H-scatteredness in Minimal Spaces with Hereditary Classes

Ahmad Al-Omari and Takashi Noiri

ABSTRACT: Quite recently, a new minimal structure \(m_H^* \) has been introduced in [14] by using a minimal structure \(m \) and a hereditary class \(H \). In this paper, we introduce and investigate the notion of \(H \)-scatteredness in a hereditary minimal space \((X, m, H)\).

Key Words: Minimal structure, hereditary class, \(H \)-isolated, \(H \)-accumulation, \(H \)-scattered.

Contents

1 Introduction
2 Minimal Structures
3 \(H \)-isolated Points and \(H \)-derived Sets
4 Characterizations of Scattered Spaces

1. Introduction

The notion of ideals in topological spaces was introduced by Kuratowski [10]. Janković and Hamlett [8] defined the local function on an ideal topological space \((X, \tau_J)\). By using it they obtained a new topology \(\tau^* \) for \(X \) and investigated relations between \(\tau \) and \(\tau^* \). In [14], Noiri and Popa introduced the minimal local function on a minimal space \((X, m)\) with a hereditary class \(H \) and constructed a minimal structure \(m_H^* \) which contains \(m \). They showed that many properties related to \(\tau \) and \(\tau^* \) remain similarly valid on \(m \) and \(m_H^* \).

In this paper, we introduce the notions of \(H \)-isolated points and \(H \)-accumulation points of a subset in a hereditary minimal space \((X, m, H)\). Moreover, we introduce the notion of \(H \)-scatteredness in \((X, m, H)\) and obtain the characterizations and several properties of \(H \)-scattered spaces. Also papers [2,3,4,5] have introduced some property related to minimal spaces with hereditary classes.

2. Minimal Structures

Definition 2.1. A subfamily \(m \) of the power set \(P(X) \) of a nonempty set \(X \) is called a minimal structure (briefly \(m \)-structure) [15] on \(X \) if \(\emptyset \in m \) and \(X \in m \).

By \((X, m)\), we denote a nonempty set \(X \) with a minimal structure \(m \) on \(X \) and call it an \(m \)-space. Each member of \(m \) is said to be \(m \)-open and the complement of an \(m \)-open set is said to be \(m \)-closed. For a point \(x \in X \), the family \(\{ U : x \in U \text{ and } U \in m \} \) is denoted by \(m(x) \).

Definition 2.2. Let \((X, m)\) be an \(m \)-space and \(A \) a subset of \(X \). The \(m \)-closure \(mCl(A) \) of \(A \) [11] is defined by \(mCl(A) = \cap \{ F \subset X : A \subset F, X \setminus F \in m \} \).

Lemma 2.3. (Maki et al. [11]).Let \(X \) be a nonempty set and \(m \) a minimal structure on \(X \). For subsets \(A \) and \(B \) of \(X \), the following properties hold:

1. \(A \subset mCl(A) \) and \(mCl(A) = A \) if \(A \) is \(m \)-closed,
2. \(mCl(\emptyset) = \emptyset \), \(mCl(X) = X \),
3. If \(A \subset B \), then \(mCl(A) \subset mCl(B) \),
4. \(mCl(A) \cup mCl(B) \subset mCl(A \cup B) \),
5. \(mCl(mCl(A)) = mCl(A) \).

2010 Mathematics Subject Classification: 54A05, 54C10.
Submitted January 11, 2023. Published June 17, 2023
Definition 2.4. A minimal structure \(m \) on a set \(X \) is said to have
(1) property \(\mathcal{B} \) if the union of any collection of elements of \(m \) is an element of \(m \),
(2) property \(\mathcal{F} \) if \(m \) is closed under finite intersections.

Lemma 2.5. (Popa and Noiri [15]). Let \((X, m) \) be an \(m \)-space and \(A \) a subset of \(X \).
(1) \(x \in \text{mCl}(A) \) if and only if \(U \cap A \neq \emptyset \) for every \(U \in m(x) \).
(2) Let \(m \) have property \(\mathcal{B} \). Then the following properties hold:
(i) \(A \) is \(m \)-closed if and only if \(\text{mCl}(A) = A \),
(ii) \(\text{mCl}(A) \) is \(m \)-closed.

Definition 2.6. A nonempty subfamily \(\mathcal{H} \) of \(\mathcal{P}(X) \) is called a hereditary class on \(X \) [7] if it satisfies the following property: \(A \in \mathcal{H} \) and \(B \subseteq A \) implies \(B \in \mathcal{H} \). A hereditary class \(\mathcal{H} \) is called an ideal if it satisfies the additional condition: \(A \in \mathcal{H} \) and \(B \subseteq \mathcal{H} \) implies \(A \cup B \in \mathcal{H} \).

A minimal space \((X, m)\) with a hereditary class \(\mathcal{H} \) on \(X \) is called a hereditary minimal space (briefly hereditary \(m \)-space) and is denoted by \((X, m, \mathcal{H})\).

Definition 2.7. [14] Let \((X, m, \mathcal{H})\) be a hereditary \(m \)-space. For a subset \(A \) of \(X \), the minimal local function \(A^*_{mH}(\mathcal{H}, m) \) of \(A \) is defined as follows:
\[
A^*_{mH}(\mathcal{H}, m) = \{ x \in X : U \cap A \notin \mathcal{H} \text{ for every } U \in m(x) \}.
\]
Hereafter, \(A^*_{mH}(\mathcal{H}, m) \) is simply denoted by \(A^*_{mH} \). Also \(\text{mCl}^*_{mH}(A) = A \cup A^*_{mH} \).

Remark 2.8. [14] Let \((X, m, \mathcal{H})\) be a hereditary \(m \)-space and \(A \) a subset of \(X \). If \(\mathcal{H} = \{\emptyset\} \) (resp. \(\mathcal{P}(X) \)), then \(A^*_{mH} = \text{mCl}(A) \) (resp. \(A^*_{mH} = \emptyset \)).

Lemma 2.9. [14] Let \((X, m, \mathcal{H})\) be a hereditary \(m \)-space. For subsets \(A \) and \(B \) of \(X \), the following properties hold:
1. If \(A \subseteq B \), then \(A^*_{mH} \subseteq B^*_{mH} \).
2. \(A^*_{mH} = \text{mCl}(A^*_{mH}) \subseteq \text{mCl}(A) \).
3. \(A^*_{mH} \cup B^*_{mH} \subseteq (A \cup B)^*_{mH} \).
4. \((A^*_{mH})^*_{mH} \subseteq (A \cup (A^*_{mH}))^*_{mH} = A^*_{mH} \).
5. If \(A \in \mathcal{H} \), then \(A^*_{mH} = \emptyset \).

A similar study may also be considered through grill as well as generalized topological spaces [1,13].

Lemma 2.10. Let \((X, m, \mathcal{H})\) be a hereditary \(m \)-space. If \(U \in m \) and \(U \cap A \in \mathcal{H} \), then \(U \cap A^*_{mH} = \emptyset \).

Definition 2.11. A subset \(A \) in a hereditary \(m \)-space \((X, m, \mathcal{H})\) is said to be \(\mathcal{H} \)-dense \([12]\) (resp. \(m \)-dense, \(m^*_H \)-dense) if \(A^*_{mH} = X \) (resp. \(\text{mCl}(A) = X \), \(m^*_H(A) = X \)).

The collection of all \(\mathcal{H} \)-dense (resp. \(m \)-dense, \(m^*_H \)-dense) is denoted by \(D_\mathcal{H}(X, m) \) (resp. \(D(X, m) \), \(D^*_H(X, m) \)).

Example 2.12. Let \(X = \{a, b, c, d\} \), \(m = \{X, \emptyset, \{c, d\}, \{b, c, d\}, \{a, c, d\}\} \) and \(\mathcal{H} = \{\emptyset, \{a\}\} \). If \(A = \{a, c\} \) then \(A^*_{mH} = X \). So that \(\text{mCl}^*_H(A) = X \) and \(A \) is \(m^*_H \)-dense.

Example 2.13. Let \(X = \{a, b, c, d\} \), \(m = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\} \) and \(\mathcal{H} = \{\emptyset, \{c\}\} \). If \(A = \{a, c\} \) then \(A^*_{mH} = \{a, c, d\} \). So that \(\text{mCl}^*_H(A) \neq X \) and \(A \) is not \(m^*_H \)-dense.

Theorem 2.14. Let \((X, m, \mathcal{H})\) be a hereditary \(m \)-space. Then the following properties hold:
(1) \(D_\mathcal{H}(X, m) \subseteq D^*_H(X, m) \subseteq D(X, m) \),
(2) If for some \(U \in m \), \(U \cap D \in \mathcal{H} \) implies \(U \cap (X - D) \notin \mathcal{H} \), then \(D_\mathcal{H}(X, m) = D^*_H(X, m) \).
Corollary 2.15. Let \((X, m, \mathcal{H})\) be a hereditary \(m\)-space. Then for \(x \in X\), \(X - \{x\}\) is \(\mathcal{H}\)-dense if and only if \(\Gamma^*_{mH}(\{x\}) = X - (X - \{x\})^*_{mH}\) for any subset \(A\) of \(X\).

Proof. The proof follows from the definition of \(\mathcal{H}\)-dense sets, since \(\Gamma^*_{mH}(\{x\}) = X - (X - \{x\})^*_{mH}\) if and only if \(X = (X - \{x\})^*_{mH}\).

3. \(\mathcal{H}\)-isolated Points and \(\mathcal{H}\)-derived Sets

Let \((X, m)\) be an \(m\)-space and let \(x \in X\) and \(A \subseteq X\). Then \(x\) is called an \(m\)-accumulation point of \(A\) in \(X\) if \(U \cap (\{A\} - \{x\}) \neq \emptyset\) for every \(U \in m(x)\). The \(m\)-derived set of \(A\) in \(X\), denoted by \(d_m(A)\), is the set of all \(m\)-accumulation points of \(A\) in \(X\) and \(x\) is called an \(m\)-isolated point of \(A\) in \(X\) if there exists \(U \in m(x)\) such that \(U \cap A = \{x\}\). We denote the set of all \(m\)-isolated points of \(A\) in \(X\) by \(I_m(A)\). It is well known that \(I_m(A) = A - d_m(A)\) and \(mCl(A) = d_m(A) \cup A\).

Now, we introduce the concepts of \(\mathcal{H}\)-isolated points and \(\mathcal{H}\)-derived sets in a hereditary \(m\)-space \((X, m, \mathcal{H})\).

Definition 3.1. Let \((X, m, \mathcal{H})\) be a hereditary \(m\)-space and let \(x \in X\) and \(A \subseteq X\).

1. \(x\) is called an \(\mathcal{H}\)-isolated point of \(A\) in \(X\) if there exists \(U \in m^*_H(x)\) such that \(U \cap A = \{x\}\). We denote the set of all \(\mathcal{H}\)-isolated points of \(A\) in \(X\) by \(I_{\mathcal{H}}(A)\).

2. \(x\) is called an \(\mathcal{H}\)-accumulation point of \(A\) in \(X\) if \(U \cap (\{A\} - \{x\}) \neq \emptyset\) for every \(U \in m^*_H(x)\). The \(\mathcal{H}\)-derived set of \(A\) in \(X\), denoted by \(d_{\mathcal{H}}(A)\), is the set of all \(\mathcal{H}\)-accumulation points of \(A\) in \(X\).

Example 3.2. Let \(X = \{a, b, c\}, m = \{X, \emptyset, \{a\}, \{b\}, \{b, c\}\}\).

1. If \(A = \{a, b\}\) then \(m\)-derived of \(A\) is \(d_m(A) = \{c\}\). So that \(m\)-isolated of \(A\) is \(I_m(A) = A - d_m(A) = \{a, b\}\).

2. If \(B = \{a, c\}\) then \(m\)-derived of \(B\) is \(d_m(B) = \emptyset\). So that \(m\)-isolated of \(B\) is \(I_m(B) = B - d_m(B) = \{a, c\}\).

3. If \(C = \{b, c\}\) then \(m\)-derived of \(C\) is \(d_m(A) = \{c\}\). So that \(m\)-isolated of \(C\) is \(I_m(C) = C - d_m(C) = \{b\}\).

Example 3.3. Let \(X = \{a, b, c, d\}, m = \{X, \emptyset, \{a\}\}\) with \(\mathcal{H} = \{\emptyset, \{a\}\}\). Then \(m^* = \{X, \emptyset, \{a\}, \{b, c, d\}\}\).

1. If \(A = \{a, b\}\) then \(\mathcal{H}\)-derived of \(A\) is \(d_{\mathcal{H}}(A) = \{c, d\}\). So that \(\mathcal{H}\)-isolated of \(A\) is \(I_{\mathcal{H}}(A) = A - d_{\mathcal{H}}(A) = \{a, b\}\).

2. If \(B = \{b, c\}\) then \(\mathcal{H}\)-derived of \(B\) is \(d_{\mathcal{H}}(B) = \{b, c\}\). So that \(\mathcal{H}\)-isolated of \(B\) is \(I_{\mathcal{H}}(B) = B - d_{\mathcal{H}}(B) = \emptyset\).

Proposition 3.4. Let \((X, m, \mathcal{H})\) be a hereditary \(m\)-space and \(m\) have property \(\mathcal{F}\). Then for \(A, B \subseteq X\), the following properties hold:

1. \(I_{\mathcal{H}}(A) = A - d_{\mathcal{H}}(A)\).

2. \(I_m(A) \subseteq I_{\mathcal{H}}(A) \subseteq A\).
3. (a) \(A = I_{3\mathcal{H}}(A) \cup [d_{3\mathcal{H}}(A) \cap A] \);
(b) \(d_{3\mathcal{H}}(A) \cap A = A - I_{3\mathcal{H}}(A) \).

4. If \(A \in m_{3\mathcal{H}}^* - \{\emptyset\} \) and \(A \subseteq B \), then \(I_{3\mathcal{H}}(A) \subseteq I_{3\mathcal{H}}(B) \).

5. (a) \(I_{3\mathcal{H}}(A) \cap I_{3\mathcal{H}}(B) \subseteq I_{3\mathcal{H}}(A \cap B) \);
(b) \(I_{3\mathcal{H}}(A \cup B) \subseteq I_{3\mathcal{H}}(A) \cup I_{3\mathcal{H}}(B) \).

Proof. (1) Let \(x \in I_{3\mathcal{H}}(A) \). Then \(U \cap A = \{x\} \) for some \(U \in m_{3\mathcal{H}}^*(x) \). This implies \(U \cap (A - \{x\}) = \emptyset \). Then \(x \notin d_{3\mathcal{H}}(A) \). Thus \(x \in A - d_{3\mathcal{H}}(A) \) and \(I_{3\mathcal{H}}(A) \subseteq A - d_{3\mathcal{H}}(A) \). Conversely, let \(x \in A - d_{3\mathcal{H}}(A) \). Since \(x \notin d_{3\mathcal{H}}(A) \), we have \(U \cap (A - \{x\}) = \emptyset \) for some \(U \in m_{3\mathcal{H}}^*(x) \). Note that \(U \cap A = \{x\} \). Then \(x \in I_{3\mathcal{H}}(A) \) and \(A - d_{3\mathcal{H}}(A) \subseteq I_{3\mathcal{H}}(A) \). Hence \(I_{3\mathcal{H}}(A) = A - d_{3\mathcal{H}}(A) \).

(2) This is obvious.

(3) (a) For any \(x \in A \) and \(U \in m_{3\mathcal{H}}^+(x) \), \(U \cap A = \{x\} \) or \(U \cap (A - \{x\}) = \emptyset \), then \(x \in I_{3\mathcal{H}}(A) \cup d_{3\mathcal{H}}(A) \) and \(A \subseteq I_{3\mathcal{H}}(A) \cup d_{3\mathcal{H}}(A) \). Thus \(A \subseteq (I_{3\mathcal{H}}(A) \cup d_{3\mathcal{H}}(A)) \cap A = I_{3\mathcal{H}}(A) \cup [d_{3\mathcal{H}}(A) \cap A] \). And \(A \supseteq (I_{3\mathcal{H}}(A) \cup d_{3\mathcal{H}}(A)) \cap A \). Hence \(A = I_{3\mathcal{H}}(A) \cup [d_{3\mathcal{H}}(A) \cap A] \).
(b) This holds by (1).

(4) Let \(x \in I_{3\mathcal{H}}(A) \). Then \(U \cap A = \{x\} \) for some \(U \in m_{3\mathcal{H}}^*(x) \). Since \(A \in m_{3\mathcal{H}}^* - \{\emptyset\} \), \(U \cap A \in m_{3\mathcal{H}}^* - \{\emptyset\} \). Note that \(U \cap A \cap B = \{x\} \). Then \(x \in I_{3\mathcal{H}}(B) \). Thus \(I_{3\mathcal{H}}(A) \subseteq I_{3\mathcal{H}}(B) \).

(5) This is obvious.

\[\Box \]

Proposition 3.5. Let \((X, m, \mathcal{H})\) and \((X, m, \mathcal{J})\) be two hereditary spaces with \(\mathcal{J} \subseteq \mathcal{H} \). Then for \(A \subseteq X \), \(I_{3\mathcal{J}}(A) \subseteq I_{3\mathcal{H}}(A) \).

Proof. Let \(x \in I_{3\mathcal{J}}(A) \). Then \(U \cap A = \{x\} \) for some \(U \in m_{3\mathcal{J}}^+(x) \). It is clear that \(\mathcal{J} \subseteq \mathcal{H} \) implies that \(m_{3\mathcal{J}}^* \subseteq m_{3\mathcal{H}}^* \). So \(U \in m_{3\mathcal{H}}^+ \) and thus \(x \in I_{3\mathcal{H}}(A) \). Hence \(I_{3\mathcal{J}}(A) \subseteq I_{3\mathcal{H}}(A) \).

Proposition 3.6. Let \((X, m, \mathcal{H})\) and \((X, n, \mathcal{K})\) be two hereditary spaces with \(n \subseteq m \). Then for \(A \subseteq X \), \(I_{n3\mathcal{K}}(A) \subseteq I_{m3\mathcal{K}}(A) \).

Proof. Let \(x \in I_{n3\mathcal{K}}(A) \). Then \(U \cap A = \{x\} \) for some \(U \in n_{3\mathcal{K}}^+(x) \). It is clear that \(n \subseteq m \) implies \(n_{3\mathcal{K}}^* \subseteq m_{3\mathcal{H}}^* \). So \(U \in m_{3\mathcal{H}}^+ \) and thus \(x \in I_{m3\mathcal{K}}(A) \). Hence \(I_{n3\mathcal{K}}(A) \subseteq I_{m3\mathcal{K}}(A) \).

Definition 3.7. A hereditary \(m \)-space \((X, m, \mathcal{H})\) is said to be \(\mathcal{H} \)-scattered if \(I_{3\mathcal{H}}(A) \neq \emptyset \) for any nonempty \(A \in \mathcal{P}(X) \).

Example 3.8. Let \(X = \{a, b, c\} \), \(m = \{X, \emptyset, \{a\}, \{b\}\} \) and \(\mathcal{H} = \{\emptyset, \{c\}\} \). Then
\[m^* = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}. \]

It is clear that \(m^*(a) = \{X, \{a\}, \{a, b\}\} \), \(m^*(b) = \{X, \{b\}, \{a, b\}\} \) and \(m^*(c) = \{X\} \).

Then a hereditary \(m \)-space \((X, m, \mathcal{H})\) is \(\mathcal{H} \)-scattered because \(I_{3\mathcal{H}}(A) \neq \emptyset \) for any nonempty \(A \in \mathcal{P}(X) \) as the following table.

<table>
<thead>
<tr>
<th>(A \subseteq {a})</th>
<th>(d_{3\mathcal{H}}(A) = {c})</th>
<th>(I_{3\mathcal{H}}(A) = \emptyset)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A \subseteq {b})</td>
<td>(d_{3\mathcal{H}}(A) = {c})</td>
<td>(I_{3\mathcal{H}}(A) = {b})</td>
</tr>
<tr>
<td>(A \subseteq {c})</td>
<td>(d_{3\mathcal{H}}(A) = \emptyset)</td>
<td>(I_{3\mathcal{H}}(A) = \emptyset)</td>
</tr>
<tr>
<td>(A \subseteq {a, b})</td>
<td>(d_{3\mathcal{H}}(A) = {c})</td>
<td>(I_{3\mathcal{H}}(A) = {a, b})</td>
</tr>
<tr>
<td>(A \subseteq {a, c})</td>
<td>(d_{3\mathcal{H}}(A) = {c})</td>
<td>(I_{3\mathcal{H}}(A) = {a})</td>
</tr>
<tr>
<td>(A \subseteq {b, c})</td>
<td>(d_{3\mathcal{H}}(A) = {c})</td>
<td>(I_{3\mathcal{H}}(A) = {b})</td>
</tr>
<tr>
<td>(A \subseteq {a, b, c})</td>
<td>(d_{3\mathcal{H}}(A) = {c})</td>
<td>(I_{3\mathcal{H}}(A) = {a, b})</td>
</tr>
</tbody>
</table>

Let \((X, m, \mathcal{H})\) be a hereditary \(m \)-space. The family of all \(m_{3\mathcal{H}}^* \)-dense of \(X \) is denoted by \(D_{3\mathcal{H}}^* = D_{3\mathcal{H}}^*(X, m) \). For the subspace \((Y, m_Y, \mathcal{H}_Y)\), the family of all \(m_{3\mathcal{H}}^* \)-dense subsets of \(Y \) is denoted by \(D_{3\mathcal{H}}^*(Y) = \{A \subseteq Y : m_{3\mathcal{H}}(A) = Y\} \).
Lemma 3.9. Let \((X, m, \mathcal{H})\) be a hereditary \(m\)-space. Then \(A \subseteq X\) is \(m^*_H\)-dense in \(X\) if and only if \(U \cap A \neq \emptyset\) for every nonempty set \(U \in m^*_H\).

Proof. Let \(A\) be \(m^*_H\)-dense in \(X\) and let \(U\) be nonempty \(U \in m^*_H\). Pick \(x \in U\). Then \(x \in X = m\text{CL}^*_H(A) = A \cup A^*_m\). Then if \(x \in A\), then \(x \in A \cap U\) and \(A \cap U \neq \emptyset\). Suppose that \(x \in A^*_m\) and \(A \cap U = \emptyset\). Since \(X - U\) is \(m^*_H\)-closed in \(X\), \((X - U)^*_H \subseteq X - U\). Then \(U \subseteq X - (X - U)^*_H\). By \(x \in U\), \(x \notin (X - U)^*_H\). It follows that \(V \cap (X - U) \in \mathcal{H}\) for some \(V \in m(x)\). By \(A \cap U = \emptyset\), \(A \subseteq X - U\). \(V \cap A \subseteq V \cap (X - U) \in \mathcal{H}\). Then \(V \cap A \in \mathcal{H}\). Hence \(x \notin A^*_m\). This is a contradiction. Thus, \(U \cap A \neq \emptyset\). Conversely, suppose \(m\text{CL}^*_H(A) \neq X\). Put \(U = X - m\text{CL}^*_H(A)\), then \(U\) is a nonempty set in \(m^*_H\). But \(U \cap A = [X - m\text{CL}^*_H(A)] \cap A = \emptyset\). This is a contradiction. \(\square\)

Theorem 3.10. Let \((X, m, \mathcal{H})\) be a hereditary \(m\)-space and \(m\) have property \(\mathcal{F}\). The following are equivalent.

1. \(X\) is \(\mathcal{H}\)-scattered;
2. \(I_\mathcal{H}(A) \in D^\mathcal{H}_\mathcal{H}(A)\), for any nonempty set \(A \in \mathcal{P}(X)\);
3. \(D \in D^\mathcal{H}_\mathcal{H}(A)\) if and only if \(I_\mathcal{H}(A) \subseteq D\), for any nonempty set \(A \in \mathcal{P}(X)\);
4. \(d_\mathcal{H}(A) = d_\mathcal{H}[I_\mathcal{H}(A)]\) for any nonempty set \(A \in \mathcal{P}(X)\);
5. If \(A\) is nonempty \(m^*_H\)-closed, then \(I_\mathcal{H}(A) \neq \emptyset\).

Proof. (1) \(\Rightarrow\) (2): Let \(\emptyset \neq V \in m^*_H\). Then \(V = W \cap A\) for some \(W \in m^*_H\). Since \(X\) is \(\mathcal{H}\)-scattered, \(I_\mathcal{H}(V) \neq \emptyset\). Pick \(x \in I_\mathcal{H}(V)\). Then \(U \cap V = \{x\}\) for some \(U \in m^*_H(x)\). So \((U \cap W) \cap A = U \cap (W \cap A) = U \cap V = \{x\}\). Note that \(U \cap W \in m^*_H(x)\). This implies \(x \in I_\mathcal{H}(A)\). Then \(x \in V \cap I_\mathcal{H}(A)\) and so \(V \cap I_\mathcal{H}(A) \neq \emptyset\). By Lemma 3.9 \(m\text{CL}^*_H[I_\mathcal{H}(A)] = A\). Thus \(I_\mathcal{H}(A) \in D^\mathcal{H}_\mathcal{H}(A)\).

(2) \(\Rightarrow\) (3): Let \(I_\mathcal{H}(A) \subseteq D\). By (2), \(A = m\text{CL}^*_H[I_\mathcal{H}(A)] \subseteq m\text{CL}^*_H[I_\mathcal{H}(A)]D\). Thus \(D \in D^\mathcal{H}_\mathcal{H}(A)\). Conversely, suppose \(I_\mathcal{H}(A) \not\subseteq D\) for some \(D \in D^\mathcal{H}_\mathcal{H}(A)\). Then \(I_\mathcal{H}(A) - D \neq \emptyset\). Pick \(x \in I_\mathcal{H}(A) - D\). Then \(U \cap A = \{x\}\) for some \(U \in m^*_H(x)\). Note that \(U \cap A \in m^*_H(x)\) and \(D \in D^\mathcal{H}_\mathcal{H}(A)\). By Lemma 3.9, \(D \cap (U \cap A) \neq \emptyset\). But \(D \cap (U \cap A) = D \cap \{x\} = \emptyset\). This is a contradiction.

(3) \(\Rightarrow\) (4): Since \(I_\mathcal{H}(A) \subseteq A\), \(d_\mathcal{H}[I_\mathcal{H}(A)] \subseteq d_\mathcal{H}(A)\). Suppose \(d_\mathcal{H}(A) \not\subseteq d_\mathcal{H}[I_\mathcal{H}(A)]\). Then \(d_\mathcal{H}(A) - d_\mathcal{H}[I_\mathcal{H}(A)] \neq \emptyset\). Pick up \(x \in d_\mathcal{H}(A) - d_\mathcal{H}[I_\mathcal{H}(A)]\). By Proposition 3.4(1), \(I_\mathcal{H}(A) = A - d_\mathcal{H}(A)\). Then \(x \notin I_\mathcal{H}(A)\) and \(x \notin d_\mathcal{H}[I_\mathcal{H}(A)]\) implies \(U \cap I_\mathcal{H}(A) - \{x\}\) for some \(U \in m^*_H(x)\). Note that \(x \notin I_\mathcal{H}(A)\). Then \(U \cap I_\mathcal{H}(A) - \{x\} \subseteq U \cap d_\mathcal{H}(A) - \emptyset\) with \(U \cap A \in m^*_H(A)\). By (3) \(I_\mathcal{H}(A) \in D^\mathcal{H}_\mathcal{H}(A)\). Then \(V \cap I_\mathcal{H}(A) \neq \emptyset\) for every \(V \in m^*_H\). This is a contradiction. Hence \(d_\mathcal{H}(A) \subseteq d_\mathcal{H}[I_\mathcal{H}(A)]\) and hence \(d_\mathcal{H}(A) = d_\mathcal{H}[I_\mathcal{H}(A)]\).

(4) \(\Rightarrow\) (1): Suppose \(I_\mathcal{H}(A) = \emptyset\) for some nonempty set \(A \in \mathcal{P}(X)\). By (4), \(d_\mathcal{H}(A) = d_\mathcal{H}[I_\mathcal{H}(A)] = d_\mathcal{H}(\emptyset) = \emptyset\). By Proposition 3.4(3), \(A = I_\mathcal{H}(A) \cup [d_\mathcal{H}(A) \cap A] = \emptyset\), a contradiction. Hence \(X\) is \(\mathcal{H}\)-scattered.

(5) \(\Rightarrow\) (1): Let \(\emptyset \neq A \in \mathcal{P}(X)\). Since \(m\text{CL}^*_H(A)\) is \(m^*_H\)-closed, by (5), \(I_\mathcal{H}[m\text{CL}^*_H(A)] \neq \emptyset\). Pick \(x \in I_\mathcal{H}[m\text{CL}^*_H(A)]\). Then \(U \cap [m\text{CL}^*_H(A)] = \{x\}\) for some \(U \in m^*_H(x)\). Suppose \(U \cap A = \emptyset\). We have \(A \subseteq X - U\). Then \(m\text{CL}^*_H(A) \subseteq X - U\). So \(U \cap m\text{CL}^*_H(A) = \emptyset\). This is a contradiction. Thus \(U \cap A \neq \emptyset\). Since \(U \cap A \subseteq U \cap m\text{CL}^*_H(A) = \{x\}\), we have \(U \cap A = \{x\}\). So \(x \in I_\mathcal{H}(A)\). This implies \(I_\mathcal{H}(A) \neq \emptyset\). Hence \(X\) is \(\mathcal{H}\)-scattered. \(\square\)

Definition 3.11. Let \((X, m, \mathcal{H})\) be a hereditary \(m\)-space. Put \(X^0 = X\) and \(X^1 = \{x \in X : x\) is not an \(\mathcal{H}\)-isolated point in \(X\}\). Let \(\alpha\) be any order number. If \(X^\beta\) is already defined for all order \(\beta < \alpha\), then we put

\[
X^\alpha = \begin{cases}
(X^\beta)^1, & \text{if } \alpha = \beta + 1 \text{ and } \beta \text{ is an ordinal number;} \\
\bigcap_{\beta < \alpha} X^\beta, & \text{if } \alpha \text{ is a limit ordinal number.}
\end{cases}
\]

Remark 3.12.

1. \(X^1 = X - I_{\mathcal{H}}(X) = X \cap d_{\mathcal{H}}(X)\).
2. $X^\beta \subseteq X^\alpha$ whenever $\alpha \leq \beta$.

3. $X^\alpha = X^{\alpha-1} - I_{\delta}(X^{\alpha-1}) = X^{\alpha-1} \cap d_{\delta}(X^{\alpha-1})$ for any successor ordinal number α.

4. If α is a successor ordinal number and $X^\alpha = \emptyset$, then $X = \bigcup_{\beta \leq \alpha-1} I_{\delta}(X^\beta)$.

Lemma 3.13. Let (X,m,\mathcal{H}) be a hereditary m-space. If m has property \mathcal{F}, the following properties hold.

1. X^α is m^*_H-closed for any ordinal number α.

2. $Y \subseteq X$, then $Y^\alpha \subseteq X^\alpha$ for any ordinal number α.

Proof. 1. We use induction on α.
 1) $\alpha = 1$. Let $x \in I_{\delta}(X)$. Then $U_x \cap X = \{x\}$ for some $U_x \in m^*_H(x)$. This implies $\{x\} = U_x \in m^*_H$. Thus $I_{\delta}(X) = \bigcup_{x \in I_{\delta}(X)} \{x\} \in m^*_H$. Thus $X^1 = X - I_{\delta}(X)$ is m^*_H-closed.

 2) Suppose X^β is m^*_H-closed for any $\beta < \alpha$. We will prove X^α is m^*_H-closed in the following cases.
 (a) α is a successor ordinal number. Let $x \in I_{\delta}(X^{\alpha-1})$. $U_x \cap X^{\alpha-1} = \{x\}$ for some $U_x \in m^*_H(x)$. By Remark 3.12, $X^\alpha = X^{\alpha-1} - I_{\delta}(X^{\alpha-1})$. So

 $X^\alpha = X^{\alpha-1} - \bigcup_{x \in I_{\delta}(X^{\alpha-1})} \{x\} = [X - x \in I_{\delta}(X^{\alpha-1}) U_x] \cap X^{\alpha-1}$.

 By induction hypothesis, $X^{\alpha-1}$ is m^*_H-closed. Thus X^α is m^*_H-closed.

 (b) α is a limit ordinal number. By induction hypothesis, X^β is m^*_H-closed for any $\beta < \alpha$. Thus $X^\alpha = \bigcap_{\beta < \alpha} X^\beta$ is m^*_H-closed.

 2. Let $Y \subseteq X$. We will prove $Y^\alpha \subseteq X^\alpha$ for any ordinal number α.
 1) $Y^1 = Y \cap d_{\delta}(Y) \subseteq X \cap d_{\delta}(X) = X^1$. This shows $Y^\alpha \subseteq X^\alpha$ when $\alpha = 1$.
 2) Suppose $Y^\beta \subseteq X^\beta$ for any $\beta < \alpha$. We consider the following cases.
 (a) α is a successor ordinal number. By induction hypothesis, $Y^{\alpha-1} \subseteq X^{\alpha-1}$. By Remark 3.12, $Y^\alpha = Y^{\alpha-1} \cap d_{\delta}(Y^{\alpha-1}) \subseteq X^{\alpha-1} \cap d_{\delta}(X^{\alpha-1}) = X^\alpha$.
 (b) α is a limit ordinal number. By induction hypothesis, $Y^\beta \subseteq X^\beta$ for any $\beta < \alpha$. Thus $Y^\alpha = \bigcap_{\beta < \alpha} Y^\beta \subseteq X^\alpha$. By 1) and 2) we have $Y^\alpha \subseteq X^\alpha$ for any ordinal number α.

\[\square\]

Definition 3.14. Let (X,m,\mathcal{H}) be a hereditary m-space.

1. An ordinal number β is called the derived length of X if $\beta = \min\{\alpha : X^\alpha = \emptyset\}$. β is denoted by $\delta(X)$.

2. X is said to have a derived length if there is an ordinal number α such that $X^\alpha = \emptyset$.

Lemma 3.15. $X^\delta = X^{\delta+1}$ for some ordinal number δ.

Theorem 3.16. Let (X,m,\mathcal{H}) be a hereditary m-space. Then X is \mathcal{H}-scattered if and only if X has a derived length.

Proof. Sufficiency. Suppose that X is not \mathcal{H}-scattered. Then $I_{\delta}(A) = \emptyset$ for some nonempty set $A \subseteq X$. We claim $A \subseteq X^\alpha$ for any ordinal number α.

(1) Let $x \in A$ and $U \in m^*_H(x)$. Since $I_{\delta}(A) = \emptyset$, $U \cap A \neq \{x\}$. Note that $x \in U \cap A$. Then $|U \cap A| \geq 2$ and so $U \cap (A - \{x\}) \neq \emptyset$. Now $U \cap (A - \{x\}) \subseteq U \cap (X - \{x\})$. Then $U \cap (X - \{x\}) \neq \emptyset$. This implies $x \in X \cap d_{\delta}(X)$. By Remark 3.12, $x \in X^1$. Thus $A \subseteq X - I_{\delta}(X) = X^1$. i.e., $A \subseteq X^\alpha$ when $\alpha = 1$.

(2) Suppose $A \subseteq X^\beta$ for any $\beta < \alpha$. We will prove $A \subseteq X^\alpha$ in the following cases.
 a) α is a successor ordinal number. Let $x \in A$ and $U \in m^*_H(x)$. By (1) $U \cap (A - \{x\}) \neq \emptyset$. By induction hypothesis, $A \subseteq X^{\alpha-1}$. Then $U \cap (X^{\alpha-1} - \{x\}) \neq \emptyset$. This implies $x \in X^{\alpha-1} \cap d_{\delta}(X^{\alpha-1})$. By Remark 3.12, $x \in X^\alpha$. Hence $A \subseteq X^\alpha$.

b) α is a limit ordinal number. By induction hypothesis, $A \subseteq X^\beta$ for any $\beta < \alpha$. Then $\bigcap_{\beta < \alpha} X^\beta = X^\alpha$.

Since X has a derived length, $X^\delta = \emptyset$ for some ordinal number δ. By claim, $A \subseteq X^\beta$. Then $A = \emptyset$, a contradiction.
Necessity. Conversely, suppose that \(X \) has no derived length. By Lemma 3.15, \(X^{\delta+1} = X^\delta \) and Remark 3.12, \(X^{\delta+1} = \mathbb{H}(X^\delta) \). Then \(I_\mathbb{H}(X^\delta) = \emptyset \). Note that \(X \) has no derived length. Then \(X^\delta \neq \emptyset \). It follows that \(X \) is not \(\mathcal{H} \)-scattered. This is a contradiction.

\(\square \)

4. Characterizations of Scattered Spaces

Corollary 4.1. (1) Let \((X, m, \mathcal{H})\) and \((X, m, \mathcal{J})\) be two hereditary spaces with \(\mathcal{J} \subseteq \mathcal{H} \). If \((X, m, \mathcal{J})\) is \(\mathcal{J} \)-scattered, then \((X, m, \mathcal{H})\) is \(\mathcal{H} \)-scattered.

(2) Let \((X, m, \mathcal{H})\) and \((X, n, \mathcal{H})\) be two hereditary spaces with \(n \leq m \). If \((X, n, \mathcal{H})\) is \(\mathcal{H} \)-scattered, then \((X, m, \mathcal{H})\) is \(\mathcal{H} \)-scattered.

Proof. These hold by Proposition 3.5 and Proposition 3.6.

An \(m \)-space \((X, m)\) is said to be scattered if \(I_m(A) \neq \emptyset \) for any nonempty set \(A \in \mathcal{P}(X) \).

Theorem 4.2. Let \((X, m, \mathcal{H})\) be a hereditary \(m \)-space. Then the following are equivalent.

1. \((X, m)\) is scattered.
2. \((X, m, \mathcal{H})\) is \(\mathcal{H} \)-scattered for any hereditary \(\mathcal{H} \) on \(X \).
3. \((X, m, \{\emptyset\})\) is \(\{\emptyset\} \)-scattered

Proof. (1) \(\Rightarrow \) (2): This follows from Proposition 3.4 (2).

(2) \(\Rightarrow \) (3): The proof is obvious.

(3) \(\Rightarrow \) (1): Since \(m = m_{\mathcal{H}}^* \) whenever \(\mathcal{H} = \{\emptyset\} \), \(I_m(A) = I_{\mathcal{H}^*}(A) \neq \emptyset \). Thus \((X, m)\) is scattered.

Theorem 4.3. Let \((X, m, \mathcal{H})\) be a hereditary \(m \)-space and \(Y \) be nonempty subset of \(X \). If \(X \) is \(\mathcal{H} \)-scattered, then \((Y, m_Y, \mathcal{H}_Y)\) is \(\mathcal{H}_Y \)-scattered.

Proof. Let \(A \) be nonempty set of \(Y \). Since \(X \) is \(\mathcal{H} \)-scattered, \(I_{\mathcal{H}}(A) \neq \emptyset \). Pick \(x \in I_{\mathcal{H}}(A) \). Then \(U \cap A = \{x\} \) for some \(U \in m_{\mathcal{H}}^*(x) \). Note that \(U \cap Y \in m_Y(\mathcal{H}) \) and \((U \cap Y) \cap A = (U \cap A) \cap Y = \{x\} \). Then \(x \in I_{\mathcal{H}_Y}(A) \) and so \(I_{\mathcal{H}_Y}(A) \neq \emptyset \). Hence \((Y, m_Y, \mathcal{H}_Y)\) is \(\mathcal{H}_Y \)-scattered.

Lemma 4.4. If every \(\mathcal{H}_\alpha \) is a hereditary on \(X_\alpha \) \((\alpha \in \Delta)\), then \(\bigcup_{\alpha \in \Delta} \{H_\alpha : H_\alpha \in \mathcal{H}_\alpha\} \) is a hereditary on \(\bigcup_{\alpha \in \Delta} X_\alpha \).

Definition 4.5. A hereditary \(m \)-space \((X, m, \mathcal{H})\) is called \(\mathcal{H} \)-resolvable if \(X \) has two disjoint \(\mathcal{H} \)-dense subsets. Otherwise, \(X \) is called \(\mathcal{H} \)-irresolvable.

Example 4.6. Let \(X = \{a, b, c, d\} \), \(m = \{X, \emptyset, \{c, d\}, \{b, c, d\}, \{a, c, d\}\} \) with \(\mathcal{H} = \{\emptyset, \{a\}\} \). Then it is clear that \(\mathcal{H} \)-dense subsets of \(X \). Hence, a hereditary \(m \)-space \((X, m, \mathcal{H})\) is \(\mathcal{H} \)-resolvable.

Proposition 4.7. Let \((X, m, \mathcal{H})\) be a hereditary \(m \)-space. If \(X \) is \(\mathcal{H} \)-scattered, then \(X \) is \(\mathcal{H} \)-irresolvable.

Proof. Suppose that \(X \) is not \(\mathcal{H} \)-irresolvable. Then \(X \) is \(\mathcal{H} \)-resolvable. For some nonempty sets \(A, B \in \mathcal{P}(X) \), we have \(A^*_H = B^*_H = X \) and \(A \cap B = \emptyset \). Since \(A, B \in D_H^*(X) \), by Theorem 3.10, \(I_{\mathcal{H}}(X) \subseteq A, B \), and \(I_{\mathcal{H}}(X) \subseteq A \cap B \). Since \(X \) is \(\mathcal{H} \)-scattered, \(I_{\mathcal{H}}(X) \neq \emptyset \). So \(A \cap B \neq \emptyset \). Thus, \(X \) is \(\mathcal{H} \)-irresolvable.

It is clear that by Proposition 4.7 a hereditary \(m \)-space \((X, m, \mathcal{H})\) in Example 3.8 is \(\mathcal{H} \)-irresolvable.

Definition 4.8. A mapping \(f : (X, m, \mathcal{H}) \to (Y, n, \mathcal{J}) \) is said to be \(\mathcal{H} \)-closed if \(f(A) \) is \(n^*_J \)-closed in \(Y \) for each \(m^*_H \)-closed subset \(A \) of \(X \).

Theorem 4.9. Let \((X, m, \mathcal{H})\) be \(\mathcal{H} \)-scattered, \((Y, n, \mathcal{J})\) be a hereditary \(n \)-space, where \(m \) and \(n \) has property \(\mathcal{F} \), and let \(f : (X, m, \mathcal{H}) \to (Y, n, \mathcal{J}) \) be \(\mathcal{H} \)-closed. Suppose that \(f \) satisfies the following condition. The set \(\{\beta : X^\beta \cap f^{-1}(y) \neq \emptyset\} \) contains a largest element for any \(y \in Y \). Then the following properties hold:
1. $Y^\alpha \subseteq f(X^\alpha)$ for every ordinal number α.
2. $\delta(Y) \leq \delta(X)$.
3. Y is β-scattered.

Proof. Since (2) and (3) hold by (1) and Theorem 3.16, we only need to prove (1) i.e. $Y^\alpha \subseteq f(X^\alpha)$ for every ordinal number α.

We use induction on α.

1. Since $Y^0 = Y = f(X) = f(X^0)$, then $Y^\alpha \subseteq f(X^\alpha)$ when $\alpha = 0$.

2. Suppose $Y^\beta \subseteq f(X^\beta)$ when $\beta < \alpha$. It suffices to show $Y^\alpha \subseteq f(X^\alpha)$ in the following two cases,

(a) $\alpha = \beta + 1$ for some ordinal number β.
Suppose $Y^\alpha \nsubseteq f(X^\alpha)$. Then $Y^\alpha - f(X^\alpha) \neq \emptyset$. Pick $y \in Y^\alpha - f(X^\alpha)$. Then $X^\alpha \cap f^{-1}(y) \neq \emptyset$. Put $F = X^\beta - f^{-1}(y)$.

Claim 1. F is m_H^β-closed in X. Put $A = X^\beta \cap f^{-1}(y)$. Then $F = X^\beta - A$. Since $X^\beta \cap f^{-1}(y) = \emptyset$, $f^{-1}(y) \subseteq X - X^\alpha$. This implies $A \subseteq X^\beta \cap (X - X^\alpha) = X^\beta - X^\alpha$. By Remark 3.12, $X^\beta - X^\alpha = I_\beta(X^\beta)$. Thus $A \subseteq I_\beta(X^\beta)$. For any $x \in A$, $x \in I_\beta(X^\beta)$. Then $U \cap X^\beta = \{x\}$ for some $U \in m_H^\beta$. Then $\{x\} \in m_H^\beta(\text{relative space})$ and so $A = \bigcup_{x \in A} \{x\} \in m_H^\beta$. This implies $F = X^\beta - A$ is m_H^β-closed in X^β. By Lemma 3.13 (1) F is m_H^β-closed in X. By induction hypothesis, $Y^\beta \subseteq f(X^\beta)$. Then $Y^\beta \cap f^{-1}(y) \subseteq f(X^\beta) - \{y\}$. Note that $X^\beta \subseteq F \cup f^{-1}(y)$. Then $Y^\beta \cap \{y\} \subseteq f(F \cup f^{-1}(y)) - \{y\} = f(F)$. Thus $Y^\beta - f(F) \subseteq \{y\}$. Conversely, by $f^{-1}(y) \cap F = \emptyset$, $y \notin f(F)$. Note that $y \in Y^\alpha \subseteq Y^\beta$. Then $\{y\} \subseteq Y^\beta - f(F)$. Hence $\{y\} = Y^\beta - f(F)$. Since f is \mathcal{H}-closed, by Claim 1, $f(F)$ is n_J^β-closed. Note that $y \notin f(F)$. Put $U = Y - f(F)$. Then $U \in n_J^\beta(y)$. By $U \cap Y^\beta = Y^\beta - f(F) = \{y\}$, $y \in I_\beta(Y^\beta)$. By Remark 3.12, $Y^\beta - Y^\alpha = I_\beta(Y^\beta)$. This implies $y \notin Y^\alpha$. This is a contradiction. Therefore, $Y^\alpha \subseteq f(X^\alpha)$.

(b) α is a limit ordinal number. Suppose $Y^\alpha \nsubseteq f(X^\alpha)$. Then $Y^\alpha - f(X^\alpha) \neq \emptyset$. Pick $y \in Y^\alpha - f(X^\alpha)$. Put $\pi = \max\{\beta : X^\beta \cap f^{-1}(y) \neq \emptyset\}$. By condition of hypothesis, we have $X^\pi \cap f^{-1}(y) \neq \emptyset$. Since $X^\alpha \cap f^{-1}(y) = \emptyset$. We can claim $\pi < \alpha$. Otherwise, we have $\pi \geq \alpha$. Since $X^\pi \cap f^{-1}(y) \neq \emptyset$ and $X^\pi \subseteq X^\alpha$, $X^\alpha \cap f^{-1}(y) \neq \emptyset$. Thus $y \in f(X^\alpha)$. This is a contradiction. But $X^{\pi+1} \cap f^{-1}(y) = \emptyset$. Then $\{y\} \cap f(X^{\pi+1}) = \emptyset$ and so $f^{-1}(y) \cap f^{-1}[f(X^{\pi+1})] = \emptyset$. Put $W = X - f^{-1}[f(X^{\pi+1})]$. Then $f^{-1}(y) \subseteq W$. By Lemma 3.13 (1), $X^{\pi+1}$ is m_H^β-closed. By f is \mathcal{H}-closed, $f(X^{\pi+1})$ is n_J^β-closed. Put $Z = Y - f(X^{\pi+1})$. Then Z is n_J^β-open and $W = f^{-1}(Z)$. Put $g = f|_W$.

Claim 2. $g = f|_W : (W, m_H^\beta, \mathcal{H}_W) \to (Z, n_J^\beta, \mathcal{H}_Z)$ is \mathcal{H}_W-closed. Let K be m_H^β-closed in W. Then $K = F \cap W$ for some m_H^β-closed set F in X. Since f is \mathcal{H}-closed, $f(F)$ is n_J^β-closed in Y. Note that $g(K) = f(W \cap F) = f[f^{-1}(Z) \cap F] = Z \cap f(F)$. Then $g(K)$ is n_H^β-closed in Z. Then X is \mathcal{H}-scattered, by Theorem 4.3, W is \mathcal{H}_W-scattered. By Theorem 3.16, $\delta(W)$ is existence.

Claim 3. $\delta(W) \leq \pi + 1$. $W^{\pi+1} \subseteq W \subseteq X - X^{\pi+1}$. By Lemma 3.13 (2), $W^{\pi+1} \subseteq X^{\pi+1}$. Then $W^{\pi+1} \subseteq X^{\pi+1} \cap [X - X^{\pi+1}] = \emptyset$. Thus $\delta(W) \leq \pi + 1$.

Claim 4. $Y^\alpha \cap Z = Z^\alpha$.

1. $\alpha = 0$. We have $Z^0 = Y = Y \cap Z = Y^0 \cap Z$.

2. Suppose $Y^\beta \cap Z = Z^\beta$ for every $\beta < \alpha$. We will prove $Y^\alpha \cap Z = Z^\alpha$ in the following cases.

(i) α is a successor ordinal number.

By induction hypothesis, $Y^{\alpha-1} \cap Z = Z^{\alpha-1}$. By $Z^\alpha \subseteq Y^\alpha$ and $Z^\alpha \subseteq Z$, we have $Z^\alpha \subseteq Y^\alpha \cap Z$. Let $y \in Y^\alpha \cap Z$. By Remark 3.12, $Y^\alpha = Y^{\alpha-1} \cap d_{\mathcal{Y}}(Y^{\alpha-1})$. Then $y \in d_{\mathcal{Y}}(Y^{\alpha-1}) \cap Y^{\alpha-1} \cap Z = d_{\mathcal{Y}}(Y^{\alpha-1}) \cap Z^{\alpha-1}$. Note that Z is an n_J^β-open set containing y, $y \in d_{\mathcal{Y}}(Y^{\alpha-1})$ implies that $[U \cap Z \cap Y^{\alpha-1} - \{y\}] \neq \emptyset$ for any n_J^β-open set U containing y. Then $[U \cap Z \cap Y^{\alpha-1} - \{y\}] = U \cap Z \cap Y^{\alpha-1} - \{y\} = U \cap Z^{\alpha-1} - \{y\} \neq \emptyset$. Thus, $y \in d_{\mathcal{Y}}(Z^{\alpha-1})$. By Remark 3.12, $Z^{\alpha-1} = Z^{\alpha-1} \cap d_{\mathcal{Y}}(Z^{\alpha-1})$. Then $y \in Z^{\alpha-1}$. Hence $Y^\alpha \cap Z = Z^\alpha$. Hence $Y^\alpha \cap Z = Z^\alpha$.

(ii) α is a limit ordinal number.

By induction hypothesis, $Y^\beta \cap Z = Z^\beta$ for any $\beta < \alpha$. Then $Y^\alpha \cap Z = (\cap_{\beta < \alpha} Y^\beta) \cap Z = \cap_{\beta < \alpha} (Y^\beta \cap Z) = \cap_{\beta < \alpha} Z^\beta = Z^\alpha$.

By Claim 2, \(g = f_W : (W, m_W, \mathcal{H}(W)) \rightarrow (Z, n_Z, \mathcal{H}(Z)) \) is \(\mathcal{H}(W) \)-closed. By repeating the proof of (a), we can prove \(Z^{\pi+1} \subseteq \gamma \mathcal{H}(W) + 1 \). By Claim 3, \(\emptyset = W^{\delta(W)} \supseteq W^{\pi} + 1 \). This implies \(Z^{\pi+1} \cap f^{-1}(y) = \emptyset \). By Remark 3.12(4), \(Z = \bigcup_{\beta \leq \pi} I_{\mathcal{H}}(Z^\beta) \). Note that \(X^{\pi+1} \cap f^{-1}(y) = \emptyset \). Then \(y \notin f(X^{\pi+1}) \). So \(y \in Z = \bigcup_{\beta \leq \pi} I_{\mathcal{H}}(Z^\beta) \). We obtain \(y \in I_{\mathcal{H}}(Z^\gamma) \) for some \(\gamma \leq \pi \). It follows \(U \cap Z^{\gamma} = \{ y \} \) for some \(U \in n_{\gamma}(y) \). By Claim 4, \(Y^{\gamma} \cap Z = Z^{\gamma} \). Then \((U \cap Z) \cap Y^{\gamma} = U \cap Z^{\gamma} = \{ y \} \). Since \(U \cap Z \in n_{\gamma}(y) \), we have \(y \in I_{\mathcal{H}}(Y^{\gamma}) = Y^{\gamma} - Y^{\gamma+1} \). Since \(\pi < \alpha \) and \(\alpha \) is a limit ordinal, \(\pi + 1 < \alpha \). Then \(\gamma + 1 \leq \pi + 1 < \alpha \). By Remark 3.12, \(Y^{\gamma+1} \supset Y^{\gamma} \). Then \(y \notin Y^{\gamma} \). This is a contradiction. Therefore, \(Y^{\gamma} \subseteq f(X^{\alpha}) \).

\[\square \]

Acknowledgments

The authors thank the referees for useful comments and suggestions.

References

Ahmad Al-omari,
Al al-Bayt University,
Department of Mathematics, Jordan.
E-mail address: omarimutah1@yahoo.com

and

Takashi Noiri
2949-1 Shiokita-cho, Hinagu,
Yatsushiro-shi, Kumamoto-ken,
869-5142 Japan.
E-mail address: t.noiri@nifty.com