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Exact Calculus for s-Hölder Subgradients in Banach Spaces

Abdelaziz Haddane1, Jamal Hlal2 and Abdelhaq Benbrik3

abstract: We give in this paper some useful calculus results related to the s-Hölder subdifferential of
extended-real valued functions defined on arbitrary real Banach spaces.

Key Words: Exact calculus, s-Hölder subdifferential, normal cones, coderive.

Contents

1 Introduction 1

2 Basic definitions and properties 2

3 The main result 2

3.1 Difference rule for s-Hölder subgradients.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3.2 Chain rule and other calculus rules.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1. Introduction

The s-Hölder subdifferential was first studied by J. M. Borwein and al in [2], followed by joint work
with R. Girgensohn and X. Wang in [3] in order to derive some properties of lower semicontinuous func-
tions with its lower subderivatives and to construct Lipschitz functions that satisfy some properties on
a Banach spaces. These authors and others for example B. Mordukhovich, M. Nguyen, F. Bernicot, J.
Venel, A. Ioffe didn’t prove some useful calculus results in general Banach spaces for this subdifferential
but they are usually used the so called proximal subdifferential, the case when s=1, or the Fréchet sub-
differential, the case when s=0 for simplicity, see [1,2,3,4,5,8,11] for more details and informations.
In this paper, we aim to establish some interesting calculus rules related to the s-Hölder subdifferential for
extended-real-valued functions defined on Banach spaces including difference rules, chain rules, scalariza-
tion formula, product and quotient rules. Most (but not all) of these results involve assumptions about
Lipschitz continuity of some components in composition and the principal calculus result obtained in this
paper, the difference rule, is expressed in form of inclusion without subdifferential regularity assumptions
all of the components.
Let X be an arbitrary real Banach space, and let ϕ : X → [−∞,+∞] be finite at x̄. Following J. Borwein
and al in [2], we say that x∗ ∈ X∗ is an s-Hölder subgradient of ϕ at x̄ (s ∈]0, 1]) if there exists positive
constants δx̄ and Cx̄ such that

ϕ(x) − ϕ(x̄) − 〈x∗, x− x̄〉 ≥ −Cx̄ ‖ x− x̄ ‖1+s (1.1)

whenever ‖ x − x̄ ‖< δx̄. The set of all such x∗ is called the s-Hölder subdifferential of ϕ at x̄ and is
denoted by ∂H(s)ϕ(x̄)
Follows [3] ϕ is s-Hölder smooth at x̄ if there exists positive constants δx̄ and Cx̄ and x∗ ∈ X∗ such that

‖ϕ(x) − ϕ(x̄) − 〈x∗, x− x̄〉‖ ≤ Cx̄ ‖ x− x̄ ‖1+s whenever ‖ x− x̄ ‖< δx̄.

When s=1, we say that ϕ is Lipschitz smooth at x̄ and if ϕ is s-Hölder smooth at x̄ then ϕ is differentiable
at x̄ and ∂H(s)ϕ(x̄) is a singleton.
The rest of this paper is organized as follows. Section 2 deals with definitions and preliminary material.
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In section 3, we establish the main result of this paper related to difference rule for the s-Hölder subdif-
ferential and in section 4 we prove some other calculus formulas for subdifferentials of scalarisation, chain
rule, products and quotients rules.

2. Basic definitions and properties

Throughout this paper we use standard notation except special symbols introduced when they are
defined. All spaces considered are real Banach whose norms are always denoted by ‖ . ‖ and the canonical
pairing 〈., .〉 between X and its topologically dual space X∗; obviously 〈., .〉 reduces to the standard inner
product in the case of Hilbert spaces with X = X∗.
Considering a nonempty set Ω in X and its indicator function δ(.,Ω) equal 0 if x ∈ Ω and ∞ otherwise,
we define the s-Hölder normal cone to Ω at x̄ ∈ Ω by

NH(s)(x̄; Ω) = ∂H(s)δ(x̄,Ω) (2.1)

We can derive directly follows (1) and (2) in the arbitrary Banach space setting: x∗ ∈ NH(s)(x̄; Ω) if and
only if there exists the positif numbers δx̄ and Cx̄ such that

〈x∗, x− x̄〉 ≤ Cx̄ ‖ x− x̄ ‖1+s for any x ∈ Ω ∩Bδx̄
(x̄) (2.2)

where Bδx̄
(x̄) means the open ball centered at x̄ with radius δx̄. On the other hand, one can observe

based (3) that the representation

∂H(s)ϕ(x̄) = {x∗ ∈ X∗/(x∗,−1) ∈ NH(s)((x̄;ϕ(x̄)); epiϕ)} (2.3)

where ϕ : X → R̄ is an extended-real-valued function and its usual epigraphe is defined by:

epiϕ = {(x, µ) ∈ X × IR/µ ≥ ϕ(x)}.

In the contrast to the case of single-valued mappings F : X → Y , the symbol F : X ⇒ Y stands for a
multifunction from X into Y with graph

gphF = {(x, y) ∈ X × Y/y ∈ F (x)}

and we define the s-Hölder coderivative of F at (x̄, ȳ) ∈ gphF by

D∗
H(s)F (x̄, ȳ)(y∗) = {x∗ ∈ Y/(x∗,−y∗) ∈ NH(s)((x̄; ȳ); gphF )} (2.4)

where ȳ is omitted if F = f : X → Y is single-valued.

3. The main result

3.1. Difference rule for s-Hölder subgradients.

In this section we give the important result of difference rule for the s-Hölder subgradients, which
holds in a rather general setting, in contrast to its sum rule counterpart.

Theorem 3.1. Let ϕi : X → R̄ be finite at x̄ for i=1,2. Assume that ∂H(s)ϕ2(x̄) 6= ∅. Then

∂H(s)(ϕ1 − ϕ2)(x̄) ⊂
⋂

x∗∈∂H(s)ϕ2(x̄)

[∂H(s)ϕ1(x̄) − x∗] ⊂ ∂H(s)ϕ1(x̄) − ∂H(s)ϕ2(x̄).

Proof. Fix arbitrary subgradients x∗ ∈ ∂H(s)(ϕ1 − ϕ2)(x̄) and x∗
2 ∈ ∂H(s)ϕ2(x̄). Then there exists

the positive constants C1
x̄, C

2
x̄, δx̄ such that:

ϕ1(x) − ϕ2(x) − (ϕ1(x̄) − ϕ2(x̄)) − 〈x∗, x− x̄〉 ≥ −C1
x̄ ‖ x− x̄ ‖1+s

and ϕ2(x) − ϕ2(x̄) − 〈x∗
2, x− x̄〉 ≥ −C2

x̄ ‖ x− x̄ ‖1+s

whenever ‖ x− x̄ ‖< δx̄.
The above inequalities directly imply that

ϕ1(x) − ϕ1(x̄) − 〈x∗ + x∗
2, x− x̄〉 ≥ −(C2

x̄ + C1
x̄) ‖ x− x̄ ‖1+s for all ‖ x− x̄ ‖< δx̄.

which justifies x∗ + x∗
2 ∈ ∂H(s)ϕ1(x̄) that imply that x∗ ∈ ∂H(s)ϕ1(x̄) − x∗

2 with x∗
2 ∈ ∂H(s)ϕ2(x̄) thus,we

achieve the proof.
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3.2. Chain rule and other calculus rules.

Analogously to section 3, we give other calculus rules for the s-Hölder subdifferential. Let us start
by the scalarization formula that relates the s-Hölder coderivative of an arbitrary locally Lipschitzian
mapping f : X → Y between Banach spaces with the s-Hölder subdifferential of its scalarization.

〈y∗, f〉(x) = 〈y∗, f(x)〉 x ∈ X, y∗ ∈ Y ∗

Theorem 3.2 (Scalarization formula). Let f : X → Y be Lipschitz continuous around x̄. Then

∂H(s)〈y
∗, f〉(x̄) = D∗

H(s)f(x̄)(y∗) for all y∗ ∈ Y ∗.

Proof. Fix arbitrary subgradient x∗ ∈ ∂H(s)〈y
∗, f〉(x̄). Then there exists the positive constants

Cx̄, δx̄ such that:
〈y∗, f〉(x) − 〈y∗, f〉(x̄) − 〈x∗, x− x̄〉 ≥ −Cx̄ ‖ x− x̄ ‖1+s

whenever ‖ x− x̄ ‖< δx̄. Then

〈y∗, f(x)〉 − 〈y∗, f(x̄)〉 − 〈x∗, x− x̄〉 ≥ −Cx̄ ‖ x− x̄ ‖1+s

For any such x we have

〈y∗, f(x) − f(x̄)〉 − 〈x∗, x− x̄〉 ≥ −Cx̄(‖ x− x̄ ‖ + ‖ f(x) − f(x̄) ‖)1+s

which implies by 2.4 that (x∗,−y∗) ∈ NH(s)((x̄; f(x̄)); gphf) and hence x∗ ∈ D∗
H(s)f(x̄)(y∗).

Let us prove the opposite inclusion holds if f is Lipschitz continuous around x̄ with modulus l ≥ 0.
Let an arbitrary x∗ ∈ D∗

H(s)f(x̄)(y∗). Then there are the positive constants Cx̄, δx̄ such that:

〈y∗, f(x) − f(x̄)〉 − 〈x∗, x− x̄〉 ≥ −Cx̄(‖ x− x̄ ‖ + ‖ f(x) − f(x̄) ‖)1+s

for all ‖ x− x̄ ‖< δx̄ Applying the fact that f is Lipschitz continuous around x̄ with modulus l, then

〈y∗, f(x) − f(x̄)〉 − 〈x∗, x− x̄〉 ≥ −Cx̄(l + 1)1+s ‖ x− x̄ ‖)1+s for all ‖ x− x̄ ‖< δx̄

This gives

〈y∗, f〉(x) − 〈y∗, f〉(x̄) − 〈x∗, x− x̄〉 ≥ −Cx̄(l + 1)1+s ‖ x− x̄ ‖1+s for all ‖ x− x̄ ‖< δx̄

which yields x∗ ∈ ∂H(s)〈y
∗, f〉(x̄) thus,we achieve the proof.

Now let us obtain chain rule for the s-Hölder subdifferential of composition in the case of Lipschitz
continuous f and C2 mapping ϕ between Banach spaces.

Theorem 3.3. Let f : X −→ Y a Lipschitz continuous single-valued mapping around x̄ and let ϕ :
X × Y −→ R̄ be finite at (x̄, ȳ) with ȳ = f(x̄). Assume that ϕ ∈ C2 around (x̄, ȳ) . Then

∂H(s)(ϕ ◦ f)(x̄) = ∇xϕ(x̄, ȳ) + ∂H(s)〈∇yϕ(x̄, ȳ), f〉(x̄) = ∇xϕ(x̄, ȳ) +D∗
H(s)f(x̄)(∇yϕ(x̄, ȳ))

where ϕ ◦ f is the function acting from X into R̄ defined by:

(ϕ ◦ f)(x) = ϕ(x, f(x)).

Proof. Fix an arbitrary x∗ ∈ ∇xϕ(x̄, ȳ)+∂H(s)〈∇yϕ(x̄, ȳ), f〉(x̄) , by inequality 1, we find the positive
constants Cx̄, δx̄ such that:

〈∇yϕ(x̄, ȳ), f(x)〉 − 〈∇yϕ(x̄, ȳ), f(x̄)〉 − 〈x∗ − ∇xϕ(x̄, ȳ), x − x̄〉

≥ −Cx̄(‖ x− x̄ ‖ + ‖ f(x) − f(x̄) ‖)1+s ∀x ∈ Bδx̄
(x̄).
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By the Lipschitz continuity of f around x̄, we have

〈∇yϕ(x̄, ȳ), f(x)〉 − 〈∇yϕ(x̄, ȳ), f(x̄)〉 − 〈x∗ − ∇xϕ(x̄, ȳ), x − x̄〉

≥ −Cx̄(l + 1)1+s ‖ x− x̄ ‖1+s ∀x ∈ Bδx̄
(x̄) (α1).

Furthermore, the assumption on ϕ ∈ C2 around (x̄, ȳ) with ȳ = f(x̄) yields the existence of the positive
constants C′

x̄, δ
′
x̄ such that:

ϕ(x, f(x)) − ϕ(x̄, f(x̄)) − 〈∇xϕ(x̄, ȳ), x− x̄〉 − 〈∇yϕ(x̄, ȳ), f(x) − f(x̄)〉

≥ −C′
x̄(‖ x− x̄ ‖ + ‖ y − ȳ ‖) whenever ‖ x− x̄ ‖ + ‖ y − ȳ ‖< δ′

x̄

This imply that:

ϕ(x, f(x)) − ϕ(x̄, f(x̄)) − 〈∇xϕ(x̄, ȳ), x− x̄〉 − 〈∇yϕ(x̄, ȳ), f(x) − f(x̄)〉

≥ −C′
x̄(‖ x− x̄ ‖ + ‖ y − ȳ ‖)1+s whenever ‖ x− x̄ ‖ + ‖ y − ȳ ‖< δ′

x̄.

and by the Lipschitz continuity of f around x̄, we have

ϕ(x, f(x)) − ϕ(x̄, f(x̄)) − 〈∇xϕ(x̄, ȳ), x− x̄〉 − 〈∇yϕ(x̄, ȳ), f(x) − f(x̄)〉

≥ −C′
x̄(1 + l)1+s ‖ x− x̄ ‖1+s whenever ‖ x− x̄ ‖ + ‖ y − ȳ ‖< δ′

x̄ (α2).

Denoting C = 2max{Cx̄(1+ l)1+s, C′
x̄(1+ l)1+s} and δ = min{ δx̄

2 ,
δ′

x̄

2(l+1) } Therefore, by virtu of (α1) and

(α2) we have

ϕ(x, f(x)) − ϕ(x̄, f(x̄)) ≥ 〈x∗, x− x̄〉 − C‖x− x̄‖1+s whenever ‖x− x̄‖ < δ.

Consequently, x∗ ∈ ∂H(s)(ϕ◦f)(x̄). This proves the inclusion ∇xϕ(x̄, ȳ)+∂〈∇yϕ(x̄, ȳ), f〉(x̄) ⊂ ∂H(s)(ϕ◦
f)(x̄). To establish the opposite inclusion we employ the similar arguments starting with a point x∗ ∈
∂H(s)(ϕ ◦ f)(x̄). Thus, we achieve the proof.

At the end of this section we give some additional calculus formulas for the s-Hölder subdifferential.
The first one is the product rule involving Lipschitzian functions.

Theorem 3.4. Let ϕi : X −→ R̄, i = 1, 2 be two Lipschitz continuous functions around x̄. Assume that

∂H(s)(−ϕ1(x̄)ϕ2)(x̄) 6= ∅ . Then we have

∂H(s)(ϕ1.ϕ2)(x̄) ⊂
⋂

x∗∈∂H(s)(−ϕ1(x̄)ϕ2)(x̄)

[∂H(s)(ϕ2(x̄)ϕ1)(x̄) − x∗].

Proof. Consider the functions ψ : R2 −→ R and f : X −→ R
2 defined by:

f(x) = (ϕ1(x), ϕ2(x)) , ψ(y1, y2) = y1.y2.

Then ϕ1.ϕ2 = ψof . Applying the above chain rule Theorem to the composition, we deduce the

∂H(s)(ϕ1.ϕ2)(x̄) = D∗
H(s)f(x̄)(∇ψ(f(x̄)) = D∗

H(s)f(x̄)(ϕ2(x̄), ϕ1(x̄)) (3.1)

Since f(x) = f1(x) − f2(x) with f1(x) = (ϕ1(x), 0) and f2(x) = (0,−ϕ2(x)), we derive from the coderiva-
tive difference rule

D∗
H(s)(f1 − f2)(x̄)(y∗) = ∂H(s)〈y

∗, f1 − f2〉(x̄)

=
⋂

x∗∈∂H(s)〈y∗,f2〉(x̄)

[∂H(s)〈y
∗, f1〉(x̄) − x∗] =

⋂

x∗∈D∗

H(s)
f2(x̄)(y∗)

[D∗
H(s)f1(x̄)(y∗) − x∗]

from Theorem 3.1 with the supposition D∗
H(s)f2(x̄)(y∗) 6= ∅. Then

D∗
H(s)(f1 − f2)(x̄)(ϕ2(x̄), ϕ1(x̄)) =

⋂

x∗∈D∗

H(s)
f2(x̄)(ϕ2(x̄),ϕ1(x̄))

[D∗
H(s)f1(x̄)(ϕ1(x̄), ϕ2(x̄)) − x∗] (3.2)
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By the scalarization formula from Theorem 3.2 and the obvious representation

NH(s)((x1, x2); Ω1 × Ω2) = NH(s)(x1; Ω1) ×NH(s)(x2; Ω2)

of s-Hölder normals cones in product spaces, we have

D∗
H(s)f1(x̄)(ϕ2(x̄), ϕ1(x̄)) = D∗

H(s)ϕ1(x̄)(ϕ2(x̄)) = ∂H(s)(ϕ2(x̄)ϕ1)(x̄)

and
D∗

H(s)f2(x̄)(ϕ2(x̄), ϕ1(x̄)) = D∗
H(s)(−ϕ2)(x̄)(ϕ1(x̄)) = ∂H(s)(−ϕ1(x̄)ϕ2)(x̄)

Thus from 3.1 and 3.2, we achieve the proof.
Similarly to Theorem 3.4 we obtain the following quotient rules.

Theorem 3.5. Let ϕi : X −→ R, i = 1, 2 be Lipschitz continuous functions around x̄. Assume that

ϕ2(x̄) 6= 0 and ∂H(s)(ϕ1(x̄)ϕ2)(x̄) 6= ∅ . Then we have

∂H(s)(
ϕ1

ϕ2

)(x̄) ⊂
⋂

x∗∈∂H(s)(ϕ1(x̄)ϕ2)(x̄)

[∂H(s)(ϕ2(x̄)ϕ1)(x̄) − x∗]

[ϕ(x̄)]2
.

Proof. Similary to the proof of Theorem 3.4, consider the functions f : X −→ R
2 and ψ : R2 −→ R

defined by:

f(x) = (ϕ1(x), ϕ2(x)) , ψ(y1, y2) =
y1

y2
.

Applying the chain rule Theorem to the composition (ψof)(x) =

(

ϕ1

ϕ2

)

(x) we have

∇ψ(f(x̄)) = (
1

ϕ2(x̄)
,−

ϕ1(x̄)

(ϕ2(x̄))2
)

and using the representation: f(x) = f1(x) − f2(x) with f1(x) = (ϕ1(x), 0) and f2(x) = (0,−ϕ2(x)).
Then we have

D∗
H(s)f2(x̄)(

1

ϕ2(x̄)
,−

ϕ1(x̄)

(ϕ2(x̄))2
) =

1

(ϕ2(x̄))2
∂H(s)(ϕ1(x̄)ϕ2)(x̄) 6= ∅

and

D∗
H(s)f1(x̄)(

1

ϕ2(x̄)
,−

ϕ1(x̄)

(ϕ2(x̄))2
) = ∂H(s)(

1

ϕ2(x̄)
ϕ1)(x̄)

Employing Theorem 3.4, we have

∂H(s)(
ϕ1

ϕ2

)(x̄) ⊂
⋂

x∗∈
1

(ϕ2(x̄))2
∂H(s)(ϕ1(x̄)ϕ2)(x̄)

[∂H(s)(
1

ϕ2(x̄)
ϕ1)(x̄) − x∗]

=
⋂

x∗∈∂H(s)(ϕ1(x̄)ϕ2)(x̄)

[∂H(s)(ϕ2(x̄)ϕ1)(x̄) − x∗]

[ϕ(x̄)]2
.

which completes the proof.
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