lambda \in \Delta_0\} \right] \cap A = (A \cap B) \setminus \left(\bigcup \{c_{\mu}(V_{\lambda}) : \lambda \in \Delta_0\} \right) \in \mathcal{H}$. Therefore, $A \cap B$ is weakly $\mu\mathcal{H}$ -countably compact relative to X.

Proposition 4.2 Let A and B be subsets of a GTS (X, μ) . If A is μ -clopen and B is weakly μ -countably compact compact relative to X, then $A \cap B$ is weakly μ -countably compact compact relative to X.

Theorem 4.5 Let (X, μ, \mathcal{H}) be a HGTS and \mathcal{H} be an ideal on X. If A and B are weakly $\mu\mathcal{H}$ -countably compact relative to X, then $A \cup B$ is weakly $\mu\mathcal{H}$ -countably compact relative to X.

Proof: Let A and B be weakly $\mu\mathcal{H}$ -countably compact relative to X and let $\{V_{\lambda} : \lambda \in \Delta\}$ be any countable μ -open cover of $A \cup B$. By assumption, there exist two finite subsets Δ_0 and Δ_1 of Δ and $H_0, H_1 \in \mathcal{H}$ such that $(A \setminus \bigcup \{c_{\mu}(V_{\lambda}) : \lambda \in \Delta_0\}) \subseteq H_0 \in \mathcal{H}$ and $(B \setminus \bigcup \{c_{\mu}(V_{\lambda}) : \lambda \in \Delta_1\}) \subseteq H_1 \in \mathcal{H}$. Since $((A \cup B) \setminus \bigcup \{c_{\mu}(V_{\lambda}) : \lambda \in \Delta_0 \cup \Delta_1\}) \subseteq ((A \setminus \bigcup \{c_{\mu}(V_{\lambda}) : \lambda \in \Delta_0\})) \cup ((B \setminus \bigcup \{c_{\mu}(V_{\lambda}) : \lambda \in \Delta_1\})) \subseteq H_0 \cup H_1$ and \mathcal{H} is an ideal, we get $(A \cup B) \setminus \bigcup \{c_{\mu}(V_{\lambda}) : \lambda \in \Delta_0 \cup \Delta_1\} \in \mathcal{H}$. This means $A \cup B$ is weakly $\mu\mathcal{H}$ -countably compact compact relative to X.

Theorem 4.6 Let (X, μ) be a GTS. If A and B are weakly μ -countably compact relative to X, then $A \cup B$ is weakly μ -countably compact relative to X.

A GTS (X, μ) is said to be μ -connected if X can not be expressed as the union of two disjoint nonempty μ -open sets. In the opposite case, (X, μ) is said to be μ -disconnected, or equivalently, (X, μ) has a proper nonempty μ -clopen set (see [10]).

Proposition 4.3 Let (X, μ, \mathcal{H}) be a μ -disconnected HGTS and \mathcal{H} be an ideal on X. The following statements are equivalent.

- 1. (X, μ, \mathcal{H}) is weakly $\mu\mathcal{H}$ -countably compact.
- 2. Every μ -clopen subset of X is weakly $\mu\mathcal{H}$ -countably compact relative to X.

Proof: $(1) \Rightarrow (2)$: The proof follows from Theorem 4.1.

(2) \Rightarrow (1): Since (X, μ, \mathcal{H}) is μ -disconnected, X has a partition $\{A, B\}$ such that A and B are μ -clopen sets. Since A and B are weakly $\mu\mathcal{H}$ -countably compact relative to X. Thus by Theorem 4.5, (X, μ, \mathcal{H}) is weakly $\mu\mathcal{H}$ -countably compact.

Proposition 4.4 Let (X, μ) be a μ -disconnected GTS. Then the following statements are equivalent.

- 1. (X, μ) is weakly μ -countably compact.
- 2. Every μ -clopen subset of X is weakly μ -countably compact relative to X.

Let (X, μ, \mathcal{H}) be a HGTS and $A \subseteq X$, $A \neq \emptyset$. The family $\mathcal{H}_A = \{H \cap A : H \in \mathcal{H}\}$ forms a hereditary class on A and (A, μ_A) is the subspace of X on A and μ_A is a generalized topology on A.

Proposition 4.5 Let A and B be subsets of a HGTS (X, μ, \mathcal{H}) and $A \subseteq B$. If A is weakly $\mu_B \mathcal{H}_B$ countably compact relative to B, then A is weakly $\mu \mathcal{H}$ -countably relative to X.

Proof: Assume that A is weakly $\mu_B \mathcal{H}_B$ -countably compact relative to B and let $\{V_\lambda : \lambda \in \Delta\}$ be any countable cover of A by μ -open sets of X. Then the family $\{V_\lambda \cap B : \lambda \in \Delta\}$ is a countable μ_B -open cover of A. From assumption, there is a finite subset Δ_0 of Δ such that $A \setminus \bigcup \{c_{\mu_B}(V_\lambda \cap B) : \lambda \in \Delta_0\} \in \mathcal{H}_B$. Since $c_{\mu_B}(V_\lambda \cap B) = c_\mu(V_\lambda \cap B) \cap B \subset c_\mu(V_\lambda)$, then $A \setminus \bigcup \{c_\mu(V_\lambda) : \lambda \in \Delta_0\} \subset A \setminus \bigcup \{c_{\mu_B}(V_\lambda \cap B) : \lambda \in \Delta_0\}$. Since \mathcal{H}_B is a hereditary class and $\mathcal{H}_B \subset \mathcal{H}$, we get $A \setminus \bigcup \{c_\mu(V_\lambda) : \lambda \in \Delta_0\} \in \mathcal{H}$, which means that A is weakly $\mu\mathcal{H}$ -countably compact relative to X.

Proposition 4.6 Let A and B be subsets of a GTS (X, μ) and $A \subseteq B$. If A is weakly μ_B -countably compact relative to B, then A is weakly μ -countably compact relative to X.

Corollary 4.1 Let A be a subset of a HGTS (X, μ, \mathcal{H}) . If A is weakly $\mu_A \mathcal{H}_A$ -countably compact, then A is weakly $\mu\mathcal{H}$ -countably compact relative to X.

Corollary 4.2 Let A be a subset of a GTS (X, μ) . If A is weakly μ_A -countably compact, then A is weakly μ -countably compact relative to X.

Acknowledgments

The authors are grateful to the referees for useful comments and suggestions.

References

- 1. Altawallbeh Z., and Jawarneh I., μ -countably compactness and $\mu\mathcal{H}$ -countably compactness, Commun. Korean Math.Soc., 37(1) (2022), 269-277.
- 2. Császár Á., Generalized topology, generalized continuity, Acta Math. Hungar., 96 (2002), 351-357.
- 3. Császár Á., Generalized open sets in generalized topologies, Acta Math. Hungar., 106 (2005), 53-66.
- 4. Császár Á., Modification of generalized topologies via hereditary classes, Acta Math. Hungar., 115(1-2) (2007), 29 36.
- 5. Carpintero C., Rosas E., Salas-Brown M. and Sanabria J., μ -Compactness with respect to a hereditary class, Bol. Soc. Paran Mat., 34(2) (2016), 231-236.
- 6. Kuratowski K., Topologies I, Warszawa, (1933).
- 7. Qahis A., Al Jarrah H. H., and Noiri T., Weakly μ -compact via a hereditary class, (3s) 39 (3) (2021): 123–135.
- 8. Sarsak M. S., Weak separation axioms in generalized topological spaces, Acta Math. Hungar., 131 (2011), 110-121.
- 9. Sarsak M. S., .On μ-compact sets in μ-spaces, Questions Answers General Topology, 31 (2013), 49-57.
- 10. Sarsak M. S., Weakly μ-compact spaces, Demonstratio Math., 45(4) (2012), 929-938.
- 11. Saraiva L.E.D., Generalized quotient topologies, Acta Math. Hungar., 132(1-2) (2011), 168-173.

Abdo Qahis,
Department of Mathematics,
College of Science and Arts, Najran university,
Saudi Arabia.
E-mail address: cahis82@gmail.com (Corresponding author)

and

Takashi Noiri, (2) 2949-1 Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-ken, 869-5142 Japan.

E-mail address: t.noiri@nifty.com