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H-scatteredness in Minimal Spaces with Hereditary Classes

Ahmad Al-Omari and Takashi Noiri

ABSTRACT: Quite recently, a new minimal structure mj}; has been introduced in [14] by using a minimal
structure m and a hereditary class H. In this paper, we introduce and investigate the notion of H-scattedness
in a hereditary minimal space (X, m,H).
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1. Introduction

The notion of ideals in topological spaces was introduced by Kuratowski [10]. Jankovié¢ and Hamlett
[8] defined the local function on an ideal topological space (X, 7,J). By using it they obtained a new
topology 7* for X and investigated relations between 7 and 7*. In [14], Noiri and Popa introduced the
minimal local function on a minimal space (X, m) with a hereditary class H and constructed a minimal
structure mj; which contains m. They showed that many properties related to 7 and 7* remain similarly
valid on m and m7;.

In this paper, we introduce the notions of H-isolated points and H-accumulation points of a subset in
a hereditary minimal space (X, m,H). Moreover, we introduce the notion of H-scattedness in (X, m,H)
and obtain the characterizations and several properties of H-scattered spaces. Also papers [2,3,4,5] have
introduced some property related to minimal spaces with hereditary classes.

2. Minimal Structures

Definition 2.1. A subfamily m of the power set P(X) of a nonempty set X is called a minimal structure
(briefly m-structure) [15] on X if ) € m and X € m.

By (X, m), we denote a nonempty set X with a minimal structure m on X and call it an m-space.
Each member of m is said to be m-open and the complement of an m-open set is said to be m-closed.
For a point « € X, the family {U : x € U and U € m} is denoted by m(z).

Definition 2.2. Let (X, m) be an m-space and A a subset of X. The m-closure mCI(A) of A [11] is
defined by mCl(A) = {FCX: AC F, X\ F em}.

Lemma 2.3. (Maki et al. [11]).Let X be a nonempty set and m a minimal structure on X. For subsets
A and B of X, the following properties hold:

(1) A C mCl(A) and mCl(A) = A if A is m-closed,
(2) mCl(0) = 0, mCl(X) = X,
(3) If A C B, then mCl(A) C mCl(B),
(4) mCl(A) UmCI(B) c mCl(AU B),
(5) mCl(mCl(A)) = mCl(A).
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2 A. AL-OMARI AND T. NOIRI

Definition 2.4. A minimal structure m on a set X is said to have
(1) property B [11] if the union of any collection of elements of m is an element of m,
(2) property F if m is closed under finite intersections.

Lemma 2.5. (Popa and Noiri [15]). Let (X, m) be an m-space and A a subset of X.
(1) x € mCl(A) if and only if UNA# D for every U € m(x).
(2) Let m have property B. Then the following properties hold:
(i) A is m-closed if and only if mCl(A) = A,
(i) mC1(A) is m-closed.

Definition 2.6. A nonempty subfamily H of P(X) is called a hereditary class on X [7] if it satisfies
the following property: A € H and B C A implies B € H. A hereditary class H is called an ideal if it
satisfies the additional condition: A € H and B € H implies AU B € H.

A minimal space (X, m) with a hereditary class H on X is called a hereditary minimal space (briefly
hereditary m-space) and is denoted by (X, m, H).

Definition 2.7. [14] Let (X,m,H) be a hereditary m-space. For a subset A of X, the minimal local
function A7 . (3, m) of A is defined as follows:

Ar y(H,m) ={xe X :UNA¢H for every U € m(z)}.
Hereafter, A% (3, m) is simply denoted by A} . Also mCl};(A) = AU A} .

Remark 2.8. [14] Let (X, m,H) be a hereditary m-space and A a subset of X. If H = {0} (resp. P
(X)), then A% . =mCIl(A) (resp. AL,z =0).

Lemma 2.9. [1/] Let (X,m,3) be a hereditary m-space. For subsets A and B of X, the following
properties hold:

1. If AC B, then A%, C B*

IS}

. Ar g =mCl(47, ;) C mCl(A),

3. AL g UBLy C(AUB), 4,

4 (Anm)mn € (AUAL ) hn = ALums
5. If A€ H, then A}, = 0.

Similar study may also be considered through grill as well as generalized topological spaces [1,13].
Lemma 2.10. Let (X, m,H) be a hereditary m-space. If U € m and UNA € H, then UN A%, = 0.

Definition 2.11. A subset A in a hereditary m-space (X, m,H) is said to be H-dense [12] (resp. m-
dense, mjy;-dense) if A% g =X (resp. mCl(A) =X, mCly;(A) =X).

The collection of all H-dense (resp. m-dense, m%;-dense) is denoted by Dgc(X,m) (resp. D(X,m),
D3(X,m)).

Example 2.12. Let X = {a,b,c,d}, m = {X,0,{c,d},{b,c,d},{a,c,d}} and H = {0,{a}}. If A ={a,c}
then Af ;= X. So that mCly;(A) = X and A is mj;-dense.

Example 2.13. Let X = {a,b,c,d}, m = {X,0,{a}, {b},{a,b}} and H = {0,{c}}. If A= {a,c} then
Ar g ={a,c,d}. So that mCly (A) # X and A is not mj;-dense.

Theorem 2.14. Let (X, m,H) be a hereditary m-space. Then the following properties hold:
(1) Dyc(X,m) C D5 (X, m) C D(X,m),
(2) If for some U € m, UND € H implies U N (X — D) ¢ H, then Dyc(X,m) = D3.(X,m).
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Proof. (1) Let D € Dg(X,m). Then mCl};(D) = DUD! 5 = X, ie. D € D} (X,m). There-
fore, D3c(X,m) C D3.(X,m). Since m C mj;, mCl;(A) C mCIl(A) for any subset A of X. Hence
D3.(X,m) C D(X,m).

(2) Let D € D5(X,m). Then mCl3(D) = DU D}, ; = X. We prove that D}, = X. Let z € X
such that z ¢ D} ;. Then, there exists ¢ # U € m(x) such that UND € 3. Hence, UN(X —D) ¢ 3 and
hence U N (X — D) # ¢. Let zp € U N (X — D). Then x¢ ¢ D and also zg ¢ D}, ;. Because xy € D}, 5
implies that U N D ¢ H which is contrary to U N D € H. Thus zy ¢ DU D} , = mCl};; (D) = X.
This is a contradiction. Therefore, we obtain D € Dg¢(X,m) and, D3 (X, m) C Dgc(X,m). Hence
Dy¢(X,m) = Dj(X,m). O

Corollary 2.15. Let (X, m,H) be a hereditary m-space. Then for x € X, X — {z} is H-dense if and
only if %y ({z}) =0, where T, ;({A}) = X — (X — A)%, for any subset A of X.

Proof. The proof follows from the definition of H-dense sets, since I'’ ,({z}) = X — (X —{z});, 5 =0
if and only if X = (X — {z})} 4. O

3. H-isolated Points and H-derived Sets

Let (X, m) be an m-space and let x € X and A C X. Then z is called an m-accumulation point of A
in X if UN (A —{z}) # 0 for every U € m(z). The m-derived set of A in X, denoted by d,,(A), is the
set of all m-accumulation points of A in X and z is called an m-isolated point of A in X if there exists
U € m(x) such that U N A = {z}. We denote the set of all m-isolated points of A in X by I,,,(4). It is
well known that I,,,(A) = A — d;,,(A) and mCI(A) = d,,(A) U A.

Now, we introduce the concepts of H-isolated points and H-derived sets in a hereditary m-space
(X, m,H).

Definition 3.1. Let (X, m,H) be a hereditary m-space and let x € X and A C X.

1. x is called an H-isolated point of A in X if there exists U € mj;(x) such that UN A = {x}. We
denote the set of all H-isolated points of A in X by Iy (A).

2. x is called an H-accumulation point of A in X if U N (A —{x}) # 0 for every U € m3;(x). The
H-derived set of A in X, denoted by dgc(A), is the set of all H-accumulation point of A in X.

Example 3.2. Let X = {a,b,c}, m ={X,0,{a},{b},{b,c}}.
1. If A ={a,b} then m-derived of A is d,,(A) = {c}. So that m-isolated of A is I,,(A) = A—d,,(A) =
{a,b}.
2. If B ={a,c} then m-derived of B is dy,(B) = 0. So that m-isolated of B is I,,(B) = B —d,(B) =
{a,c} .
3. If C = {b, c} then m-derived of C is dy,(A) = {c}. So that m-isolated of C is I,,(C) = C —d,,(C) =
{o}.
Example 3.3. Let X = {a,b,c,d}, m = {X,0,{a}} withH = {0,{a}}. Then m* ={X,0,{a},{b,c,d}}.
1. If A = {a,b} then H-derived of A is dsc(A) = {¢,d}. So that H-isolated of A is Isc(A) = A —

2. If B = {b,c} then H-derived of B is dgc(B) = {b,c,d}. So that H-isolated of B is Iy (B) =
B—dsy(B)=10.
Proposition 3.4. Let (X, m,H) be a hereditary m-space and m have property F. Then for A, B C X,
the following properties hold:

1. Inc(A) = A — dsc(A).
2. In(A) C In(A) C A.
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3. (a) A= Inc(A)U[dsc(A) N Al;
(b) doc(A)N A= A— Isc(A).

4. If A e mi;, — {0} and A C B, then Isc(A) C Is(B).

5. (a) Ise(A) N Iy (B) C Ise(AN B);

Proof. (1) Let x € Is(A). Then U N A = {z} for some U € mj;(x). This implies U N (A — {x}) = 0.
Then = ¢ dgc(A). Thus v € A—dgc(A) and so I5(A) C A—dgc(A). Conversely, let x € A—dsc(A). Since
z ¢ dgc(A), we have U N (A — {z}) = 0 for some U € mj;(z). Note that U N A = {z}. Then x € I3 (A)
and so A — dgc(A) C Isc(A). Hence I5(A) = A — dgc(A).
(2) This is obvious.
(3) (a) Forany x € Aand U € my;(z), UNA={x} or UN (A —{x}) # 0, then = € I5((A) Uds(A) and
Hence A = I5(A) U [dgc(A) N A].
(b) This holds by (1).
(4) Let © € Isc(A). Then UN A = {z} for some U € mj;(z). Since A € m3; — {0}, UN A € m};, — {0}.
Note that (U N A) N B = {z}. Then x € I3 (B). Thus I5(A) C Is(B).
(5) This is obvious.

(]

Proposition 3.5. Let (X, m,H) and (X, m,J) be two hereditary spaces with J C H. Then for A C X,
T5(A) € Inc(A).

Proof. Let € I5(A). Then UN A = {z} for some U € m¥(x). It is clear that § C I implies that
m¥% C mj;. So U € mj; and thus x € I5(A). Hence I3(A) C Is(A). O
Proposition 3.6. Let (X, m,H) and (X,n,H) be two hereditary spaces with n C m. Then for A C X,
I5¢(A) C Ingc(A).

Proof. Let x € I,5(A). Then UNA = {z} for some U € nj;(x). It is clear that n C m implies nj; C m3;.
So U € mj; and thus = € I,5¢(A). Hence I,5(A) C In5c(A). O

Definition 3.7. A hereditary m-space (X, m,H ) is said to be H-scattered if Is¢(A) # () for any nonempty
AeP(X).
Example 3.8. Let X = {a,b,c}, m ={X,0,{a},{b}} and H = {0,{c}}. Then

m* = {X7 0, {a}v {b}a {av b}}

It is clear that m*(a) = {X, {a},{a,b}}, m*(b) = {X, {b},{a,b}} and m*(c) = {X}.
Then a hereditary m-space (X, m,H) is H-scattered because I5c(A) # O for any nonempty A € P(X)
as the following table.

dac(A) I5c(A) = A —dsc(4)
A={a} | ds(A)={c} I3 (A) = {a}
A={b} | dsc(4)={c} Iy (A) = {b}
A={c} dgc(A) =0 I3 (A) = {c}
A={a,b} | dyc(4)={c} I5(A) = {a,b}
A={a,c} | dyc(A4) ={c} I5(A) = {a}
A={bc} | dy(A)={c} Iy (A) = {b}
A ={a,b,c} | dyc(A) ={c} I5c(A) = {a, b}

Let (X, m,H) be a hereditary m-space. The family of all m};-dense of X is denoted by DJ, =
D}.(X,m). For the subspace (Y,my,Hy), the family of all mj;-dense subsets of Y is denoted by
Di(Y)={ACY :mCly, (A) =Y}
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Lemma 3.9. Let (X,m,H) be a hereditary m-space. Then A C X is m};-dense in X if and only if
UNAZ#0D for every nonempty set U € m3;.

Proof. Let A be m};-dense in X and let U be nonempty U € mj,. Pick x € U. Then z € X =
mClj(A) = AU AY ;. Then if z € A, then x € ANU and ANU # 0. Suppose that z € A , and
ANU =1. Since X — U is m};-closedin X, (X —U)};, CX —-U. ThenU C X — (X -U)}. Byz €U,
x ¢ (X —U)%. It follows that VN (X —U) € K for some V € m(z). By AnU =0, AC X -U.
VNACVN(X—-U)eH Then VNA € H. Hence x ¢ A}, . This is a contradiction. Thus, UN A # 0.
Conversely, suppose mCl§(A) # X. Put U = X — mCl};(A), then U is a nonempty set in mj,. But
UNA=[X—mCl;(A)]NA=(. This is a contradiction.

]

Theorem 3.10. Let (X, m,H) be a hereditary m-space and m have property F. The following are
equivalent.

1. X is H-scattered;

2. Isc(A) € D35 (A), for any nonempty set A € P(X);

3. D € D}, (A) if and only if Isc(A) C D, for any nonempty set A € P(X);
4. dac(A) = dyc[Isc(A)] for any nonempty set A € P(X);

5. If A is nonempty m3;-closed set, then Isc(A) # 0.

Proof. (1) = (2): Let 0 #V € my,- Then V=W N A for some W € mj;. Since X is H-scattered,
Is((V) # 0. Pick @ € Isc(V). Then UNV = {z} for some U € m};(x). So (UNW)NA=UN(WNA) =
UNV = {z}. Note that U N W & mj;(x). This implies z € I3 (A). Then x € V N I3 (A) and so
V N I5c(A) # 0. By Lemma 3.9 mClj; [I3c(A)] = A. Thus I (A) € D5 (A).

(2) = (3): Let I3 (A) € D. By (2), A =mCly, [I3(A)] € mCly ,[D]. Thus D € Dj.(A). Conversely,
suppose I5¢(A) € D for some D € D%.(A). Then I3(A)—D # 0. Pick x € Isc(A)—D. Then UNA = {z}
for some U € mj;(x). Note that UN A € my, () and D € D5(A). By Lemma 3.9, DN (U N A) # 0.
But DN (UNA)=Dn{z} =0. This is a contradiction.

(3) = (4) Since Ij{(A) g A, dg{[]g{(A)] g dg-(j(A) Suppose dg-(j(A) g_ dg{[[g-((A)] Then dg-(j(A) -
dgc[I5¢(A)] # 0. Pick up = € dgc(A) — dgc[I5(A)]. By Proposition 3.4(1), Is(A) = A — dgc(A). Then
x ¢ Isc(A) and = ¢ doc[I5¢(A)] implies U N[I5¢(A) —{z}] = 0 for some U € m};(z). Note that = ¢ I (A).
Then (UNA)NI5c(A) € UNIsc(A) =0 withUNA € my,, . By (3) Isc(A) € D5 (A). Then VNIsc(A) # 0
for every V' € my; . This is a contradiction. Hence d3c(A) C dyc[I5¢(A)] and hence dgc(A) = dsc[Isc(A)].
(4) = (1): Suppose I5¢(A) = 0 for some nonempty set A € P(X). By (4), dsc(A) = dyc[I5¢(A)] = dgc (D)
(). By Proposition 3.4(3), A = Is(A) U [dgc(A) N A] = 0, a contradiction. Hence X is H-scattered.

(1) = (5): This is obvious.

(5) = (1): Let 0 # A € P(X). Since mCl}(A) is mi-closed, by (5), Is[mCl};(A)] # 0. Pick = €
Is [mC13;(A)]. Then U N [mCl3(A)] = {a} for some U € mj;(x). Suppose UN A = (. We have
AC X —U. Then mClj(A) C X —U. So UNmClj(A) = (. This is a contradiction. Thus U N A # (.
Since UN A C U N [mCl3(A)] = {z}, we have UN A = {z}. So = € I5(A). This implies I3c(A) # 0.
Hence X is H-scattered. U

Definition 3.11. Let (X, m,H) be a hereditary m-space. Put X° = X and X' = {z € X : x is not an
H-isolated point in X}. Let a be any order number. If XP is already defined for all order B < «, then
we put
(XA, ifa=B+1 and B is an ordinal number;
X =

N X?, ifais a limit ordinal number.
B<a

Remark 3.12.
1. X! =X — Iy(X) = X Ndye(X).
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2. XP C X whenever a < B.
3. X=Xt (X)) = X L Ndge (XYY for any successor ordinal number .
4. If o is a successor ordinal number and X* =0, then X = ﬁ<U 1I}C(X5).

Lemma 3.13. Let (X, m,H) be a hereditary m-space. If m has property F, the following properties
hold.

1. X is mj;-closed for any ordinal number .
2. Y CX, thenY* C X% for any ordinal number «.

Proof. 1. We use induction on a.
1) a =1. Let © € I3 (X). Then U, N X = {z} for some U, € m};(x). This implies {z} = U, € m},.
Thus I5(X) = IU(X){x} € myy. Thus X' = X — I3(X) is m};-closed.

r€lgc

2) Suppose X# is m’;-closed for any 8 < a. We will prove X is m};-closed in the following cases.
(a) a is a successor ordinal number. Let z € I5(X*~1). U, N X~ = {z} for some U, € m}(z). By
Remark 3.12, X® = X1 — I;¢(X°1). So

Xo=xo"1 - U {z}=[X— U Unxe
z€lyc(X>~1) x€lgc (X 1)

By induction hypothesis, X*~! is mJ};-closed. Thus X is m’;-closed.
(b) « is a limit ordinal number. By induction hypothesis, X* is m3-closed for any 8 < a. Thus

X = 6ﬁ X? is m’-closed.
<«
2. Let Y C X. We will prove Y* C X for any ordinal number «.

1) Y' =Y Nds(Y) C X Ndg(X) = X", This show Y C X when a = 1.

2) Suppose Y# C X# for any 8 < a. We consider the following cases

(a) a is a successor ordinal number. By induction hypothesis, Y*~! C X*~!. By Remark 3.12, Y =
Yol A dae(Y1) € X1 A dge(X21) = X

(b) a is a limit ordinal number. By induction hypothesis, Y# C X# for any 8 < a. Thus Y = Bﬁ y?
<a

N

/30 X# = X% By 1) and 2) we have Y* C X for any ordinal number a.
<«

Definition 3.14. Let (X, m,H) be a hereditary m-space.

1. An ordinal number [ is called the derived length of X if B = min{a : X* = 0}. B is denoted by
5(X).

2. X is said to have a derived length if there is an ordinal number o such that X< = ().
Lemma 3.15. X% = X% for some ordinal number §.
Theorem 3.16. Let (X, m,H) be a hereditary m-space. Then X is H-scattered if and only if X has a
derived length.

Proof. Sufficiency. Suppose that X is not H-scattered. Then Is(A) = () for some nonempty set A C X.
We claim A C X for any ordinal number .

(1) Let z € A and U € mj;(z). Since Is5c(A) =0, UN A # {z}. Note that 2 € U N A. Then |U N A| > 2
and so UN(A—{z}) #0. Now UN(A—{z}) CUN(X —{x}). Then UN (X — {z}) # 0. This implies
€ X Ndyc(X). By Remark 3.12, z € X!, Thus A C X — I3(X) = X' ie., AC X* when o = 1.

(2) Suppose A C X for any 8 < a. We will prove A C X in the following cases.

a) « is a successor ordinal number. Let x € A and U € mi(z). By (1) Un (A —{z}) # 0. By
induction hypothesis, A C X*~1. Then U N (X! — {x}) # 0. This implies z € X*~* Ndg (X !). By
Remark 3.12, x € X%, Hence A C X,

b) « is a limit ordinal number. By induction hypothesis, A C X? for any 3 < o. Then BQ XP = Xxe

Since X has a derived length, X° = ) for some ordinal number §. By claim, A C X?. Then A =0, a
contradiction.



H-SCATTEREDNESS IN MINIMAL SPACES WITH HEREDITARY CLASSES 7

Necessity. Conversely, suppose that X has no derived length. By Lemma 3.15, X%t! = X% and
Remark 3.12, X! = X% — I3¢(X°). Then I5(X°) = (. Note that X has no derived length. Then
X9 £ (. Tt follows that X is not H-scattered. This is a contradiction.

O

4. Characterizations of Scattered Spaces

Corollary 4.1. (1) Let (X,m,H) and (X, m,J) be two hereditary spaces with § C H. If (X,m,J) is
J-scattered, then (X, m,H) is H-scattered.

(2) Let (X,m,H) and (X,n,H) be two hereditary spaces with n C m. If (X,n,H) is H-scattered, then
(X, m,H) is H-scattered.

Proof. These hold by Proposition 3.5 and Proposition 3.6. O

An m-space (X, m) is said to be scatted if I,,,(A) # 0 for any nonempty set A € P(X).
Theorem 4.2. Let (X, m,H) be a hereditary m-space. Then the following are equivalent.
1. (X, m) is scaltered.
2. (X,m,H) is H-scattered for any hereditary H on X.
3. (X,m,{0}) is {0}-scattered
Proof. (1) = (2): This follows from Proposition 3.4 (2).
(2) = (3): The proof is obvious.
(3) = (1): Since m = m}; whenever H = {0}, I,,(A) = I3 (A) # 0. Thus (X, m) is scattered. O

Theorem 4.3. Let (X,m,H) be a hereditary m-space and Y be nonempty subset of X. If X is H-
scattered, then (Y, my,Hy ) is Hy -scattered.

Proof. Let A be nonempty set of Y. Since X is H-scattered, Isc(A) # 0. Pick € Is(A). Then
UNA={z} for some U € mj;(z). Note that UNY € my ¥ (z) and (UNY)NA=UNANY = {z}.
Then x € Iy, (A) and so Isc,. (A) # 0. Hence (Y, my, Hy) is Hy-scattered. O

Lemma 4.4. If every H,, is a hereditary on X, (o € A), then UA{HO‘ : Hy € Hyo} is a hereditary on
(¢3S

U Xo.

acA

Definition 4.5. A hereditary m-space (X, m,H) is called H-resolvable if X has two disjoint H-dense
subsets. Otherwise, X is called H-irresolvable.

Example 4.6. Let X = {a,b,c,d}, m = {X,0,{c,d},{b,c,d},{a,c,d}} with 5 = {0,{a}}. Then it is
clear that. If A = {a,c} then A* = X and if B = {b,d} then B* = X therefore, A and B is two disjoint
H-dense subsets of X. Hence, a hereditary m-space (X, m,H) is H-resolvable.

Proposition 4.7. Let (X, m,H) be a hereditary m-space. If X is H-scattered, then X is H-irresolvable.

Proof. Suppose that X is not H-irresolvable. Then X is H-resolvable. For some nonempty sets A, B €
P(X), we have A3, = Bj; = X and AN B = (. Since A, B € D5/(X), by Theorem 3.10, Is(X) C A, B,
and I3 (X) € AN B. Since X is H-scattered, I3¢((X) # 0. So AN B # 0. Thus, X is H-irresolvable. [

It is clear that by Proposition 4.7 a hereditary m-space (X, m,H) in Example 3.8 is H-irresolvable.

Definition 4.8. A mapping f : (X, m,H) — (Y,n,d) is said to be H-closed if f(A) is n¥-closed in Y
for each mj;-closed subset A of X.

Theorem 4.9. Let (X, m,H) be H-scattered, (Y,n,J) be a hereditary n-space, where m and n has
property F, and let f : (X,m,H) = (Y,n,J) be H-closed. Suppose that [ satisfies the following condition.
The set {3 : XP N f~Y(y) # 0} contains a largest element for any y € Y. Then the following properties
hold:
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1. Y™ C f(X9) for every ordinal number «,
2. 0(Y) <46(X),
3. Y is J-scattered.

Proof. Since (2) and (3) hold by (1) and Theorem 3.16, we only need to prove (1) i.e. Y C f(X%) for
every ordinal number «.
We use induction on a.

1. Since Y0 =Y = f(X) = f(X°), then Y* C f(X®) when a = 0.
2. Suppose Y7 C f(X?) when 8 < a. It suffices to show Y C f(X?) in the following two cases,

(a) @ = f 4 1 for some ordinal number .

Suppose Y ¢ f(X®). Then Y — f(X®) # (. Pick y € Y* — f(X®). Then XN f~1(y) # 0. Put
F=XP—f"y).

Claim 1. F is mj-closed in X. Put A = X# N f~1(y). Then F = X# — A. Since X*N f~1(y) = 0,
F'(y) € X —X®. Thisis implies A C XN (X — X®) = X#— X By Remark 3.12, X# — X = I5(X?).
Thus A C I3 (X?). For any z € A, € I3¢(X?). Then U N X? = {z} for some U € m};. Then
{z} € m}; s (velative space) and so A = ng{x} € mj;ys. This implies F = X# — A is m}-closed

in X?. By Lemma 3.13 (1) F is m%-closed in X. By induction hypothesis, Y C f(X#). Then
Y7~ {y} € J(X) — {y}. Note that X° C F.U f~(y). Then Y — {y} C f[FU /= (y)] - {y} = /(F).
Thus Y? — f(F) C {y}. Conversely, by f~*(y) N F = 0, y ¢ f(F). Note that y € Y* C Y#. Then
{y} CYP — f(F). Hence {y} = Y — f(F). Since f is H-closed, by Claim 1., f(F) is n%-closed. Note
that y ¢ f(F). Put U =Y — f(F). Then U € n%(y). By UNY? =Y — f(F) = {y}, y € I3(Y"). By
Remark 3.12, Y# — Y = I3(Y?). This implies y ¢ Y®. This is a contradiction. Therefore, Y C f(X®).
(b) « is a limit ordinal number. Suppose Y* ¢ f(X*). Then Y* — f(X*) # 0. Pick y € Y* — f(X%).
Put 7 = maz{B : X? N f~'(y) # 0}. By condition of hypothesis, we have X™ N f~!(y) # (). Since
Xon f~(y) = 0. We can claim 7 < a. Otherwise, we have 7 > a. Since X™ N f~1(y) # 0 and
X™C X% XN f~Yy) #0. Thus y € f(X*). This is a contradiction. But X™ 1 N f~1(y) = 0. Then
fyhAF(XTH) = D and so /()0 F(XT)] = 0. Put W = X — fU[F(X™)]. Then /1 (y) C W.
By Lemma 3.13(1), X™ ! is mj;-closed. By f is H-closed, f(X™*1) is n¥-closed. Put Z =Y — f(X™F!).
Then Z is n%-open and W = f~1(Z). Put g = fiw.

Claim 2. g = fijw : (W,mw,Hw) — (Z,nz,dz) is Hw-closed. Let K be mj-closed in W. Then
K = FNW for some mj;-closed set F' in X. Since f is H-closed, f(F') is n};-closed in Y. Note that
JK)=fWnF)=flfYZ)NF)=2Zn f(F). Then g(K) is nj-closed in Z. Then X is H-scattered,
by Theorem 4.3, W is Hyy-scattered. By Theorem 3.16, 6(W) is existence.

Claim 3. §(W) < 7+ 1. W™ C W C X — X™1. By Lemma 3.13 (2), W™ C X", Then
W™ C X7 A [X — X™1] = . Thus §(W) < 7 + L.

Claim 4. YN Z = Z“.

I.a=0. Wehave Z2° =2 =YNZ=YNn_Z.
2. Suppose Y? N Z = ZB for every # < a. We will prove Y* N Z = Z* in the following cases.

(i) av is a successor ordinal number.

By induction hypothesis, Y*'NZ = Z%~1. By Z* CY® and Z% C Z, we have Z* C Y*NZ. Lety €
Y®NZ. By Remark 3.12, Y = Yo~ 1 ndy (Y1) Theny € doc(Yo~)NY 1 NZ = dge(Yo—1)N 201,
Note that Z is an n%-open set containing y. y € dg¢(Y*™!) implies that [UNZ]N[Y*~! —{y}] # 0 for any
n*-open set U containing y. Then [UNZ|N[Y* ! —{y}] = UnZnY >INy —{y}] = UnZ* N[y —{y}] =
Un[zot —{y}] # 0. Thus, y € dsc(Z*"'). By Remark 3.12, Z% = Z* "1 Ndg(Z>"1). Then y € Z*.
Hence Y*NZ C Z¢. Hence Y*NZ = Z<.

(ii) «v is a limit ordinal number.
By induction hypothesis, Y# N Z = Z8 for any 3 < a. Then

YNZ=(Np<aY?)NZ =Npea (Y NZ) =NpeaZ’ = 2
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By Claim 2, g = fijw : (W,mw,Hw) = (Z,nz,d7) is Hw-closed. By repeating the proof of (a), we can
prove Z™t1 C g(W7+1). By Claim 3, § = W*W) D W7+, This implies Z™+! = (). By Remark 3.12(4),
Z = s Isc(Z7). Note that X1 f~1(y) = 0. Theny ¢ f(X™*1). Soy € Z = W I53¢(Z7). We obtain

y € I3(Z7) for some v < w. It follows U N Z7 = {y} for some U € n%(y). By Claim 4, Y"NZ = Z7.
Then (UNZ)NY? =UNZ" = {y}. Since UNZ € n%(y), we have y € I3 (Y7) = Y7 — Y7L Since
7 <  and « is a limit ordinal, 7 +1 < a. Then v+ 1 <7+ 1 < a. By Remark 3.12, Y7*! 5 Y, Then
y ¢ Y*. This is a contradiction. Therefore, Y* C f(X®).
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