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Anti T2-Generalized Topological Spaces

Harsh V. S. Chauhan, Sheetal Luthra and Dimple Pasricha

abstract: In this paper, we investigated non strong hyperconnected generalized topological spaces. Ekici
[9] and Devi [17] have provided the results of hyperconnectedness for strong generalized topological spaces.
We generalized these results for arbitrary generalized topological spaces. Through the notion of hyperconnect-
edness of arbitrary generalized topological spaces, we constructed an example which fails Hausdorff charac-
terization of topological spaces “A first countable spaces is Hausdorff if and only if every convergent sequence
has unique limit”. This example also serves the purpose of constructing Anti Hausdorff Fréchet space in which
every convergent sequence has unique limit required by Novak in [15].
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1. Introduction

In 1968, Levine [11] introduced the notion of hyperconnectedness in topological spaces. A topolog-
ical space X is said to be hyperconnected if every nonempty open set is dense in X . Majumdar et al.
[12] studied the Anti Hausdorff spaces in general topology. In [2,3], Császár introduced the notion of
generalized topological spaces which are of great importance not only in the field of pure mathematics
but also in the field of applied mathematics like mathematical psychology, combinatorial chemistry. The
notion of hyperconnectedness in generalized topological spaces was introduced by Ekici in [9]. This con-
cept is nothing but the irreducibility of generalized topological spaces, introduced and studied by Shen
[18]. After that Renukadevi [17] produced some results for hyperconnectedness in generalized topological
spaces. Ekici and Renukadevi provide numerous results about hyperconnectedness for strong generalized
topological spaces only. On the other hand, Tyagi et al. [19,20,21,23] studied semi open sets, β-open
sets, connectedness, extremally disconnectedness, separation axioms in generalized topological spaces in
more general way. In this paper, we proved the results of Ekici and Renukadevi for arbitrary generalized
topological spaces using the approach of Tyagi et al. [19,20,21,22,23].

In 1971, Franklin et al. [10] tried to construct an example of Anti Hausdorff Fréchet space in which
convergent sequence have a unique limit but the Example 3.2 in [10] is not Fréchet. So the problem was
not encounter. The Example 4.3 in this paper encounter this problem in generalized topological spaces.

2. Preliminaries

Let X be a set and P(X) be its power set. A subset µ of P(X) is called a generalized topology
(GT) on X if µ is closed under arbitrary union. The pair (X, µ) is called a generalized topological space
(GTS). The elements of µ are called µ-open sets and their complements in X are called µ-closed sets.
Let Mµ = ∪{U : U ∈ µ}. In general, Mµ 6= X . In case X = Mµ, GTS (X, µ) is called strong. Let iµ and
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cµ be the usual interior and closure operators. That is, iµA is the union of all µ-open sets contained in
A and cµA is the intersection of all µ-closed sets containing A.

Theorem 2.1. Let (X, µ) be a GTS and A, B ⊆ X. Then the following statements hold:

1. A ⊆ cµA and iµA ⊆ A.

2. A ⊆ B implies cµA ⊆ cµB and iµA ⊆ iµB.

3. cµcµA = cµA and iµiµA = iµA.

4. iµA = X − cµ(X − A).

5. x ∈ cµA if and only if x ∈ U ∈ µ implies U ∩ A 6= ∅.

Proposition 2.2. If µ and ν are two generalized topologies on a set X, then µ ⊆ ν implies cνA ⊆ cµA
for all A ∈ P (X).

Definition 2.3. A subset A of a GTS (X, µ) is called

1. µ-regular open (or rµ-open) [6] if iµcµA = A.

2. µ-semi open (or sµ-open) [23] if A ⊆ cµiµA ∩ Mµ.

3. µ-preopen (or pµ-open ) [7] if A ⊆ iµcµA.

4. µ-α-open (or αµ-open) [7] if A ⊆ iµcµiµA.

5. µ-β-open (or βµ-open) [23] if A ⊆ cµiµcµA ∩ Mµ.

For each t ∈ {r, s, p, α, β}, the collection of all tµ-open sets is denoted by tµ. The complement of
tµ-open set is called tµ-closed. The tµ-interior of a set A, denoted by itµ

A, is the union of all tµ-open sets
contained in A and the tµ-closure of A, denoted byctµ

A, is the intersection of all tµ-closed sets containing
A.

From Theorem 2.1, it follows that a subset A of GTS (X, µ) is rµ-closed if and only if cµiµA = A; A
is sµ-open if and only if cµA = cµiµA and A ⊆ Mµ. A set A is sµ-closed if and only if iµcµA ⊆ A and
X − Mµ ⊆ A; A is pµ-closed if and only if cµiµA ⊆ A; A is αµ-closed if and only if cµiµcµA ⊆ A; A is
βµ-closed if and only if iµcµiµA ⊆ A and X − Mµ ⊆ A.

Theorem 2.4. [20] For a GTS (X, µ), αµ, sµ, pµ and βµ are GTS and

1. µ ⊆ αµ ⊆ sµ ⊆ βµ;

2. αµ ⊆ pµ ⊆ βµ.

Definition 2.5. [3] A function f : (X, µ) → (Y, ν) is said to be (µ, ν)-continuous if the inverse image
under f of each ν-open set is µ-open.

It may be remarked that if f is (µ, ν)-continuous, then f(X − Mµ) ⊆ Y − Mν . If in addition to
(µ, ν)-continuity of f , f(Mµ) ⊆ Mν , then it follows that f−1(Y − Mν) = X − Mµ and f−1(Mν) = Mµ.

Definition 2.6. [4] Let (X, µ) be GTS. Two subsets U and V of X are said to be µ-separated relative
to X if cµU ∩ V = ∅ and U ∩ cµV = ∅.

Definition 2.7. [19] A set A ⊆ X is said to be µ-connected if A ∩ Mµ = U ∪ V , and U and V are
µ-separated relative to X, implies U = ∅ or V = ∅. The GTS (X, µ) is said to be µ-connected if it is
µ-connected subset of itself.

Definition 2.8. A sequence < an > in a GTS (X, µ) is said to be converge to a ∈ X if for every µ-open
set U containing a, there exists m ∈ N such that an ∈ U for all n ≥ m.

Definition 2.9. A point a in a GTS (X, µ) is said to be limit point of sequence < an > if there exists a
subsequence of < an > converging to a.

It is observed that the sequential limit always belongs to Mµ.
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3. µ-Hyperconnectednes

Definition 3.1. [9] A GTS (X, µ) is called µ-hyperconnected if every nonempty µ-open set is µ-dense.

Remark 3.2. If a GTS (X, µ) is µ-hyperconnected, then it is µ-connected.

Example 3.3. Let X = {a, b, c} and µ = {∅, {a}, {b}, {a, b}}. Then GTS (X, µ) is µ-connected but it is
not µ-hyperconnected.

Proposition 3.4. In a µ-hyperconnected GTS (X, µ), a nonempty set is µ-semi open if and only if it
contains a nonempty µ-open set.

Theorem 3.5. [9] Let (X, µ) be a GTS. Then the following statements are equivalent:

1. (X, µ) is µ-hyperconnected.

2. G is µ-dense or µ-nowhere dense for every subset G of X.

3. G ∩ H 6= ∅ for every nonempty µ-open subsets G and H of X.

Theorem 3.6. Let (X, µ) be a GTS. Then the following statements are equivalent:

1. (X, µ) is µ-hyperconnected.

2. G is µ-dense for every nonempty µ-preopen subset of X.

3. csµ
G = X for every nonempty µ-preopen subset of X.

4. cpµ
G = X for every nonempty µ-semi open subset of X.

Proof. (i) ⇒ (ii). The proof follows from [Theorem 10 (i), [9]].

(ii) ⇒ (iii). Suppose that there is a nonempty µ-preopen set G such that csµ
G 6= X . Then there

exists a nonempty µ-semi open set A such that G ∩ A = ∅. Then G ∩ iµA = ∅ and so cµG ∩ iµA = ∅.
Therefore, X ∩ iµA = iµA = ∅ by (ii). So cµ∅ = cµiµA. Hence, (X − Mµ) ∩ Mµ = (cµiµA) ∩ Mµ. Thus,
∅ = (cµiµA) ∩ Mµ, a contradiction.

(iii) ⇒ (iv). Suppose that there is a nonempty µ-semi open set G such that cpµ
G 6= X . Then there ex-

ists a nonempty µ-preopen set A such that G∩A = ∅. Then G∩iµA = ∅ and so ∅ = cµG∩iµA ⊇ csµ
G∩iµA.

(iv) ⇒ (i). The proof follows from [Theorem 10 (iv), [9]]. �

Proposition 3.7. [23] For a subset A ⊆ X, csµ
A = A ∪ iµcµA ∪ (X − Mµ).

Proposition 3.8. If A is a βµ-open subset of a GTS (X, µ) then cµA = cµiµcµA.

Proof. Since A is βµ-open, A ⊆ cµiµcµA ∩ Mµ ⊆ cµiµcµA. Therefore, cµA ⊆ cµiµcµA. Thus, cµiµcµA ⊆
cµA ⊆ cµiµcµA. �

Theorem 3.9. Let (X, µ) be a GTS. Then the following statements are equivalent:

1. (X, µ) is µ-hyperconnected.

2. A is µ-dense for every nonempty βµ-open set A ⊆ X.

3. csµ
A = X for every nonempty βµ-open A ⊆ X.
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Proof. (i) ⇒ (ii). Let A be a nonempty βµ-open set then A ⊆ cµiµcµA ∩ Mµ. From the definition of
βµ-open set, it is clear that iµcµA 6= ∅. Otherwise, A ⊆ cµ(∅) ∩ Mµ = (X − Mµ) ∩ Mµ = ∅, which is a
contradiction. Therefore by the hypothesis and Proposition 3.8, X = cµiµcµA = cµA.

(ii) ⇒ (iii). Let A be a nonempty βµ-open set. By the Proposition 3.7, csµ
A = A∪iµcµA∪(X−Mµ) =

A ∪ iµX ∪ (X − Mµ) = A ∪ Mµ ∪ (X − Mµ) = X .

(iii) ⇒ (i). Let O be a nonempty µ-open subset of X , then O ∈ βµ. By the hypothesis, csµ
O = X .

By the Proposition 2.2, it follows that cµO = X . �

Corollary 3.10. Let (X, µ) be a GTS. Then the following statements are equivalent:

1. (X, µ) is µ-hyperconnected.

2. A ∩ B 6= ∅ for ∅ 6= A ∈ sµ and ∅ 6= B ∈ βµ.

3. A ∩ B 6= ∅ for ∅ 6= A ∈ µ and ∅ 6= B ∈ βµ.

Theorem 3.11. Let (X, µ) be a GTS. Then the following statements are equivalent:

1. (X, µ) is µ-hyperconnected.

2. A is µ-dense for ∅ 6= A ∈ sµ.

3. csµ
A = X for ∅ 6= A ∈ sµ.

Proof. The proof is on the similar lines of Theorem 3.9. �

Definition 3.12. [22] A GTS (X, µ) is called extremally µ-disconnected if cµU ∩Mµ ∈ µ for every U ∈ µ.

Theorem 3.13. A GTS (X, µ) is extremally µ-disconnected if and only if for every rµ-closed set A,
A ∩ Mµ is µ-open.

Proof. Let (X, µ) be extremally µ-disconnected GTS. If A is rµ-closed then A = cµiµA. Also iµA is
µ-open then by the hypothesis, cµ(iµA) ∩ Mµ ∈ µ. Hence, A ∩ Mµ ∈ µ. Conversely, let U ∈ µ. Since,
cµU = cµ(iµU) is rµ-closed, then by the hypothesis, cµU ∩ Mµ is µ-open. �

Theorem 3.14. Let (X, µ) be GTS. Then X is extremally µ-disconnected if and only if sµ ⊆ pµ.

Proof. Suppose X is extremally µ-disconnected GTS. If A ∈ sµ, then A ⊆ cµiµA ∩ Mµ. Since X is
extremally µ-disconnected then cµiµA ∩ Mµ ∈ µ. So A ⊆ cµiµA ∩ Mµ = iµ(cµiµA ∩ Mµ) ⊆ iµcµiµA ⊆
iµcµA. Hence, sµ ⊆ pµ. Conversely, let F be a rµ-closed subset of X then F = cµiµF . Now F ∩ Mµ =
cµiµF ∩ Mµ = cµiµ(F ∩ Mµ) ∩ Mµ. So F ∩ Mµ ∈ sµ ⊆ pµ. Thus, (F ∩ Mµ) ⊆ iµcµ(F ∩ Mµ) ⊆
iµcµ(cµiµF ∩ Mµ) ⊆ iµcµcµiµF = iµcµiµF = iµF = iµ(F ∩ Mµ). So F ∩ Mµ ∈ µ. Hence, by Theorem
3.13, X is extremally µ-disconnected. �

Theorem 3.15. Every µ-hyperconnected GTS is is extremally µ-disconnected.

Proof. Let (X, µ) be a µ-hyperconnected GTS. Then for every ∅ 6= U ∈ µ, cµU = X . Therefore
cµU ∩ Mµ = X ∩ Mµ = Mµ. Hence, cµU ∩ Mµ ∈ µ. �

Remark 3.16. Clearly, from Example 3.3, converse of the Theorem 3.15 is not true. Since in this
example, GTS (X, µ) is extremally µ-disconnected but not µ-hyperconnected.

Theorem 3.17. In a GTS (X, µ), if ∅ 6= A ∈ sµ, then iµA 6= ∅.

Proof. Since A is µ-semi open set then A ⊆ cµiµA∩Mµ. If iµA = ∅, A ⊆ cµ(∅)∩Mµ = (X−Mµ)∩Mµ = ∅,
a contradiction. �
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Theorem 3.18. Let (X, µ) be a µ-hyperconnected GTS. If ∅ 6= A ⊆ X be such that iµA 6= ∅, then
A ∩ Mµ ∈ sµ.

Proof. Let iµA = U . Then by hypothesis, cµU = X . Therefore, U ⊆ A ⊆ X . Thus, U ⊆ A ∩ Mµ ⊆
cµU ∩ Mµ and hence, A ∩ Mµ ∈ sµ. �

Theorem 3.19. Let (X, µ) be GTS. Then X is µ-hyperconnected if and only if for every A 6= ∅ ∈ sµ

and B 6= ∅ ∈ pµ, A ∩ B 6= ∅.

Proof. If possible A ∩ B = ∅, then by Theorem 3.6, csµ
B = X . Since, X = csµ

B ⊆ csµ
(X − A) = X − A

then A = ∅, a contradiction. Conversely, let A, B ∈ µ such that A 6= ∅ 6= B,. Then by Theorem 2.4,
taking A as sµ-open and B as pµ-open, (X, µ) is µ-hyperconneceted. �

Definition 3.20. [16] Let X be any nonempty set. Then a sub collection F(X) of power set P (X) of X
is called g-filter if

1. ∅ /∈ F(X).

2. if A ∈ F(X) and A ⊆ B then B ∈ F(X).

A topological space (X, τ ) is hyperconnected iff SO(X, τ ) \ {∅} is a filter on X [13] where SO(X, τ )
is the collection of all semi open subsets of X . The converse part of this result is not always true in
generalized topological spaces which is clear from Example 3.22

Theorem 3.21. If a strong GTS (X, µ) is µ-hyperconnected then sµ \ ∅ is a µ-filter on X.

Proof. Let (X, µ) be a hyperconnected strong GTS. Let ∅ 6= A ∈ sµ and A ⊆ B. Then there exists
∅ 6= O ∈ µ such that O ⊆ A. Therefore, O ⊆ B. Hence, by Proposition 3.4 B ∈ sµ \ ∅. �

Example 3.22. Let X = {a, b, c} and µ = {{∅}, {a}, {b}, {a, b}, X} be a GT on X. Then, sµ =
{{∅}, {a}, {b}, {a, b}, {b, c}, {a, c}, X}. Clearly, sµ \ ∅ is a µ-filter on X but GTS (X, µ) is not µ-
hyperconnected.

Definition 3.23. [23] A mapping f : (X, µ) → (Y, ν) is said to be (µ, ν)-semi-continuous at a point
x ∈ X if for each ν-open set V containing f(x), there exists a µ-semi open set U containing x such that
f(U) ⊆ V . If f is (µ, ν)-semi-continuous at each point of X then f is called (µ, ν)-semi-continuous on
X.

Remark 3.24. [23] Note that if f : (X, µ) → (Y, ν) is a mapping and f(x) ∈ Y − Mν then f is trivially
(µ, ν)-semi-continuous at x. If x ∈ X − Mµ and f(x) ∈ Mν , then f is not (µ, ν)-semi-continuous at x
since there is no µ-semi open set U containing x. Thus, for f to be (µ, ν)-semi-continuous it is necessary
that f(X − Mµ) ⊆ Y − Mν .

Theorem 3.25. [23] For a mapping f : (X, µ) → (Y, ν), the following statements are equivalent.

1. f is (µ, ν)-semi-continuous.

2. f−1(V ) is µ-semi open for each ν-open set V .

3. f−1(F ) is µ-semi closed for each ν-closed set F .

4. f(csµ
A) ⊆ cν(f(A)) for any subset A of X.

5. csµ
(f−1(B)) ⊆ f−1(cνB) for any subset B of Y .

6. f−1(iν(B)) ⊆ isµ
(f−1(B)) for any subset B of Y .

Definition 3.26. A function f : (X, µ) → (Y, ν) is called almost feebly (µ, ν)-continuous if for each
rν-open set U , f−1(U) 6= ∅ implies iν(f−1(U)) 6= ∅.
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Theorem 3.27. Every (µ, ν)-semi-continuous f : (X, µ) → (Y, ν) is almost feebly (µ, ν)-continuous.

Proof. Proof is similar to Theorem 18 in [9]. �

Theorem 3.28. Let (X, µ) be µ-hyperconnected GTS. If f : (X, µ) → (Y, ν) is almost feebly (µ, ν)-
continuous and f(Mµ) ⊆ Mν then (Y, ν) is ν-hyperconnected.

Proof. If possible suppose (Y, ν) is not ν-hyperconnected then there exist ν-open sets U and V such that
U ∩V = ∅. Let A = iνcνU and B = iνcνV . Then A and B are nonempty rν -open sets such that A∩B = ∅.
So iµ(f−1(A)) ∩ iµ(f−1(B)) ⊆ f−1(A) ∩ f−1(B) = ∅. Since f is a almost feebly (µ, ν)-continuous then
isµ

(f−1(A)) 6= ∅ and isµ
(f−1(B)) 6= ∅. Hence, (X, µ) is not µ-hyperconnected by Corollary 3.10, which

is a contradiction. �

Corollary 3.29. Let (X, µ) be µ-hyperconnected GTS. If f : (X, µ) → (Y, ν) is a (µ, ν)-semi-continuous,
then (Y, ν) is ν-hyperconnected.

4. Example of hyperconnected GTS in which convergent sequence has unique limit

It is well known that in Hausdorff topological spaces every convergent sequence has unique limit and
converse follows if the space is first countable. Note that in first countable topological spaces, if every
convergent sequence has unique limit then necessarily Hausdorff but in case of GTS, we have an example
of hyperconnected GTS which is first countable and every convergent sequence have unique limit in
GTS. It is observed that the class of hyperconnected GTS is disjoint from the class of µ-T2 GTS. So
the characterization of µ-T2 space through sequences fails. It is a natural question to ask in which space
uniqueness of limit of convergent sequence implies or characterized µ-T2.

Definition 4.1. [1] A GTS (X, µ) is called a µ-first countable GTS if there is a countable µ-local base
at every p ∈ Mµ.

Definition 4.2. [14] A GTS (X, µ) is called µ-T2 if x, y ∈ Mµ, x 6= y implies the existence of disjoint
µ-open sets U1 and U2 containing x and y, respectively.

Example 4.3. Let X = R and µ = {∅} ∪ {(a − 1/n, a + n); a ∈ R, n ∈ N}. Then X is µ-first countable
and every convergent sequece has unique limit point but this space fails to be µ-T2. So this gives third type
of space in which every convergent sequence has unique limit. First type of spaces is known as Hausdorff
space.
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