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Parameters Correction of an Elliptical Equation Using an a Posteriori Estimate

Mostafa Abaali

abstract: In nature several phenomena touch humanity to act and control these phenomena we try to model
their evolution. To simplify the study of the equations obtained, most of the time we try to use linear forms
and in this way modelling errors are made which can influence the correct analysis of these phenomena. In this
work we focus on the Richards’ equation, where the coefficients changes their forms from a given value hs. This
value is unknown then the coefficients are approximated. We prove an a priori and an a posteriori estimates
on the modelling error. This estimates allows us, using local indicators, to build an adaptive algorithm to
control the modelling error and automatically determine the "best" approximation of hs. Numerical results
confirm the convergence of this procedure and the interest of this approach.

Key Words: Richard’s equation, modelling error, A priori estimates, a posteriori estimates, mod-
elling indicators.
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1. Introduction

Richards’ equation which models the flow of water in a partially saturated porous medium, is given
by

∂θ(h)

∂t
+ Se(θ)

∂h

∂t
− div(K(h)(∇(h + z))) = f, (1.1)

where θ(h) is the soil water retention, K(h) the hydraulic conductivity, h the pression and f the source
terme. The empirical expressions of K(h) and θ(h) were introduced by Brooks and Correy [4] in 1964
and modified by Van Genuchten [9] in 1980. The shape of the soil water retention curve near saturation
plays an important role in modelling runoff in the unsaturated saturated zone. Small changes in θ(h)
can significantly affect K(h) values, especially for fine-textured soils which may exhibit extreme non-
linearity in K(h) close to saturation. Vogel and co-authors [10] in 2001 suggested a modified Van
Genuchten expression by introducing a new parameter hs as the minimum capillary height instead of
zero. Schaap and his co-authors [7] in 2006 gave a new expression and suggested three different forms of
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these functions related respectively to the saturated zone, the humid zone, called the capillary fringe, and
the unsaturated zone. In (1.1) if we approximate the time derivative with the backward Euler scheme.
The equation obtained is an elliptical partial differential equation which consists to find c ∈ H1

0 (Ω) such
that

−div(D(c)∇c) + µ(c)c = f, in Ω (1.2)

where Ω is an open bounded set of R
d, d = 1, 2, 3, with Lipschitz boundary, f ∈ L2(Ω) and µ and D

are functions which depend respectively on the functions θ and K and having a behaviour that changes
depending on some parameters related to values of c solution of (1.2). These parameters are sometimes

difficult to obtain exactly, users solve this problem with approximations µ̃ and D̃ of these functions.
In the context of the modelling error, we distinguish at least two types of approaches. The first one

is when the model is simplified by neglecting some terms of the equation which are difficult to study.
In this context we cite the work done by Stein and Ohnimus [8] in 1999. In [3] Braak and Ern in
2002 investigated the concept of dual-weight residuals to develop an a posteriori estimates for a non-
linear elliptic problems, to simplify the study they neglected the non-linear terms then they studied the
influence of this neglect on the solution. This analysis was extended by Perotto [6] for steady equation
to the case of generic time-dependent problem. The second approach consists in simplifying the model
by modifying the coefficients of the equation in order to omit some dependence relatively to unknown
[2], [1] or to simplify the expression which is the situation of this work. The aim of our paper is to
correct the model using model indicators resulting by developing an a priori and an a posteriori analysis
of modelling error committed when the problem (1.2) is solved with the approximated coefficients µ̃ and

D̃. The outline of the paper is as follows.

• Section 2 : In this section we give the weak formulation of the problem and under some hypothesis,
we show its well posedness by showing existence and uniqueness of the solution.

• Section 3 : In this section we derive an a priori and an a posteriori estimates of modelling error.

• In Section 4 : In this section we describe an adaptation strategy to approximate the coefficients µ
and D, as an application of the indicators developed.

• In Section 5 : In this section we give two manufactured examples to validate the convergence of the
algorithm introduced for adaptation.

2. Problem setting

Let H1
0 (Ω) be the usual Sobolev space of the first order defined by

H1
0 (Ω) :=

{
v ∈ L2(Ω) /

∂v

∂xi

∈ L2(Ω), i = 1, . . . , n, and v|∂Ω = 0

}
,

equipped with the standard norm, H−1(Ω) be its topological dual.

In the following we assume that, for all (c, v) ∈ (H1
0 (Ω))2, functions µ(·), µ̃(·), D(·) and D̃(·) satisfying

the following properties (we use the notation β for µ, µ̃, D or D̃):

(H1) ∃γ > 0 such that

∫

Ω

(
µ(c)c − µ(v)v

)
(c − v)dx ≥ γ ‖ c − v ‖2

0,Ω,

(H2) ∃γ1 > 0 such that

∫

Ω

(
D(c)∇c − D(v)∇v

)
· ∇(c − v) ≥ γ1 ‖ ∇(c − v) ‖2

0,Ω,

(H3) ∃(β1, β2) ∈ R
2 such that 0 < β1 ≤ β(v) ≤ β2,

(H4) ∃Cβ > 0 such that ‖ β(c) − β(v) ‖∞≤ Cβ ‖ c − v ‖1,Ω .
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We denote by c and c̃ the solutions of the following problems respectively

{
find c ∈ H1

0 (Ω) such that
a(µ, D, c, c, v) = L(v), ∀v ∈ H1

0 (Ω),
(2.1)

{
find c̃ ∈ H1

0 (Ω) such that

a(µ̃, D̃, c̃, c̃, v) = L(v), ∀v ∈ H1
0 (Ω),

(2.2)

where

a(µ, D, w, c, v) =

∫

Ω

D(w)∇c · ∇vdx +

∫

Ω

µ(w)cvdx,

a(µ̃, D̃, w̃, c̃, v) =

∫

Ω

D̃(w̃)∇c̃ · ∇vdx +

∫

Ω

µ̃(w̃)c̃vdx,

L(v) =

∫

Ω

fvdx.

Proposition 2.1. Under hypothesis (H1) − (H4), the problems (2.1) and (2.2) admit unique solutions,
c ∈ H1

0 (Ω) and c̃ ∈ H1
0 (Ω) respectively, and we have the following estimates

‖c‖1,Ω ≤ δ(µ1, D1, L), ‖c̃‖1,Ω ≤ δ(µ̃1, D̃1, L), (2.3)

where δ(µ1, D1, L) =
‖L‖H−1(Ω)

inf(µ1, D1)
, δ(µ̃1, D̃1, L) =

‖L‖H−1(Ω)

inf(µ̃1, D̃1)
and the constants µ1, µ̃1, D1 and D̃1 are

given by the hypothesis (H3) for β = µ, µ̃, D, D̃.

Proof. The proof of the existence is classical and is based on the fixed point theorem of Schauder-
Tychonoff [11], applied to the operator

T : z ∈ H1
0 (Ω) −→ cz ∈ H1

0 (Ω),

where cz is the solution of the following linear problem

{
Find cz ∈ H1

0 (Ω) solution of
az(µ, D, cz, v) = L(v), ∀v ∈ H1

0 (Ω),
(2.4)

with az(µ, D, cz , v) =

∫

Ω

D(z)∇cz · ∇vdx +

∫

Ω

µ(z)czvdx.

Using (H3), the compactness of the injection of H1(Ω) into L2(Ω) and (H4), we prove that T admits
a fixed point, solution of the problem (2.1), the uniqueness is guaranteed by assumptions (H1) (H2). To
have the estimate (2.3) we take v = c̃ in (2.2), v = c in (2.1) and use the hypothesis (H3) �

3. Analysis and Approximation

In this section we derive an a priori and an a posteriori analysis of modelling error, when the problem
(2.1) is replaced by the problem (2.2). The a priori estimate obtained is achieved without additional

regularity assumption on c and gives a proof of the convergence of c̃ towards c when µ̃ tends to µ and D̃
tends to D. We also obtain an a posteriori error estimate by proving an upper and lower bound of the
modelling error by some explicit indicators that we use to describe a strategy to correct the model, and
provides a way of getting an accurate solution.
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3.1. The a priori analysis

Theorem 3.1. Let c and c̃ be the solutions of the problems (2.1) and (2.2) respectively, then we have

‖c − c̃‖1,Ω ≤
δ(µ̃1, D̃1, L)

inf(γ; γ1)
sup

(
sup

v∈H1

0
(Ω)

‖(µ̃ − µ)(v)‖L∞(Ω); (3.1)

sup
v∈H1

0
(Ω)

‖(D̃ − D)(v)‖L∞(Ω)

)
,

where γ and γ1 are the constants given by the assumptions (H1) and (H2) and δ(µ̃1, D̃1, L) is given in
Proposition 2.1.

Proof. Let R ∈ H−1(Ω) be the residual functional associated to the problem (2.1) and its approximation
(2.2), and defined, for all v ∈ H1

0 (Ω), by

< R, v >= L(v) − a(µ, D, c̃, c̃, v). (3.2)

Since c is solution of (2.1) we have

< R, v > = a(µ, D, c, c, v) − a(µ, D, c̃, c̃, v)

=

∫

Ω

(
µ(c)c − µ(c̃)c̃

)
vdx +

∫

Ω

(
D(c)∇c − D(c̃)∇c̃

)
· ∇vdx.

For v = c − c̃, and according to assumptions (H1) and (H2) we have

< R, c − c̃ > ≥ γ

∫

Ω

(c − c̃)2dx + γ1

∫

Ω

| ∇(c − c̃) |2 dx. (3.3)

In the other hand, since c̃ is solution of (2.2) we have

< R, c − c̃ > = a(µ̃, D̃, c̃, c̃, c − c̃) − a(µ, D, c̃, c̃, c − c̃)

=

∫

Ω

(µ̃(c̃) − µ(c̃)) c̃(c − c̃)dx +

∫

Ω

(
D̃(c̃) − D(c̃)

)
∇c̃ · ∇(c − c̃)dx.

To simplify, for the following we denote by F the right hand side of (3.3), then the inequality becomes

F ≤

∫

Ω

(µ̃(c̃) − µ(c̃))c̃(c − c̃)(x)dx +

∫

Ω

(D̃(c̃) − D(c̃))∇c̃ · ∇(c − c̃)(x)dx,

using Cauchy Schwartz inequality we get

inf(γ; γ1)‖c − c̃‖2
1,Ω ≤ sup

v∈H1

0
(Ω)

‖(µ̃ − µ)(v)‖L∞(Ω)‖c̃‖0,Ω‖c − c̃‖0,Ω

+ sup
v∈H1

0
(Ω)

‖(D̃ − D)(v)‖L∞(Ω)‖∇c̃‖0,Ω‖∇(c − c̃)‖0,Ω.

Using (2.3) and simplifying by ‖c − c̃‖1,Ω we obtain (3.1). �

3.2. The a posteriori error analysis

To have available computable quantities, we introduce the approximation of (2.2) by a finite element
method (FEM).
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Let Th = ∪T be a regular triangulation of Ω where T is a triangle and hT its diameter, we denote
h = max

T ∈Th

hT and P1(Th) defined by

P1(Th) =
{

v ∈ H1
0 (Ω) | v |T ∈ P1(T ), ∀T ∈ Th

}
,

where, for each T ∈ Th, P1(T ) stands for the space of restriction to T of polynomials of degree 1. The
discrete problem with finite elements method of degree 1 associated to (2.2) is given by

{
find c̃h ∈ P1(Th) such that

a(µ̃, D̃, c̃h, c̃h, v) = L(v), ∀v ∈ P1(Th).
(3.4)

The existence and uniqueness of the solution of the problem (3.4) can be established in the same way
as for the problem (2.2).

Now, in order to decouple the modelling error from that of discretization error we use the triangle
inequality

‖c − c̃h‖1,Ω ≤ ‖c − c̃‖1,Ω + ‖c̃ − c̃h‖1,Ω.

The term ‖c − c̃‖1,Ω represents the modelling error and the term ‖c̃ − c̃h‖1,Ω is the discretization one.
Since c̃ is not computable, we give an estimate on ‖c − c̃‖ in terms of c̃h which is computable, and
‖c̃ − c̃h‖1,Ω. A posteriori error estimates of this last term can be obtained in a classical way using the
error discretization indicators. In the following, to give an efficient and reliable estimate on ‖c − c̃‖1,Ω,
we develop the upper and lower bounds of this term.

3.2.1. The upper bound.

Theorem 3.2.
let c, c̃ and c̃h the solutions of the problems (2.1), (2.2) and (3.4) respectively.
There is a constant C∗ independent of h such that

‖c − c̃h‖1,Ω ≤
1

inf(γ; γ1)



(
∑

T ∈Th

(ηµ
T )2

) 1

2

+

(
∑

T ∈Th

(ηD
T )2

) 1

2


+ C∗‖c̃ − c̃h‖1,Ω, (3.5)

where

ηµ
T =

∥∥[µ̃(c̃h) − µ(c̃h)
]
c̃h

∥∥
0,T

, ηD
T =

∥∥∥
[
D̃(c̃h) − D(c̃h)

]
∇c̃h

∥∥∥
0,T

. (3.6)

Proof. Let R be the residual functional defined by (3.2). With the help of the problem (2.2) and by
introducing c̃h, µ(c̃h) and µ̃(c̃h), we have

< R, v > =

∫

Ω

(µ̃(c̃) − µ(c̃))c̃vdx +

∫

Ω

(D̃(c̃) − D(c̃))∇c̃ · ∇vdx

=

∫

Ω

(µ̃(c̃) − µ̃(c̃h))c̃vdx +

∫

Ω

(µ̃(c̃h) − µ(c̃h))c̃hvdx

+

∫

Ω

(µ̃(c̃h) − µ(c̃h))(c̃ − c̃h)vdx −

∫

Ω

(µ(c̃) − µ(c̃h))c̃vdx

+

∫

Ω

(D̃(c̃) − D̃(c̃h))∇c̃ · ∇vdx +

∫

Ω

(D̃(c̃h) − D(c̃h))∇c̃h · ∇vdx

+

∫

Ω

(D̃(c̃h) − D(c̃h))∇(c̃ − c̃h) · ∇vdx −

∫

Ω

(D(c̃) − D(c̃h))∇c̃ · ∇vdx.
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Using the Cauchy-Schwartz inequality and the assumptions (H3) and (H4) we obtain

| < R, v > | ≤

(
C

µ̃
‖c̃ − c̃h‖1,Ω‖c̃‖0,Ω + ‖(µ̃(c̃h) − µ(c̃h))c̃h‖0,Ω

+ sup
v∈H1

0

‖µ̃(v) − µ(v)‖L∞(Ω)‖c̃ − c̃h‖0,Ω + Cµ‖c̃ − c̃h‖1,Ω‖c̃‖0,Ω

+ C
D̃

‖c̃ − c̃h‖1,Ω‖∇c̃‖0,Ω+ ‖ (D̃(c̃h) − D(c̃h))∇c̃h ‖0,Ω

+ sup
v∈H1

0

‖D̃(v) − D(v)‖L∞(Ω)‖∇(c̃ − c̃h)‖0,Ω

+CD‖c̃ − c̃h‖1,Ω‖∇c̃‖0,Ω

)
‖ v ‖1,Ω,

by using the estimate (2.3)

‖ R ‖H−1 ≤ δ(µ1, D1, L)

[
C

µ̃
+ Cµ + +C

D̃
+ CD

]
‖ c̃ − c̃h ‖0,Ω

+ ‖ (µ̃(c̃h) − µ(c̃h))c̃h ‖0,Ω

+ sup
v∈H1

0

‖ µ̃(v) − µ(v) ‖L∞(Ω)‖ c̃ − c̃h ‖0,Ω

+ ‖ (D̃(c̃h) − D(c̃h))∇c̃h ‖0,Ω

+ sup
v∈H1

0

‖ D̃(v) − D(v) ‖L∞(Ω)‖ ∇(c̃ − c̃h) ‖0,Ω .

By breaking ‖(µ̃(c̃h) − µ(c̃h))c̃h‖0,Ω and ‖ (D̃(c̃h) − D(c̃h))∇c̃h ‖0,Ω on each triangle we can write

‖R‖H−1(Ω) ≤

(
∑

T ∈Th

(ηµ
T )2

) 1

2

+

(
∑

T ∈Th

(ηK
T )2

) 1

2

+ C1‖c̃h − c̃‖1,Ω, (3.7)

where ηµ
T and ηD

T are defined by (3.6) and

C1 = sup

(
δ(µ1, D1, L)

[
C

µ̃
+ Cµ + C

D̃
+ CD

]
,

sup
v∈H1

0
(ω)

‖ µ̃(v) − µ(v) ‖L∞(Ω),

sup
v∈H1

0
(ω)

‖ D̃(v) − D(v) ‖L∞(Ω))

)
.

In this expression the last two terms can be replaced by µ2 + µ̃2 and D2 + D̃2 respectively (see (H3)).
Moreover, by the definition of R given by (3.2), the problem (2.1), the hypothesis (H1) and (H2) and
then taking v = c − c̃ we have

< R, u − ũ > =

∫

Ω

(µ(c)c − µ(c̃)c̃)(c − c̃)dx +

∫

Ω

(D(c)∇c − D(c̃)∇c̃)∇(c − c̃)dx

≥ inf(γ, γ1) ‖ c − c̃ ‖2
1,Ω,

which gives

‖ c − c̃ ‖1,Ω≤
1

inf(γ, γ1)
‖ R ‖H−1(Ω) . (3.8)

Combining the inequalities (3.8) and (3.7) we obtain the a posteriori error estimate (3.5) with C∗ =
C1

inf(γ, γ1)
+ 1. �
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3.2.2. The lower bound.

Theorem 3.3. Let c and c̃h the respective solutions of problems (2.1)and (3.4), and ηµ
T , ηD

T defined by
(3.6), then we have

ηµ
T ≤ δ(µ1, D1, L)

(
ξ1‖c − c̃h‖1,T + ξ2

)
, (3.9)

ηD
T ≤ δ(µ1, D1, L)

(
ξ3‖c − c̃h‖1,T + ξ4

)
, (3.10)

where ξ1 = C
µ̃

+ Cµ and ξ2 = sup
v∈H1

0
(Ω)

‖(µ̃ − µ)(v)‖L∞(Ω),

ξ3 = C
D̃

+ CD and ξ4 = sup
v∈H1

0
(Ω)

‖ (D̃ − D)(v) ‖L∞(Ω) .

Proof. Introducing µ̃(c) in the expression of (ηµ
T ), using the hypothesis (H3) and (H4) and then the

inequality (2.3) we get

(ηµ
T )2 =

∫

T

(µ̃(c̃h) − µ(c̃h))
2

c̃2
hdx =

∫

T

(µ̃(c̃h) − µ(c̃h)) c̃h (µ̃(c̃h) − µ(c̃h)) c̃hdx

=

∫

T

(µ̃(c̃h) − µ̃(c))c̃h (µ̃(c̃h) − µ(c̃h)) c̃hdx

+

∫

T

(µ̃(c) − µ(c))c̃h (µ̃(c̃h) − µ(c̃h)) c̃hdx

+

∫

T

(µ(c) − µ(c̃h))c̃h (µ̃(c̃h) − µ(c̃h)) c̃hdx

≤ C
µ̃
‖c̃h − c‖1,T ‖c̃h‖0,T ‖ (µ̃(c̃h) − µ(c̃h)) c̃h‖0,T

+ sup
v∈H1

0
(Ω)

‖(µ̃ − µ)(v)‖L∞(Ω)‖c̃h‖0,T ‖ (µ̃(c̃h) − µ(c̃h)) c̃h‖0,T

+Cµ‖c̃h − c‖1,T ‖c̃h‖0,T ‖ (µ̃(c̃h) − µ(c̃h)) c̃h‖0,T

≤ δ(µ1, D1, L)

(
(C

µ̃
+ Cµ)‖c̃h − c‖1,T

+ sup
v∈H1

0
(Ω)

‖(µ̃ − µ)(v)‖L∞(Ω)

)
‖ (µ̃(c̃h) − µ(c̃h)) c̃h‖0,T .

Simplify by ‖ (µ̃(c̃h) − µ(c̃h)) c̃h‖0,T , we obtain (3.9).

The estimate (3.10), on the second indicator (ηD
T ), is obtained in the same way. �

4. Application

We consider the problem (1.2) with the functions µ(·) and D(·) given by

µ(c) =






µf1(c) if c < hs

µf2(c) if hs ≤ c < 0
µs if c ≥ 0

(4.1)

D(c) =






Df1(c) if c < hs

Df2(c) if hs ≤ c < 0.
Ds if c ≥ 0

(4.2)

where µf1, µf2, Df1 and Df2 are non-linear functions of c, and µs and Ds are constants.
In the context of porous media for example, hs is a small negative value which depends on the nature of
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the soil, called the minimum capillary height, but it depends on the soil nature so it is not well known
generally. Because of the complexity of these expressions, we use usually the following approximations
of µ(·) and D(·)

µ∗(u) =

{
µf1(c) if c < 0
µs if c ≥ 0

(4.3)

D∗(u) =

{
Df1(c) if c < 0
Ds if c ≥ 0.

(4.4)

The aim of this section is to use the results of Theorems 3.2 and the indicators (3.6) to determine an
approximation of the value of hs and so on for the functions µ and D which will be as close as possible
to the exact functions.

4.1. The adaptive procedure

We want to build an algorithm, based on the modelling indicators given in (3.6), such that, starting
with the initial expression of µ and D given by (4.3), we construct sequences (µ(k))k and (D(k))k con-
verging to the exact expression of µ and D.
Computing the indicator (3.6) requires the exact expression of µ and D which is unknown since hs is
unknown. We will use a like-fixed point iteration to get a value h∗

s as close as possible to the exact value
hs.

1. Let the first approximations be given by

µ̃(y) = µs, ∀y and D̃(y) = Ds, ∀y. (4.5)

In this first iteration, µ∗ and D∗ will play the role of the exact expression, when computing the
indicators, and will be updated by the iterations.

2. In the second step, we solve the problem (3.4) with the approximations µ̃ and D̃, which gives the
approximated solution c̃h, and we compute the indicators, for all T ∈ Th

ηT =
∥∥[µ̃(c̃h) − µ∗(c̃h)

]
c̃h

∥∥
0,T

+
∥∥∥
[
D̃(c̃h) − D∗(c̃h)

]
∇c̃h

∥∥∥
0,T

,

and their main value η̄.

3. For all T ∈ Th, the modelling indicator ηT is an estimation of the error between the model with

the functions µ∗ and D∗ and the model with the functions µ̃ and D̃. This allows us to determine
three zones: the one where this indicator vanishes, the one where it is large and the one where it is
small enough.
The zone of the domain where the indicator vanishes is given by

Ω̃s := {x ∈ Ω / c̃h(x) ≥ 0}, (4.6)

and the zone where the indicator is larger than the main value is given by

A := {x ∈ T ∈ Th / ηT > η̄} \ Ω̃s. (4.7)

The fact that the indicators on T ∈ Th, related to A, are larger than the main value, mains that
the model defined by the functions µ̃ and D̃ is a bad approximation in this zone.
We notice that, for x ∈ A, the values of c̃h are negative, and define

hs := max
x∈A

c̃h(x), (4.8)

and

Ω̃f1 := {x ∈ Ω / c̃h < hs} (4.9)

Ω̃f2 := {x ∈ Ω / hs ≤ c̃h < 0}. (4.10)
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In order to update the expression of µ∗ and D∗ we put

µ(1)(c) =





µ
(1)
f1 (c) if c < hs

µf2(c) if hs ≤ c < 0
µs if c ≥ 0.

D(1)(c) =





D
(1)
f1 (c) if c < hs

Df2(c) if hs ≤ c < 0
Ds if c ≥ 0.

(4.11)

The functions µ
(1)
f1 (c) and D

(1)
f1 (c) are obtained by multiplying the functions µf1(c) and Df1(c) by

a constant respectively to ensure continuity of µ(1) and D(1).

4. To go to the next iteration we put

µ̃ = α∗, and D̃ = K∗

then
µ∗ = µ(1) and D∗ = D(1),

and go to the step 2, until the chosen stop criterion is fulfilled.

The algorithm can be summarized as following.

Algorithm

Input

Expression of functions: µf1, µf2, µs, Df1, Df2, Ds,

Tolerance ε.

Step 1 (Initialisation)

h
(0)
s = 0

µ∗ and D∗ defined by (4.3),

µ̃ = µs, D̃ = Ds.

Step 2 ( The indicators)

Solve the problem (3.4) with µ̃, and D̃

Compute ηT for all T and η̄.

Step 3 (Determination of the zones)

Determine the sets Ωs, by (4.6), A by (4.7)

Compute the new value of hs by (4.8)

Determine the zones Ωf1 by (4.9) and Ωf2 by (4.10)

Define µ(1) and D(1), the new expressions of µ and D by (4.11).

Step 4 (Update)

If |h
(0)
s − hs| ≥ ε then

put µ̃ = µ∗ and D̃ = D∗

put µ∗ = µ(1) and D∗ = D(1)

put h
(0)
s = hs

go to Step2.

Otherwise take hs, µ(1) and D(1) as the best approximations.

STOP.

In the following we will present two manufactured examples to confirm the convergence of the strategy
described before. Calculations are done by the software FreeFem++ [5].
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4.2. Numerical tests

Let Ω =]0, 1[×]0, 1[ and c the solution of the problem (1.2) with the coefficients µ(·) and D(·) having
the following expressions

µ(z) =





(
exp(−0, 3)

1, 09

)(
z2 + 1

)
if z < hs

exp(z) if hs ≤ z < 0
1 if z ≥ 0,

and

D(z) =






z2 + 1 if z < hs(
1

0, 09

)
z4 + 1 if hs ≤ z < 0

1 if z ≥ 0.

We have to find an approximation of c and the value hs using the algorithm defined above. We consider
two manufactured solutions where hs = −0.3. We take the parameter of stopping criterion ε = 10−4.

1. In the first example the exact solution is defined by

ce(x, y) = 2, 2 sin(πx) (0.3 − y).

For the first iteration µ and D equal to the constant 1, and use the error indicators according to
the algorithm defined above. The results are given in Tables 1, 2 and 3. We observe, in Tables 1, 2,

3, for a different mesh size h, we need only four or five iterations to rich an acceptable value of h
(k)
s

and enough small main values of indicators. The L2-norm of the error between the exact solution
and the approximated solution is also acceptable but the H1-norm remains relatively large. We
can explain this by the fact that we do not use the indicators of discretization to adapt the mesh

because we notice that when we refine uniformly the mesh we obtain better approximations of h
(k)
s

and the solution, which confirm the convergence of the algorithm with the iterations and when h
gets quite small.

2. In the second example the exact solution is given by

ce = 17(x2 − x3)(0, 35 − y).

The results, with the same algorithm, are given in Tables 4, 5, 6, and we have the same observations
as the first example.

In the following we put, h
(k)
s , η̄, ‖c̃

(k)
h − ce‖0,Ω and ‖c̃

(k)
h − ce‖1,Ω are respectively the approximated

value of hs, the average of the modelling indicators, the L2-norm and H1-norm of the error between the
exact solution and the approximated solution at the iteration k.

Table 1: \ Results for the mesh size h = 1/20.

k h
(k)
s η̄ ‖c̃

(k)
h − ce‖0,Ω ‖c̃

(k)
h − ce‖1,Ω

1 −0, 421222 0, 0256837 0, 00432329 0, 139762
2 −0, 353366 0, 0239808 0, 00158224 0, 132176
3 −0, 333854 0, 0232097 0, 00117041 0, 131287
4 −0, 331336 0, 0232537 0, 00134389 0, 131287
5 −0, 331049 0, 0232532 0, 00134322 0, 131254
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Table 2: \ Results for the mesh size h = 1/50.

k h
(k)
s η̄ ‖c̃

(k)
h − ce‖0,Ω ‖c̃

(k)
h − ce‖1,Ω

1 −0, 378704 0, 00894813 0, 00405838 0, 0645721
2 −0, 341937 0, 00838358 0, 0014325 0, 0545204
3 −0, 317007 0, 00817934 0, 0003697 0, 0522392
4 −0, 308856 0, 00812455 0, 000200004 0, 0519712
5 −0, 308249 0, 0081272 0, 000193734 0, 0519631

Table 3: \ Results for the mesh size h = 1/80.

k h
(k)
s η̄ ‖c̃

(k)
h − ce‖0,Ω ‖c̃

(k)
h − ce‖1,Ω

1 −0, 368647 0, 0054973 0, 00389191 0, 0475538
2 −0, 340095 0, 00514744 0, 00141992 0, 035589
3 −0, 305783 0, 00496892 0, 000214103 0, 0323952
4 −0, 303161 0, 00496897 6, 8361410−5 0, 0321963
5 −0, 302731 0, 00496702 6, 7335210−5 0, 0221944

Table 5: \ Results for the mesh size h = 1/50.

k h
(k)
s η̄ ‖c̃

(k)
h − ce‖0,Ω ‖c̃

(k)
h − ce‖1,Ω

1 −0, 381903 0, 0116102 0, 00399798 0, 0921355
2 −0, 334086 0, 0105596 0, 00119841 0, 0816705
3 −0, 331787 0, 0105538 0, 000544999 0, 0804815
4 −0, 330134 0, 0105704 0, 000570222 0, 0805092

Table 6: \ Results for the mesh size h = 1/100.

k h
(k)
s η̄ ‖c̃

(k)
h − ce‖0,Ω ‖c̃

(k)
h − ce‖1,Ω

1 −0, 366074 0, 00570192 0, 00383143 0, 056944
2 −0, 330018 0, 00528268 0, 00114668 0, 0423303
3 −0, 309608 0, 00517833 0, 000213726 0, 040044
4 −0, 304221 0, 0051748 9, 547610−5 0, 0398681
5 −0, 303829 0, 00517387 9, 6292510−5 0, 0398688

5. Conclusion and perspectives.

In this work we developed two estimates on the modelling error, for an elliptic non-linear boundary
value problem, when the coefficients of the equation are modified. The first one is an a priori error
estimate and is achieved without additional regularity assumption on the solution. The second one is an
a posteriori error estimate where we developed an upper and a lower bounds of the error by computable
indicators and hence proved that the estimate is efficient and reliable. We have presented an adaptive
modelling strategy based on explicit evaluation of the modelling error, via the indicators, as an application,
when the error is caused by the incomplete knowledge of the coefficients. The numerical tests validate
this strategy.
In future works, several issues are left to be investigated. The first one consists to combine the mesh
indicator with the modelling indicator to balancing modelling and discretization errors in order to increase
accuracy in an economical way. The second is to extend this estimate and this strategy to the more
realistic problem of the vadose zone in the context of the infiltration in partially saturated porous media.
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Table 4: \ Results for the mesh size h = 1/20.

k h
(k)
s η̄ ‖c̃

(k)
h − ce‖0,Ω ‖c̃

(k)
h − ce‖1,Ω

1 −0, 357726 0, 0270085 0, 00305144 0, 201923
2 −0, 347771 0, 0257244 0, 00238952 0, 199462
3 −0, 346233 0, 0257678 0, 00221624 0, 19915
4 −0, 345044 0, 02558093 0, 00219454 0, 19913
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