(3s.) **v. 2025 (43)** : 1–11. ISSN-0037-8712 doi:10.5269/bspm.66678

h-Ricci soliton and Gradient h-Ricci soliton on para-Kenmotsu manifold *

Sangeetha M.[†] and H. G. Nagaraja

ABSTRACT: The main objective of current paper is to examine the h-Ricci soliton and gradient h-Ricci soliton on a para-Kenmotsu manifold when h has a definite signal. Firstly, we show that h-Ricci soliton on the present manifold is Einstein whenever the potential vector field V is contact and if the potential vector field V is collinear with the Reeb vector field ξ , then the manifold is η -Einstein manifold. Next, we prove that a η -Einstein para-Kenmotsu metric as an h-Ricci soliton reduces to Einstein manifold. Finally, we show that a similar result occurs in the case of gradient h-Ricci soliton.

Key Words: h-Ricci soliton, gradient h-Ricci soliton, para-Kenmotsu manifold, Einstein manifold, η -Einstein manifold.

Contents

1	Introduction	1
2	Preliminaries	2
3	$h ext{-Ricci soliton on para-Kenmotsu manifold}$	3
4	Gradient h -Ricci soliton on par-Kenmotsu manifold	8

1. Introduction

In 1982, Richard S. Hamilton [11] introduced the Ricci soliton, a natural generalization of Einstein manifold. Given a one-parametric family of metrics g(t) on a smooth Riemannian manifold M^n defined on an interval I contained in R, denoting by $Ric_{g(t)}$ is Ricci tensor of the metric g(t), the equation of Ricci flow is

$$\frac{d}{dt}g(t) = -2Ric_{g(t)}. (1.1)$$

On a smooth manifold M^n along with the Riemannian metric g, the Ricci soliton is a triplet (g, V, λ) , where V is a vector field known as potential vector field and λ is a real scalar satisfying the equation

$$\frac{1}{2}(L_V g)(X, Y) + Ric(X, Y) = \lambda g(X, Y), \tag{1.2}$$

for every vector fields X and Y on M^n , where $L_V g$ denote the Lie-derivative of g along the direction of the vector field V and Ric denotes the Ricci tensor corresponds to the metric g. Ricci soliton is a self-similar solution of Ricci flow defined by the geometric evolution equation (1.1) with the initial condition g(0) = g. A Ricci soliton is said to be expanding, steady and shrinking, corresponding to λ is negative, zero and positive, respectively.

Further, Pigola et.al., [13] introduced the almost soliton. Suppose the vector field V is gradient of a smooth function u on M^n , i.e., $V = \triangle u$, where \triangle denotes the gradient operator. We say that the Ricci soliton is a gradient Ricci soliton and the function u is called potential function. For the gradient Ricci soliton, equation (1.2) takes the form

$$Hess \ u + Ric = \lambda q, \tag{1.3}$$

Submitted January 16, 2023. Published March 29, 2025 2010 Mathematics Subject Classification: 53C25, 53C20, 53C21.

^{*} The first author Sangeetha M. is thankful to the University Grants Commission, New Delhi, INDIA, for their financial support (UGC-Ref-No:942/(CSIR-UGC NET DEC,2018), to carry on this research work.

[†] Corresponding author

where Hess denotes the Hessian operator corresponding to the Riemannian connection ∇ of g.

An h-almost Ricci soliton is a generalization of almost Ricci soliton as in [1,13]. These are the solitons on a complete Riemannian manifold (M^n, g) with a vector field X on M^n , a soliton function $\lambda : M^n \to R$ and a function $h: M^n \to R$, which are smooth and satisfy the equation

$$Ric + \frac{h}{2}L_X g = \lambda g. (1.4)$$

In the above equation, if λ is constant, it is called an h-Ricci soliton. Suppose $L_X g = L_{\nabla u} g$ for some smooth function $u: M^n \to R$, then we call the soliton as gradient h-almost Ricci soliton with the potential function u. In this case, the fundamental equation (1.4) can be written as

$$Ric + h Hess u = \lambda g. \tag{1.5}$$

The equation is also known as the Ric-Hessian equation. The almost h-Ricci soliton is expanding, steady or shrinking if λ is negative, zero or positive on M^n respectively and it is undefined if λ has no definite sign.

If $L_X g = cg$, i.e., X is a homothetic conformal vector field for some constant c, then h-almost soliton (M^n, g, X, h, λ) is said to be trivial. Otherwise, it is non-trivial. Moreover, 1-almost Ricci soliton is just a Ricci soliton, and 1-Ricci solitons are traditional Ricci solitons with constant λ . We can see that h has definite signal if either h > 0 or h < 0 on M^n .

The concept of h-almost Ricci solitons was first introduced by Gomes et al., [8]. They showed that compact non-trivial h-almost Ricci soliton on a manifold of dimension less than three with h having a definite signal and constant scalar curvature is isometric to a standard sphere with potential function well-determined and also gave the characterization for a special class of gradient h-Ricci solitons.

Further, Gabin Yun et al. [6] proved that, if a manifold M^n is Bach-flat and $\frac{dh}{du} > 0$, where u is the potential function of V, then the manifold is either Einstein or rigid. Further, they showed that if the dimension of a manifold is four, then the metric g is locally conformally flat.

Later Faraji [7] gave the complete classification of h-almost Ricci solitons with concurrent potential vector fields. Also, they obtained the condition on a submanifold of a Riemannian h-almost Ricci soliton to be an h-almost Ricci soliton. Finally, they classified h-almost Ricci soliton on a Euclidean hypersurface with $\lambda = h$.

Keneyuki and Williams [12] first introduced the odd-dimensional, almost para-contact structure with a pseudo-Riemannian metric, an associated structure of the para-Hermitian metric. Later the notion of the para-Kenmotsu manifold was introduced by Weyezko [9]. This structure is related to the Kenmotsu manifold in para-contact geometry.

The properties of Ricci soliton in Kenmotsu manifold studied by the authors De and Fatemah [4]. Later in [2] and [3], Patra studied the Ricci solitons in para contact geometry and they also studied Ricci soliton, Ricci almost soliton on para-Kenmotsu manifold. Based on the above literature study, we are motivated to study the h-Ricci solitons and gradient h-Ricci solitons on para-Kenmotsu manifolds.

2. Preliminaries

A (2n+1)-dimensional smooth manifold M is said to have an almost para-contact manifold, if it admits a structure with vector field ξ , (1,1)-tensor field ϕ and 1-form η satisfying the following conditions:

i)
$$\phi^2 = -I + \eta \otimes \xi$$
,

ii)
$$\eta(\xi) = 1$$
,

iii) on 2n-dimensional distribution $D = ker(\eta)$, ϕ induces an almost para complex structure \mathcal{H} with $\mathcal{H}^2 \equiv I$, where D^+ and D^- are the subbundles of \mathcal{H} having dimension n each, corresponding to the eigenvalues +1 and -1, respectively.

By the definition of para contact structure, we have $\phi(\xi) = 0$, $\eta \cdot \phi = 0$ and $rank(\phi)=2n$. An almost para-contact structure is said to be normal if and only if the (1,2) type torsion tensor $N_{\phi} = [\phi, \phi] - 2d\eta \otimes \xi$ vanishes identically on M, where

$$[\phi, \phi](X, Y) = \phi^{2}[X, Y] + [\phi X, \phi Y] - \phi[\phi X, Y] - \phi[X, \phi Y], \tag{2.1}$$

for all vector fields X and Y on M. Suppose M is an almost para-contact manifold endowed with the almost para contact structure (ϕ, ξ, η) admiting the pseudo-Riemannian metric g of signature (n+1, n) such that

$$g(\phi X, \phi Y) = -g(X, Y) + \eta(X)\eta(Y), \tag{2.2}$$

holds for all vector fields X and Y on M. Then M is called a compatible metric manifold.

In an almost para contact manifold the following condition

$$(\nabla_X \phi)Y = q(\phi X, Y)\xi - \eta(Y)\phi X, \tag{2.3}$$

holds, then the manifold is called an almost para-Kenmotsu manifold. The para-Kenmotsu manifolds are the almost para-Kenmotsu manifolds with the torsion tensor $N_{\phi}(X,Y)$ zero identically on M. i.e., normal almost para-Kenmotsu manifolds are para-Kenmotsu manifolds.

On a 2n + 1-dimensional para-Kenmotsu manifold M, the following properties hold:

$$\phi \xi = 0, \quad \eta \otimes \phi = 0, \quad \nabla_X \xi = X - \eta(X)\xi, \tag{2.4}$$

$$(\nabla_X \eta)(Y) = g(X, Y) - \eta(X)\eta(Y), \quad Q\xi = -2n\xi, \tag{2.5}$$

$$R(X,Y)\xi = \eta(X)Y - \eta(Y)X, \tag{2.6}$$

$$R(X,\xi)Y = q(X,Y)\xi - \eta(Y)X, \tag{2.7}$$

$$(L_{\xi}g)(X,Y) = 2[g(X,Y) - \eta(X)\eta(Y)], \tag{2.8}$$

for any vector fields X, Y on M, where Q denotes the Ricci operator associated with the Ricci tensor Ric defined by Ric(X,Y) = g(QX,Y) and R denotes the Riemannian curvature tensor.

A (2n+1)-dimensional Kenmotsu manifold is said to be η -Einstein, if there exist two smooth functions a and b satisfying the below condition:

$$Ric(X,Y) = aq(X,Y) + b\eta(X)\eta(Y). \tag{2.9}$$

If b = 0, it is clear that the η -Einstein manifold reduces to the Einstein manifold.

On contracting the above equation, we get r=(2n+1)a+b, where r denotes the scalar curvature of the manifold. Taking $Y=\xi$ in (2.9), we get a+b=-2n. On solving the preceding two equations, we get $a=(1+\frac{r}{2n})$ and $b=-(2n+1+\frac{r}{2n})$. By using these two values in (2.9), we obtain the Ricci curvature tensor as follows

$$Ric(X,Y) = \left(1 + \frac{r}{2n}\right)g(X,Y) - \left(2n + 1 + \frac{r}{2n}\right)\eta(X)\eta(Y).$$
 (2.10)

3. h-Ricci soliton on para-Kenmotsu manifold

In this section we consider the metric g of (2n+1)-dimensional para-Kenmotsu manifold as a h-Ricci soliton.

Here we state an important Lemma, which will be used later in our work:

Lemma 3.1 ([14]) The Ricci operator on (2n + 1)-dimensional para-Kenmotsu manifold satisfies the following:

$$(\nabla_X Q)\xi = -QX - 2nX,\tag{3.1}$$

$$(\nabla_{\varepsilon}Q)X = -2QX - 4nX,\tag{3.2}$$

for an arbitrary vector field X on the manifold.

Theorem 3.1 Let (M, ϕ, ξ, η, g) be a para-Kenmotsu manifold with g as an h-Ricci soliton, where h has a definite signal. If the potential vector field V is contact, then the soliton is expanding with V as strictly infinitesimal contact transformation and M is an Einstein manifold.

Proof: Taking the covariant derivative of (1.4) along Z direction, we get

$$h(\nabla_Z L_V g)(X, Y) = -2\left\{ (\nabla_Z Ric)(X, Y) - \left(\frac{Zh}{2}\right)(L_V g)(X, Y) \right\}. \tag{3.3}$$

From Yano [10], we have the commutation formula, given by

$$(L_V \nabla_Z g - \nabla_Z L_V g - \nabla_{[V,Z]} g)(X,Y) = -g((L_V \nabla)(X,Z),Y) - g((L_V \nabla)(Y,Z),X), \tag{3.4}$$

where g is metric compatible, then the above equation takes the form

$$(\nabla_Z L_V g)(X, Y) = g((L_V \nabla)(X, Z), Y) + g((L_V \nabla)(Y, Z), X), \tag{3.5}$$

for every vector fields X, Y and Z on M.

Since by knowing the fact that, $(L_V \nabla)(X, Y)$ is a symmetric tensor of type (1,2) and from the preceding equation, we obtain

$$2h g((L_V \nabla)(X, Z), Y) = h\{(\nabla_Z L_V g)(X, Y) + (\nabla_X L_V g)(Z, Y) - (\nabla_Y L_V g)(X, Z)\},$$
(3.6)

for all vector fields X, Y and Z on M.

On substituting (3.3) in (3.6), we obtain

$$h^{2}g((L_{V}\nabla)(X,Z),Y) = -h\{(\nabla_{Z}Ric)(X,Y) + (\nabla_{X}Ric)(Z,Y) - (\nabla_{Y}Ric)(X,Z)\}$$

$$-\frac{h}{2}\{(Zh)(L_{V}g)(X,Y) + (Xh)(L_{V}g)(Z,Y)$$

$$-(Yh)(L_{V}g)(X,Z)\},$$
(3.7)

for arbitrary vector fields X, Y and Z on M.

Taking $Z = \xi$ in the above equation, we get

$$h^{2}g((L_{V}\nabla)(X,\xi),Y) = 2h\{Ric(X,Y) + 2ng(X,Y)\} + (\xi h)\{Ric(X,Y) - \lambda g(X,Y)\} + (\lambda + 2h)\{(Yh)\eta(X) - (Xh)\eta(Y)\},$$
(3.8)

for all arbitrary vector fields X and Y on M.

Taking $(Xh) = (\xi h)\eta(X)$, the above equation reduces to the following

$$h^{2}(L_{V}\nabla)(X,\xi) = (2h + \xi h)QX + \{4nh - \lambda(\xi h)\}X,$$
(3.9)

for all vector fields X on M. On differentiating (3.9) along the arbitrary vector field Y, we obtain

$$h^{2}(\nabla_{Y}L_{V}\nabla)(X,\xi) = -2h(Yh)(L_{V}\nabla)(X,\xi) - h^{2}\{(L_{V}\nabla)(X,Y) - (L_{V}\nabla)(X,\xi)\eta(Y)\} + \{2(Yh) + \nabla_{Y}(\xi h)\}QX + (2h + \xi h)(\nabla_{Y}Q)X + \{4n(Yh) - \lambda(\nabla_{Y}\xi h)\}X.$$
(3.10)

Again from Yano [10], we have the following commutation formula

$$h^{2}(L_{V}R)(X,Y)\xi = h^{2}\{(\nabla_{X}L_{V}\nabla)(Y,\xi) - (\nabla_{Y}L_{V}\nabla)(X,\xi)\}.$$
(3.11)

Taking into account of (3.10), the above equation takes the form

$$h^{2}(L_{V}R)(X,Y)\xi = -2h\{(Xh)(L_{V}\nabla)(Y,\xi) - (Yh)(L_{V}\nabla)(X,\xi)\}$$

$$+h^{2}\{(L_{V}\nabla)(Y,\xi)\eta(X) - (L_{V}\nabla)(X,\xi)\eta(Y)\}$$

$$+\{2(Xh + X(\xi h))\}QY - \{2(Yh) + Y(\xi h)\}QX$$

$$+(2h + \xi h)\{(\nabla_{X}Q)Y - (\nabla_{Y}Q)X\}$$

$$+\{4n(Xh) - \lambda X(\xi h)\}Y - \{4n(Yh) - \lambda Y(\xi h)\}X,$$
(3.12)

for every arbitrary vector fields X, Y on M.

Noting $(Xh) = (\xi h)\eta(X)$, differentiate the preceding equation along the vector field Y, and taking inner product with ξ , we get $Y(\xi h) = 0$ for all vector field Y on M, which implies that (ξh) is constant on M. Considering this fact in (3.12) and taking into account of (3.9), we get

$$h^{2}(L_{V}R)(X,\xi)\xi = -2h(Xh)(L_{V}\nabla)(\xi,\xi) + 2h(\xi h)(L_{V}\nabla)(X,\xi) -2(\xi h)QX + (\lambda - 2h)(\xi h)X - (\lambda + 2h)(\xi h)\eta(X)\xi.$$

Because, h has the definite signal and taking the inner product with ξ in the preceding equation gives

$$(L_V R)(X, \xi)\xi = 0, (3.13)$$

for all vector fields X on M.

On taking the Lie derivative of $g(\xi,\xi)=1$ and employing $Q\xi=-2n\xi$, we get

$$h\,\eta(L_V\xi) = -2n - \lambda. \tag{3.14}$$

Plugging $Y = \xi$ in (1.4) and by straight forward computation we have

$$\frac{h}{2}\{(L_V\eta)(X) - g(X, L_V\xi)\} = (\lambda + 2n)\eta(X), \tag{3.15}$$

for all vector fields X on M. Substituting $Y = \xi$ in (2.7) and taking the Lie derivative along the potential vector field V, we obtain

$$h(L_V R)(X, \xi)\xi = -2(2n+\lambda)(X - \eta(X)\xi), \tag{3.16}$$

for all vector fields X on M. Unifying (3.15) and (3.16), we get

$$\lambda = -2n. \tag{3.17}$$

Substituting (3.16) in (3.14) and since h has a definite signal, we obtain

$$\eta(L_V \xi) = 0. \tag{3.18}$$

By our hypothesis, the potential vector field V is contact, and therefore there must be a smooth function f, such that $L_V \xi = f \xi$. On taking the inner product with ξ and comparing it with the previous equation, we obtain f = 0, which leads to $L_V \xi = 0$.

The use of equation (3.17) in (3.15) and the fact that is non-zero yields

$$(L_V \eta)(X) = 0, (3.19)$$

for all vector fields X on M. Thus, the vector field V is strictly infinitesimal contact. We also have from ([10]), the commutation formula

$$(L_V \nabla)(X, Y) = L_V \nabla_X Y - \nabla_X L_V Y - \nabla_{[V, Y]} Y. \tag{3.20}$$

Taking $Y = \xi$ in the previous equation and knowing the fact $(L_V \xi) = 0$, (3.19) provide

$$(L_V \nabla)(X, \xi) = 0. \tag{3.21}$$

Now comparision of (3.9) and (3.21) gives

$$(2h + \xi h)QX + (4nh - \lambda(\xi h))X = 0. \tag{3.22}$$

On contracting (3.22) and substituting $\lambda = -2n$, it reduces to

$$(r+2n(2n+1))(\xi h+2h)=0.$$

If $(\xi h) = -2h$, then the covariant derivative of the above along the Reeb vector field ξ , give $\xi(\xi h) = 4h$. However, we know that (ξh) is constant and h is non-vanishing non-constant function on M, which is absurd. Hence r = -2n(2n+1). Thus from (3.22), we have M is an Einstein manifold.

Therefore the h-Ricci soliton is trivial with the soliton constant $\lambda = -2n$ and the potential vector field is Killing.

Theorem 3.2 Let (M, ϕ, ξ, η, g) be a para-Kenmotsu manifold that admits a non-trivial h-Ricci soliton with a definite signal for h. If the potential vector field V is collinear with the Reeb vector field ξ , then M is an η -Einstein manifold.

Proof: Since V is collinear with the Reeb vector field ξ , there exists a smooth function μ such that

$$V = \mu \xi. \tag{3.23}$$

On differentiating (3.23) along the arbitrary vector field V on M, we obtain

$$\nabla_X V = (X\mu)\xi + \mu(X - \eta(X)\xi), \tag{3.24}$$

for all vector fields X on M. By virtue of equation (3.24), the equation (1.4) reduces to

$$2Ric(X,Y) + h\{(X\mu)\eta(Y) + 2\mu g(X,Y) - 2\mu \eta(X)\eta(Y) + (Y\mu)\eta(X)\} - 2\lambda g(X,Y) = 0,$$
(3.25)

for all vector fields X and Y on M. Substituting $X = Y = \xi$ in the last equation, we deduce

$$h(\xi\mu) = (\lambda + 2n). \tag{3.26}$$

Again substituting $X = \xi$ in equation (3.25) and using (3.26), we have

$$h(Y\mu) = (\lambda + 2n)\eta(Y),\tag{3.27}$$

for all vector fields Y on M. Taking into account of (3.27), the equation (3.25) reduces to

$$Ric(X,Y) + (\mu h - \lambda)g(X,Y) + (\lambda + 2n - \mu h)\eta(X)\eta(Y) = 0, \tag{3.28}$$

for all vector fields X and Y on M. Now contraction of the preceding equation gives $r = -2n(\mu h - \lambda + 1)$. Using this in (3.28) we obtain

$$Ric(X,Y) = \left(\frac{r}{2n} + 1\right)g(X,Y) - \left(\frac{r}{2n} + (2n+1)\right)\eta(X)\eta(Y),$$

for all vector fields X and Y on M, which show that M is an η -Einstein manifold.

Theorem 3.3 Let (M, ϕ, ξ, η, g) be a para-Kenmotsu manifold. If g is a h-Ricci soliton with h having a definite signal, and the soliton vector field V is contact, then M is Einstein manifold and V is strictly infinitesimal contact transformation.

Proof: On recalling (2.10), the Ricci operator can be expressed as

$$QX = \left(1 + \frac{r}{2n}\right)X - \left(2n + 1 + \frac{r}{2n}\right)\eta(X),\tag{3.29}$$

for all vector fields X on M. On differentiating (3.29) along an arbitrary vector field Y and again contracting along the vector field Y, we obtain,

$$\frac{(n-1)}{2n}(Xr) = \left(-\frac{\xi r}{2n} + 2n\left(2n + 1 + \frac{r}{2n}\right)\right)\eta(X),$$

for all vector fields X on M. Now setting $X = \xi$, the forgoing equation gives

$$\xi r = 4n \left(2n + 1 + \frac{r}{2n} \right).$$

Making use of last two equations, one can deduce

$$Xr = 4n\left(2n + 1 + \frac{r}{2n}\right)\eta(X) \text{ or } Dr = 4n\left(2n + 1 + \frac{r}{2n}\right)\xi.$$
 (3.30)

From the equations (1.4) and (2.10), we have

$$\frac{h}{2}(L_V g)(X, Y) = \left(\lambda - 1 - \frac{r}{2n}\right)g(X, Y) + \left(2n + 1 + \frac{r}{2n}\right)\eta(X)\eta(Y),\tag{3.31}$$

for all vector fields X and Y on M. On differentiating (3.31) along the arbitrary vector field Z and making use of (3.30), we ultimatly obtain

$$\frac{h^{2}}{2}(\nabla_{Z}L_{V}g)(X,Y) = -\left(\lambda - 1 - \frac{r}{2n}\right)(Zh)g(X,Y) - \left(2n + 1 + \frac{r}{2n}\right)(Zh)\eta(X)\eta(Y)
+ h\left(2n + 1 + \frac{r}{2n}\right)\left\{g(X,Z)\eta(Y) + g(Z,Y)\eta(X)\right\}
-2g(X,Y)\eta(Z),$$
(3.32)

for all vector fields X, Y and Z on M.

Again from the Yano's commutation formula, we have

$$(L_V \nabla_X g - \nabla_X L_V g - \nabla_{[V,X]} g)(Y,Z) = -g((L_V \nabla)(X,Y),Z) - g((L_V \nabla)(X,Z),Y),$$

for all vector fields X, Y and Z on M.

Now by a simple calculation and by knowing the fact that $(L_V \nabla)$ is a symmetric tensor of type (1,2), we deduce

$$h^{2}g((L_{V}\nabla)(X,Y),Z) = \frac{h^{2}}{2}\{(\nabla_{X}L_{V}g)(Y,Z) + (\nabla_{Y}L_{V}g)(Z,X) - (\nabla_{Z}L_{V}g)(X,Y)\}, \quad (3.33)$$

for all vector fields X, Y and Z on M. Making use of (3.32) in (3.33) and taking $(Xh) = (\xi h)\eta(X)$, we obtain

$$h^{2}(L_{V}\nabla)(X,Y) = \left(\lambda - 1 - \frac{r}{2n}\right) \left\{g(X,Y)Dh - (Yh)X - (Xh)Y\right\} - \left(2n + 1 + \frac{r}{2n}\right) \left\{2h\eta(X)Y + 2h\eta(Y)X + (Xh)\eta(Y)\xi\right\},$$
(3.34)

for all vector fields X and Y on M. On taking covariant differentiation of (3.34) along an arbitrary vector field Z, we have

$$2h(Zh)(L_{V}\nabla)(X,Y) = -\frac{Zr}{2n} \left\{ g(X,Y)Dh - (Yh)X - (Xh)Y \right\}$$

$$+ \left(\lambda - 1 - \frac{r}{2n} \right) g(X,Y)\nabla_{z}Dh - \frac{Z_{r}}{2n} \left\{ 2h\eta(X)Y + 2h\eta(Y)X + (Xh)\eta(X)\xi \right\} - \left(2n + 1 + \frac{r}{2n} \right) \left\{ 2(Zh)\eta(X)\eta(Y) + 2h(\nabla_{Z}\eta)(X)Y + 2(Zh)\eta(Y)X + 2h(\nabla_{Z}\eta)(Y)X + (Xh)(\nabla_{Z}\eta)(Y)\xi + (Xh)\eta(Y)(\nabla_{Z}\xi) \right\} - h^{2}(\nabla_{Z}L_{V}\nabla)(X,Y).$$
 (3.35)

We know that

$$(L_V R)(X, Y)Z = (\nabla_X L_V \nabla)(Y, Z) - (\nabla_Y L_V \nabla)(X, Z)$$
(3.36)

for all vector fields X, Y and Z on M. Making use of (2.4), (2.5) and (3.35), the above equation reduces

to,

$$h^{2}(L_{V}R)(X,Z)Y = -2h(Xh)(L_{V}\nabla)(Z,Y) + 2h(Zh)(L_{V}\nabla)(X,Y) - \frac{Xr}{2n} \left\{ g(Z,Y)Dh - (Yh)Z \right\} + \frac{Zr}{2n} \left\{ g(X,Y)Dh - (Yh)X \right\} + \left(\lambda - 1 - \frac{r}{2n} \right) \left\{ g(Z,Y)\nabla_{X}Dh - g(X,Y)\nabla_{Z}Dh \right\} - 2h \left\{ \frac{Xr}{2n}\eta(Y)Z - \frac{Zr}{2n}\eta(Y)X \right\} - \left(2n + 1 + \frac{r}{2n} \right) \left\{ 2(Xh)\eta(Y)Z + 2hg(Y,X)Z \right\} + (Zh)g(Y,X)\xi + (\xi h)\eta(Z)\eta(Y)X - 2(Zh)\eta(Y)X - 2hg(Y,Z)X + 2h\eta(Z)\eta(Y)X - (Xh)g(Y,Z)\xi - (\xi h)\eta(X)\eta(Y)Z - 2h\eta(X)\eta(Y)Z \right\}.$$
 (3.37)

Substituting ξ for X and Y and taking $(Xh) = (\xi h)\eta(X)$ or $Dh = (\xi h)\xi$, the above equation yields, $h^3g((L_VR)(X,\xi),\xi,\xi) = 0$. Since $h \neq 0$, we have

$$(L_V R)(X, \xi)\xi = 0. \tag{3.38}$$

Now Lie-differentiating $g(\xi,\xi)=1$ and using (3.31), we obtain

$$2h\eta(L_V\xi) = -h(\lambda + 2n). \tag{3.39}$$

Plugging $Y = \xi$ in (1.2), we get

$$\frac{h}{2}(L_V\eta)(X) = (\lambda + 2n)\eta(X). \tag{3.40}$$

Again, substitute ξ for Y in (2.6), to obtain $R(X,\xi)\xi = \eta(X)\xi - X$. Operating Lie derivative along the potential vector field V and using (3.39) and (3.40), the above equation gives,

$$\frac{h}{2}(L_V R)(X, \xi)\xi = -(2n + \lambda)\nabla_X \xi. \tag{3.41}$$

Comparing (3.38) and (3.41), we obtain $\lambda = -2n$.

From (3.39), we have $\eta(L_V\xi) = 0$. Since V is contact, we have a smooth function f on M, such that $L_V\xi = f\xi$.

Taking the inner product of the last equation with ξ gives f = 0 and $L_V \xi = 0$. With this information in (3.40), we obtain $L_V \eta = 0$, which implies V is strictly infinitesimal contact transformation.

Substituting $Y = \xi$ and using $L_V \xi = 0$ and $L_V \eta = 0$ in (3.20), we have

$$(L_V \nabla)(X, \xi) = 0. \tag{3.42}$$

Plugging $X = \xi$ in (3.34) and comparing with (3.42), we have

$$\left(2n + 1 + \frac{r}{2n}\right)(2n + 1 - 4n)\,\eta(X) = 0.$$

If $r \neq -2n(2n+1)$, then for h = 1, we get 2n = 3, which is absurd for all n > 1. Hence r = -2n(2n+1). Substituting this in (3.29), we have Ric(X,Y) = -2ng(X,Y), for all vector fields X and Y on M. Therefore, M is an Einstein manifold.

4. Gradient h-Ricci soliton on par-Kenmotsu manifold

Theorem 4.1 Let M be a para-Kenmotsu manifold with the para contact structure (ϕ, ξ, η, g) . If the metric g admits the gradient almost h-Ricci soliton, then M is Einstein manifold with Einstein constant -2n; otherwise, the potential vector field V is collinear with the Reeb vector field on some open set in M.

Proof: Let g represent gradient h-Einstein soliton on the para-Kenmotsu manifold. From (1.5), we have

$$h\nabla_Y Du = \lambda Y - QY. \tag{4.1}$$

On differentiating the above equation along an arbitrary vector field X, we have

$$h\nabla_X\nabla_Y Du + (\nabla_X h)\nabla_Y Du = (X\lambda)Y + \lambda(\nabla_X Y) - (\nabla_X Q)Y - Q(\nabla_X Y). \tag{4.2}$$

From (4.2), we compute R as follows:

$$hR(X,Y)Du = (X\lambda)Y - (Y\lambda)X - (\nabla_X Q)Y + (\nabla_Y Q)X - (Xh)\nabla_Y Du + (Yh)\nabla_X Du.$$

$$(4.3)$$

Substituting ξ for X in (4.3) and taking inner product with X, we get

$$hg(R(\xi,Y)Du,X) = (\xi\lambda)g(X,Y) - (Y\lambda)\eta(X) + Ric(X,Y) + 2ng(X,Y) - (\xi h)g(\nabla_Y Du,X) + (Yh)g(\nabla_{\xi} Du,X).$$
(4.4)

In view of (2.7), the above equation reduces to

$$hg(R(\xi,Y)Du,X) = h\{(\xi u)g(X,Y) - (Yu)\eta(X)\}. \tag{4.5}$$

Combining (4.4) and (4.5), we obtain

$$(\xi\lambda)g(X,Y) - (Y\lambda)\eta(X) + Ric(X,Y) + 2ng(X,Y) - (\xi h)g(\nabla_Y Du, X) + (Yh)g(\nabla_\xi Du, X) = h\{(\xi u)g(X,Y) - (Yu)\eta(X)\}.$$

$$(4.6)$$

Plugging ξ for X, the above equation reduces to

$$(\xi h)\eta(Y) - (Y\lambda) + (Yh)q(\nabla_{\xi}Du, \xi) - (\xi h)q(\nabla_{Y}Du, \xi) = h\{(\xi u)\eta(Y) - (Yu)\}. \tag{4.7}$$

Using the Poincare Lemma, $g(\nabla_X Du, Y) = g(\nabla_Y Du, X)$, the preceding equation becomes

$$(\xi h)Y = (Yh)\xi. \tag{4.8}$$

Use of (4.8) in (4.7) gives

$$\xi(\lambda - hu)\eta(Y) = Y(\lambda - hu), \quad D(\lambda - hu) = \xi(\lambda - hu)\eta. \tag{4.9}$$

By the use of (4.9) in (4.6) and making use of (4.8), we obtain

$$Ric(X,Y) + 2ng(X,Y) = \xi(\lambda - hu)\{\eta(X)\eta(Y) - g(X,Y)\}.$$
 (4.10)

On tracing the above equation, we have

$$\xi(\lambda - hu) = \left(2n + 1 + \frac{r}{2n}\right). \tag{4.11}$$

Now we notice from (4.10), that

$$Ric(X,Y) = \left(1 + \frac{r}{2n}\right)g(X,Y) + \left(2n + 1 + \frac{r}{2n}\right)\eta(X)\eta(Y). \tag{4.12}$$

Here we substitute Y = Du in the foregoing equation to obtain

$$Ric(X, Du) = \left(1 + \frac{r}{2n}\right)Xu + \left(2n + 1 + \frac{r}{2n}\right)(\xi u)\eta(X). \tag{4.13}$$

Suppose X and $Y \in ker\eta$. If we take $(Xh) = (\xi h)\eta(X)$ in (4.3), we obtain

$$hR(X,Y)Du = (X\lambda)Y - (Y\lambda)X - (\nabla_X Q)Y + (\nabla_Y Q)X. \tag{4.14}$$

Contracting the above equation along X, we obtain

$$hRic(Y, Du) = -2n(Y\lambda) + \frac{Yr}{2}.$$
(4.15)

Appllying the operator d on (4.9) and combined use of the facts that $d^2 = 0$ and $d\eta = 0$, then from (4.11), we obtain $-dr \wedge \eta = 0$. By the property $2(\omega \wedge \eta) = \omega \otimes \eta - \eta \otimes \omega$, the last equation reduces to

$$dr(X)\eta(Y) - dr(Y)\eta(X) = 0. \tag{4.16}$$

Plugging ξ for Y in (4.16), we have $Xr = (\xi r)\eta(X)$ and tracing (3.2), we obtain $\xi r = -2(r + 2n(2n + 1))$. Solving the last two equations, we get

$$Xr = -2(r + 2n(2n+1))\eta(X), \quad or \quad Dr = -2(r + 2n(2n+1))\eta. \tag{4.17}$$

Unifying the equations (4.13) and (4.15), we find

$$\left(1 + \frac{r}{2n}\right)Yu + \left(2n + 1 + \frac{r}{2n}\right)(\xi u)\eta(Y) = -2n(Y\lambda) + \frac{Yr}{2}.$$
(4.18)

For a vector field Y in the distribution $D_{\eta} = ker\eta$, we have

$$4n^{2}(Y\lambda) + h(r+2n)(Yu) = 0. (4.19)$$

Invoking (4.9) and (4.11) in (4.19), we obtain

$$(4n^2 - r - 2n)(Yu) = 0. (4.20)$$

From this we conclude that

$$(r + 2n(2n+1))(Du - (\xi u)\xi) = 0. (4.21)$$

If r = -2n(2n+1), then from equation (4.12), we have M is an Einstein manifold with Einstein constant -2n.

If $r \neq -2n(2n+1)$ on some open set θ of M, then $Du = (\xi u)\xi$ on the open set θ . This completes the proof.

Acknowledgments

We would like to thank the referee and reviewers for their thoughtful comments towards improving our manuscript.

The authors declare that they have no conflict of interest.

References

- A. Barros, E. Ribeiro, Jr., Some characterizations for compact almost Ricci solitons, Proc. Amer. Math. Soc., 140(3): 1033-1040, (2012).
- 2. D. S. Patra, Ricci solitons and paracontact geometry, Mediterr. J. Math., 16(6): 137-149, (2019).
- 3. D. S. Patra, Ricci solitons and Ricci almost solitons on para-Kenmotsu manifold, Bull. Korean Math. Soc., 56(5): 1315–1325, (2019).
- 4. F. Mofarreh, U. C. De, A note on Ricci soliton in almost Kenmotsu manifold, arXiv preprint arXiv:1805.04451 (2018).
- 5. G. Calvaruso, D. Perrone, Geometry of h-paracontact metric manifolds, Publ. Math. Debrecen, 86(3-4): 325-346, (2015).
- 6. G. Yun, J. Co, S. Hwang, Bach-flat h-almost gradient Ricci solitons, Pacific J. Math., 288(2): 475-488, (2017).
- 7. H. Faraji, S. Azami, G. Fasihi-Ramandi, Fasihi-Ramandi, h-almost Ricci solitons with concurrent potential fields, AIMS Math., 5(5): 4220-4228, (2020).
- 8. J. N. Gomes, Q. Wang, C. Xia, On the h-almost Ricci soliton, J. Geom. Phys., 114: 216-222, (2017).

- 9. K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J., 24(2): 93-103, (1972).
- K. Yano, Integral formulas in Riemannian geometry, Pure and Applied Mathematics, No. 1, Marcel Dekker, Inc., New York, (1970).
- 11. R. S. Hamilton, The Ricci flow on surfaces, Mathematics and general relativity, Contemp. Math., 71: 237-261, (1988).
- S. Kaneyuki, F. L. Williams, Almost paracontact and parahodge structures on manifolds, Nagoya Math. J., 99: 173-187, (1985).
- 13. S. Pigola et al., Ricci almost solitons, Ann. Sc. Norm. Super. Pisa Cl. Sci., 10(5): 757-799, (2011).
- 14. S. Sarkar, S. Dey, X. Chen, Certain results of conformal and *-conformal Ricci soliton on para-cosymplectic and para-Kenmotsu manifolds, Filomat, 35(15): 5001-5015, (2021).

Sangeetha M. and H.G. Nagaraja, Department of Mathematics, Bangalore University, Bengaluru-560056, Karnataka, INDIA.

 ${\it E-mail~address:}\ {\tt msangeetha336@gmail.com}\ {\tt and~hgnraj@yahoo.com}$