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Generalized Solutions of the Cauchy Problem Involving ¢-Caputo Fractional Derivatives

A. Tagbibt, L. El Bezdaoui, M. El omari and L. S. Chadli

ABSTRACT: The main objective of this paper is to extend the ®-Caputo fractional derivative in the Colombeau
algebra of generalized functions, we study also the existence and uniquness of solutions for fractional differential
equations involving ®-Caputo fractional dirivative in the extended Colombeau algebras. As application, our
theoretical result has been illustrated by providing a suitable example.
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1. Introduction

Due to its huge applications in different fields such as physics, chemistry, engineering, finance and
other sciences, fractional calculus has become an indispensable branch of mathematics. As an extension
of the traditional integer calculus, which has the properties of an infinity memory and is hereditary. The
fractional calculus plays a crucial role to give a real modeling for many real-world phenomena, which
pushes researchers to study its qualitative aspects, in order to show the exact results. The study of this
theory of fractional calculus has developed considerably during the 19th and 20th centuries. To present
a common expression for various approaches of the fractional derivative, Almida in [9] tried to introduce
a function in the definition of the approach of Caputo and he succeeded in unifying the approaches of
Caputo and that of Hadamard, this type of fractional derivative is called ®-Caputo fractional derivative.
This Fractional calculus has seen a great expansion. Because that it has diverse applications in many
areas, as physics and technology, for instance [12,13,14].

To solve the distribution multiplication problem, an algebra of generalized functions denoted by §
was introduced by Colombeau in 1982 [2,3]. The space of distributions D’ is contained in the differential
algebra G. Additionally, in this algebra, nonlinear operations that are more general than multiplication
make sense [1,4,6,7]. Therefore since nonlinear ODEs and PDEs with singularities frequently exist in life
and science, the Colombeau algebra § is very convenient for solving them [10].

To introduce the fractional derivatives into the Colombeau algebra, Mirjana Stojanovic(see [8,11])
constructed a new generalized functions algebra symbolized by G¢. This new algebra will be considered
as an extension of the classical Colombeau algebra with the aim of extending all derivatives to non-integer
ones denoted by D%® g € R, U{0} and ® € C"(R) such that ®'(¢t) > 0 for all ¢ € R.

Aiming at resolving problems related to distribution multiplication and other non-linear operations
with singularities, such as non-integer derivatives, ®-Caputo fractional derivatives has been introduced
into the extended Colombeau algebra of generalized functions.
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In this paper, we will prove the existence and uniqueness of the Cauchy Problem in the generalized
functions extension Colombeau Algebra G¢(R)

{ DEPp(t) = W(t, u(t))
1(0) = pg, po €R"

With ¥ € 9§(R+ x R™) which can be specfied below, such that its gradient V, ¥ is of L>°-log-type and
to € R™. If ®(t) = t, we obtain the Cauchy problem

{ Diu(t) = W(t, ),
w(0) = po, po € §°(R),

where U € SE(RJF x R™) such that its gradient V, ¥ is of L>°-log-type and p € R™. The proof details of
the existence and uniqueness of this problem can be found in article [5] .

Next parts of the present paper are structured as follows: In section 2 some introductory concepts
and proprieties on ®-Caputo derivative are presented. Thereafter, the fundamental notions of the new
expanded Colombeau theory to derivatives of arbitrary order are detailed. Section 3 concerns the reg-
ularization of ®-Caputo derivatives. The existence and uniqueness of the cauchy problem in the new
extension of the Colombeau algebra of generalized functions will be studied in section 4. Finally, the
paper is concluded by an application.

2. Preliminairies

We start this section by introducing some necessary definition anad basic results required for further
developments.

Definition 2.1. [9] Let ¢ > 0, 0 € C™(R) and ® € C™*(R) with ®'(t) > 0 for all t € R. The ®- Caputo
fractional integral of order q of a function o can be defined as follows

4% 5 :L t/ _ -1,
() = = [ (@0 - 00 o)

Definition 2.2. [9] The ®-Caputo fractional derivative at order q of a function o can be defined as
follows

o1 Q) (©)
Do) = 1o | wE st

P
where ag)] (t) = (Q,l(t) E) o(t), p=I|q]+1 and [q] symbolizes the integer part of the real number q.

s

Proposition 2.3. [9] Let i : [a,b] — R be a function.

o If g€ Cla,b], then DEEIES u(t) = pu(t).

n—1 [k]
e e 0ot then 187 D8(t) = u(t) S P2 Do) — ao))”
k=0 ’

3. Main results

Lets © be an open subset of R. We denote by K CC 2 a compact subset of 2. Recall the definition
of the extension of Colombeau algebras in a sense of extension of the entire derivatives to the fractional
ones. Let €¢(€)) an algebra of all sequences (1, )eso of real valued smooth functions C°°(€2).

€5, (Q) = {(ue)e € () : VK CC 0,¥g Ry U{0},IN €N, sup [D?%p,(2)] = oﬁo(e*N)},

is an algebra and
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Ne(€) = { () € €,(Q) VK €C 9,¥g € Ry U{0}, Wb €N, sup [D%p,(2)] = Ocrole’) |
rzeK

is an ideal therein, where D%® is the ®-Caputo fractional derivative for p —1 < ¢ < n, p € N. The
extention of Colombeau algebra is the factor set

§°(Q) = €5, (2)/N“(Q).

Similary, we define the extended Colombeau algebra of tempered generalized functions is the factor set

Ge(92) = E5()/NE(Q),
where

€5, () = {ue € & (VYK CC Qg € Ry U{0}IN €N, sup(L+ i)~ D" i (1)] = oHO(aN)}

and

Ne(©) = { i € £ (VK cC 0¥ € Ry U{0}, Wb € N, sup(1 + 1)~ D?% 1, (1)] = Ocole) }.
teQ

For embed ®-Caputo fractional derivative into Colombeau algebra we use the regularization with delta
sequence in order to obtain moderateness

1 /t o' (6o (¢)
Tr—q) Jo (@) —d(€)r+—7

where ¢, is a delta sequence. We have

D%, — DM, = D",k p (1) — DV (1)
= | [ D", 9)p.(s)ds - Do 1)
= | [ D%t 9)1o(D)ds = Do fe)
_ |/D%%E(t — eu)op(u)du — /Dq @ () (w)dul
= | [ (0*%outt — ew) - D0.0) ()
= | [ D7 0u(t ~ ) = (1) plu)dd

D#®y =

dé = o (1), (3.1)

et _ pat, 1 t(©ah(©)

D Ue—D O¢ Spe(t) S F(n—q) <A ((I)(t) (I)(é‘))q—i-l ndf ()
b)) (6
/ou) Bie) | e 01}
(®(T) — ®(0))—*
p—q

IN

1
——— sup {
I'(p—q) t€[0,T)

1 C
= q);gggyﬂ{\%e(@\}

<COrqe ™, NeN

. C
(Do) | = (Do 0. ()] = ID" o)) s ()] < 7 sup D" oc(t)
€10,

<Cce ™, NeN

To prove the moderatness of higher fractionnal derivatives we use the property of semigroup of fractionnal
differentiation. Let 0 < v < 1, we have
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D%‘D(Dq‘bae) = D724,

Then
D" (D9%g,.) = DV (Do % ¢,) = D0 5 o,
where
RS S AN (3L O
D7) 500 = 55 || o w2
1 “ ol (® () q)(o))pf(qﬂ) §
S £€[(FT]{I L@ iy P o (1)]
L 6 G g L (@(T) = 2(0) (e
ST W UL SO A7 T ey s g

< Crygqe ™.
Now, we study the existence and uniqueness of the following Cauchy problem

{ DY u(t) = W(t, plt)),
1(0) = pg,  po € R™,

(3.2)

in the extension Colombeau algebra §¢(R) of generalized functions where ¥ € G¢(R* x R") such that its

gradient V, V¥ is of L*°-log-type and j, € R™.

Definition 3.1. A generalized function p € G(R x R™)is called L*>-log-type, if for some representative

there exist N € N for every compact K C R, such that

sup sup |u.(t, z)| = Oco(In(e ).
teK z€Rn

(3.3)

Theorem 3.2. Let ¥ € 92(R+ x R"™) and V,F is L>-log-type. Then the problem (3.2) has a unique

solution in G¢(R™) the extended Colombeau algebra, for given u, € R™.

Proof. Consider the integral solution of Cauchy problem (3.2)
:ue(t) = :u()e =+ Igf)\pe(sv :ue(s))
1 t
bt o | (@0 = )W (),
< Ta) Jo
Then,

= 1 t — B(s)T (s s s
) = o+ s [ (B(0) = B9 ()05, 00

1 t e 1
T /0 (@(t) — D(s))7~" @' (s) /0 Y, W(s, At (s))dAu, (s)ds

1 ! q—1g/
e ()] < lpo,el + (q)/(‘1>(t) O(s))*7 P (s)[We(s, 0)|ds

|V\If| t )T L0 ()1, (5)ds

S|/1’0,e|

(®(T) — 2(0))* V¥l [ o) a0 (e (o1
O ) /0 (2(t) = ®(s))* @' (5)pe (5)ds.
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By the Gronwall inequality, we get

a0 = (Jo ]+ EEZEOE o) oxp (e / (s
< <|MO’6|+W|\L|) exp<(¢(T) ((I)’(O)) IV, 0 |)

As (pgc)e € €3(R) and VW is L>-log-type, then there exist N € N such that

|,LL€| = OE—>0 (e_N) .

Now, we pass to the first derivative. We know that

DO+ /146( ) =T, (ta Ne(t)) :
Then,

d
DEPuL) = L (t (1)

€
t
The first approximation to ¥, yields

d
DG pe(t) = = Ve (£,0) + [V, el (1) + Ne(0),

where N, is the negligible part. Then,

) = 10) + s [ (B00) = B)T 9 (0) 05,0
|VH\IJ€| i _ s qg—1 /5 /5 s
+ e [(@0) = 006 @ ()

1

— t — ®(s))7 1 (s s)ds.
+ 5 | (@0 = () (N, ()a

Thus,

! L t s (s 4 s s
le(®)] < |pe(0)] + (q) / (D(t) — 0(s))T 2 (s)| - We(s,0)|d

L\I’
'V’ ' YL@ (s)] 1 (5)]ds

+m / (B(t) — B(s))7 1@ (5)| N, (5)]ds.

Then,

(©(T) - 2(0))7 d (@(1) — 2(0))7

K] < O + == s 'a@f” a0)

i e '/ L8 () () ds.

By the Gronwall inequality, we cab obtain

/ / (®(T) — ®(0))? d
)] < (lue(0)] + qr—()|_ el

LR U AIGAT A
+ QO LOR e T2 [ 1 (s)ds)

< (o + EESO8 2 BOS

((T) = @ (0))" ;! M| N, |) exp (w mweo |

q)

5
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As (pgc)e € €3,(R™) and VW is L>-log-type, then there exist N € N such that

|//e| = 00 (G_N) .

Similary for the other entire derivatives.

Now, the same is proved for the fractional derivatives. We take the fractional derivative of the equation
(3.2). Let v € R*, we have
P ,® rq,®
D pe(t) = Dai 15 Ve (E, (1)) -

So, we have to discuss two cases: The first case if v > ¢, we have

Dy (t) = Dy T IES W (8 (t))
= DIT %W, (¢, p (1))

Without loss of generality we take 0 < v — ¢ < 1. The same holds for p — 1 < ¢ < p, p € N. The first
approximation to ¥, yields

Dy p(t) = DIZ Wt 0) + [V, U DT e (8) + Ne(t),

where Ne(t) is the negligible part. Then, we have

Dy (t) = ﬁ/@ (®(t) — @(8))7’“1@’(8)%@6(5,O)ds
7|VH\I’E| ' —®(s)) LD () (s)ds
s [ @0 = 07 ((s)s + M)

(O(T) — ®(0))7 dy I+ (O(T) — ®(0))7 4
(v-gT(y—q) 'ds = (v—qT(y—q)

By previous step and as V¥ is L°°-log-type, then there exists N € N such that

IV ellpe] + |Nel-

v,®
‘DO+ Me

= 00 (G_N) .
The second case if ¢ > =y, we have

Dy pe(t) = DYE I Wt (1))
= LTt (1))

= =7, (00~ 2T .
Then,
DY nt) = s [ (000 = 060 6w, (5, 01
# ' _ s qg—y—1 ! s $)ds
And this,
DY) = Ty [ (00 = 86 65,0
1

t 1
Frem @0 - e [ e s
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D3 0] < s [ (@0 = ()™ 79 (9) | (5,0l

(q—~

% /0 (@(1) = 2(s))"7 7 @' (3)]ucls)lds
(®(T) — @(0)* (D(T) — ®(0))77
<= e T g =y Ve el

By previous step and as V¥ is L°°-log-type, then there exists N € N such that

v,®
‘D()-F /J“e

= 00 (eiN) .

To obtain uniqueness, assume that the Cauchy problem (3.2) has two solutions p, y with representatives
(ue)€>O , (ye)6>0. Then, we have

{ D (ne(t) = welt)) = e (£ 1 (1)) = T (1, we(1)) + e (1), (3.4)
1:(0) = 5e(0) = no.c,

where (n). € N¢(R"), (no,c)e € N°(R™). Similar arguments as above imply that (u, — ye) -, belongs to
Ne(R™).
Consider the integral solution of the equation (3.4)

pe(t) = ye(t) = noe + I§T (s, pe(s) = Celt, ye(t)) + I35 (ne(?)

=m0+ s [0 = )8 (901 0)) = Wl () s
1 ! q—1g/
+ m/o (®(t) — D(s))T D' (s)ne(s)ds.

The first approximation to V. yields

pet) = lt) = mo+ 3 [ (@0) = 9(0)7 9 (3) 1 (5) = (o))
1 ! q—15/
+ o | (@0 = () (N, ()
1 ! q—1g/
+ o | (00 = 2 (o (s)as.

where (N.), is the negligible part.

(®(T) — ®(0))1
ql'(q)

|VH\I’E| ' —d(s)) 1P (s S) — s)|as
+W/O(<I>(t) ()77 ' (5) 1, (5) — we(s)]ds.

(®(T) — 2(0)

[1e(t) = ye(®)] < [no.el + |Ne| +

By the Gronwall inequality, we get
(2(T) — ©(0))7
qI'(q)

(2(7) - B(0))" VP [ e & e
+ |n6|)exp( o /0(<1>(t) ¥(s)) 1<1>()d).

1e0) = e®) < (Ino.e| + A

Then,

(@(T) — 2(0))?

(@(1)  2(0)" (@(1) — 2(0))"
S LR OR ) o (S 2O 19w,

[1e(t) = ye(B)] < <|”076| + ql(q) qI'(q)
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As V, U is L>-log-type, (ne)e, (Ne)e € N¢(R™) and ng . € N¢(R")

[tte = Ye| = Ocs0 (%) Vg € N.

For the first derivative, we have

ine(t).

Dyt y) + "

SOt 0(0) ~ 5

DY (L) — i) =

The first approximation to V. yields

DI (1) — 9L0) = [V el (L0) — 9L (0) + ~eme(t) + N,

14
where (N,), is the negligible part. Then

W)=l = o+ T L 000 — 0006000 05) - i)
! a—1gp/ in s)ds
+ W/o(q’(“ B(5))" 18/ (5) S (s)d
1 ! q—1g/
+ e @) = o) e N (s
Then,
(1) - <>|<|n06|+w%%m|+%w

IV‘I’I

)7 ()| () — ye(s)|ds.
By the Gronwall inequality

(@T)—dO)7 d | (B(T) — B(0))
it a1

exp |V Y |/ VIl (s )ds)

(‘I’(T) 0))4 d (@(T) — ©(0))7
< (| no,e| + ql—,—()|£ne| qF—(q)|N€|)
(O(T) — ©(0))?
eXp( ql'(q)

As V, U is L*>-log-type, (nc)e, (Ne)e € N¢(R™) and (ng,c). € N°(R™)

1) =y (1)) < (Jnol +

A

e = yel = Oco(€?) Vg €N,

Now we prove the same for the fractional derivative. Take the fractional derivative of the problem (3.4).
Let v € RT, we have

Dy (i () = ye(t) = D I8 (Wt 1 () = Vet ye(1)) + Dy I8 (ne(1)).
If v > q , we have
DY (i) = ye(t) = DRZ TP IEL (U (t 1 (1) = Welt, ye(1))) + Doy “HEPIES (ne(8)),

then
DI (1e(t) = ye()) = Dz @® (We(t, (1) — Pelt, ye(t))) + D= (ne(t)).
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Without loss of generalisity we take 0 < v — ¢ < 1.
The same for p — 1 < ¢ < p. The first approximation to V. yiels

D32 ) = ) = T [ (@00~ a0y 0l (9) - o)1
1 t

- —®(s))7" T (s)n.(s)ds
e [ (0 = B (o)

1 K y—q—1g/
+ﬁ7jaé(yﬂ—@@) ®'(s)Ne(s)ds,

where (NV.), is the negligible part. Then,

D72 (e (8) — (1)) < 2T — 2O (8(T) — 8(0))~

|7

Vi@l (t) — yi(t)] +

(v—a)l'(v—q) (v=9T'(v—q)
(2(T) — @(0)) ¢ N
(v=—g)T(y—q " "

By previous step and as V¥ is L>-log-type, (n¢)e, (Ne)e € N(R™) and (ng,c)e € N¢(R™)
D3 (e(t) = ye(t))] = Ocoso(e?) Vg €N.
If ¢ > v, we have
DY (pe(t) = ye(t)) = DYTIGT P (We(t, p () — Welt,ye(#))) + Dyt 7% (ne (1))
= I (Wt p (1) = Vet ye (1)) + I8 (ne(t)),
then

DG () = 0e0) = s [ (900 = D)™ R (5)(Weo 1) = el e(5))ds
1 i q—1g/
+ T [ (@0 = B (s

Then there exist a negligible function (N¢). such that

DY (1) = 1) = 22 [ (@(0) = 9™/ (5) 1) = wele))s
1 ! q—1g/
= [ (B0 = B )N (s)ds

1 ! q—1g5/
+ m /0 (B(t) — @(s))? "D (s)ne(s)ds

(®(T) — ®(0))77 ¢
(v=9T(v—q)
(2(T) — @(0))~
(v =T (v—q)

(2(T) — @(0))" 1
(v=9T'(v—q)

< Vi Wellpe(t) = ye(B)] + | Ne|

q
|7el.

And this
”® B (@(T) — @(0))" ¢
Dot (ke(t) = ye(t))| < =T —9)
(®(T) — @(0))7¢ Ine|
(Y—aT(v—q) "

By previous step and as V,¥ is L>-log-type, (n¢)e, (Ne)e € N¢(R™)
ID3:" (1e(t) = ye(t)] = Ocmso(e?) Vg €N

(@(T) — @(0))77
(v—qT(y—q) el

IV Wellpe(t) = ye ()| +

This complete the proof.

9
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4. Application

Consider the system of ODE involving ®-Caputo fractional derivatives in the extended colombeau
algebra.

{10 =900 s D, "
,u(t()) = Moy Mo € 96(R)a '

where 0 < ¢ < 1. We regularize the equation (4.1), we have
pe(t) = Uelt, pe(t)) + DPP o (t) * . (1).
The integral form of this equation is
¢ t 1 t
) < ol + [ 190 5)ds+ [ ] [ (0l N nc(sllds + [ 1100+ (el

Let’s prove the moderateness of the last term. We have

t

t
/OID‘I’%E(£>*soe(£>|ds|§C sup  [DUPp (€ —7)|d¢

0 TESUPpY,

<O [ [ 1L
e </ (@?é)rn—e)@(%qdm) *
§
m)
0

d
cqm/ wp (/
0 mGOT

Comy (1 (2(6) — @(0)' 4
€ /0 1—gq

IN

D' (me) -
(@(©) — d(em))” )dﬁ

dg

<

Cqm,o 1
< —am,e o }|/
€ ﬁE[OT] | €3]

C'qmgj 1
up
—q &OT{@'(&N}
<0V, INeN.

)71 (8)

|d¢

(T) - ‘I>(0))2“’
2—yq

Let 0 < v < 1, we have
DT (! ()] < |DV (2, 0)(6)] + [ Inel| DV (e (1))| + [ DT (DU, % o, (1))]. (4.2)

Let’s prove the moderatness of the fractional part in sup-norm, we have

Y q, _ 1 ! / (Dqﬂ)(pe * (pe)/(f)
__ 1 e DO o x l(€)
- = (], Y Oma ) e
sup {|D?®p.(€)]}

C " e EE0T] §
T, VO ey e

c 1 (@O - 20
S AT —g & E:[OPT]{Iso(f)I}/O @) sy et

—2—

< Crygy,p,00€
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The other parts of equation (4.2) are moderate. Integrating from 0 to ¢ with previously calculated part,
we obtain

t t
~ ~ ~ ~ C
DT (e (8)] < |D7 (| +/O [ DV (We(s,0)]ds + |1H6|/0 ID”’q’(ue(t))|d€+T€2—+v'

By the Gronwall inequality
IDV® (. (1) < Ce Nexp(=Tlne) < Ce™, IN >0,t € Ry U{0}.
If p—1 < v < p, the similar process can be used for higher fractional derivatives.

To prove uniqueness, we assume that the equation (4.1) has tow solutions p, y with representatives (u,).,
(ye)e and their difference we(t). By subtraction of these two equations, we obtain

ID7® (we ()] < ||| DT Pawe(t)].

Integrating on the interval [0,¢), t < T, T > 0, we find
t
D" Pu (1)) < | DV Puwg| + | Ine] / DY (€)).
0

Since |D7®wg| = 0. By the Gronwall inequality, | DY ®w,(t)| < 0 and

0., S A 3]
D)< 7 | G e

Tl —n ) —2(¢))
(0 (2T = 2(0) 7
< teb[O?T]l () T :

Then |w.(t)] = 0, |w(t)| = |we(0)] = 0. And this u.(t) = y.(t), and uniqueness follows for 0 < v < 1.
The same way we prove for p — 1 <~y < p, for all p € N.
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