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Class number and fundamental units of certain pure cubic fields

Jamal Benamara

ABSTRACT: Let K+ = Q(¥/m3 £ 1) be a pure cubic number field where m is an integer. We prove that if
m > 2 and m® £ 1 is square-free then the class number of K,,,+ is a multiple of 3 we also give the fundamental
unit of K4+ when m3 1% 41 (mod 9).

Key Words: Cubic field; Class number; Fundamental unit.

Contents
1 Introduction 1
2 The class number of K,,+ 1
3 Fundamental unit of K, 2

1. Introduction

We consider a pure cubic number field K,,+ = Q(\S/ m3 + 1) where m is an integer such that d,,,+ =
m3 £ 1 is a cube-free. In [6], Louboutin obtained a lower bound for class numbers of pure cubic number
fields and applied this bound to prove that there are 2 such K,,+ with class number one, namely K
and Ky y; there does not exist any such K,,+ with class number two; and there are 3 such K,,+ with
class number three, namely Ko and K31. Another work concerning this family of fields, is in [2], where
the authors explicitly determine the reduced principal ideals. In [[5], p8], Honda improved the results of
Barrucand and Cohn [3], and gave the list of all the pure cubic fields Q(¥/n) whose class numbers are
not divisible by 3.

Recall that we may assume with no loss of generality that d,,. = rs? where r and s are square-free
and (r,s) = 1. It is well known (see for example [1,4]) that if dp,+ # £1 (mod 9), then the ring of
integers Ok, . of K,,1 has a basis [1, 0,4, 0mt = O /s] where 0,1 = {/dy,+ and the discriminant of
Ky is Ag,,, = —27r?s%. In this case, K,,+ is called a pure cubic field of the first kind. If dp,+ = +1
(mod 9), then Ok, . = [1,0mi, Ome = (1 4+ 710+ + 0,27&)/3], Ak, . = —27r?s? and K is called a pure
cubic field of the second kind. We also know that the norm of « = z + yfp+ + 202, € K,y is
N(a) =23+ y3dms + 23d%, . — 3zyzdm+.

In this paper we prove that if m3 & 1 is square-free, then the class number of K,,+ is divided by three
except K7, we also determine the fundamental unit of K,,+ when m = 1,2 (mod 3).

2. The class number of K,,+

Theorem 2.1 Let K+ = Q(v/m3 £ 1) where m > 1 is an integer such that d,,+ = m3+1 is square-free.
Then the class number hy,+ of K+ is a multiple of three, except hyy = 1.

Proof: To prove this theorem we will study the decomposition of d,,,1+ and use the result obtained in |
[5],p8].

Since d,,+ = m? %1 is square-free, then d,,,+ = pips...px Where py, pa, ..., pr are the distinct primes occur
in this factorization.

First case (k = 1) is when dy,e = m3 £ 1 = (m £ 1)(m? Fm + 1) = p is a prime number, this is verified
for K,,,+ when m = 1 and where we have d,,+ =2 = —1 (mod 3) and for K, when m = 2 and where
we have dy, =7 # —1 (mod 3).

Second case (k = 2) is when d,,,+ = m3+£1 = (m=£1)(m? Fm+ 1) = 3p, in this case, four situations are
possible for K, :
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1. m+1=3pand m?> —m+1=1hence 3p =2 and m = 1.
2. m+1=1and m? —m+1=3p.
3. m+1=3and m2—m+1=np.
4. m+1=pand m?> —m+1=3 hence p = 3.
And four situations for K,,_:
. m—1=3pand m?*+m-+1=1.
2. m—1=1and m? +m+1=3p hence m =2 and 7 = 3p.
3. m—1=3and m? +m+1=phence m = 4 and 21 = p.
4. m—1l=pand m® 4+ m+1=3hence 0 =pand m = 1.
Third case k = 2, dypte = (m £ 1)(m? Fm + 1) = pq, also four situation are possible for K, :
1. m+1=pgand m®> —m+1 =1 hence pg =2 and m = 1.
2.m+1=1and m? —m+1=pq.

3.m+1l=pand m?> —m+1=q with p=2 (mod 9) and ¢ = 5 (mod 9) i.e m = 1 (mod 9) and
m? —m =4 (mod 9).

4. m+1=qgand m?> —m+1=p with p=2 (mod 9) and ¢ =5 (mod 9) i.e m?> —m =1 (mod 9)
and m = 4 (mod 9) therefore m? —m =1 (mod 9) and m? —m =3 (mod 9).

And four situation for K,,_:
1. m—1=pgand m?>4+m+ 1 =1 hence pg = 2 and m = 0.
2. m—1=1and m? +m+ 1= pq hence m =2 and 7 = pq.

3. m—1=pand m?>+m+1=q with p=2 (mod 9) and ¢ = 5 (mod 9) i.e m = 3 (mod 9) and
m?+m =4 (mod 9).

4. m—1=qgand m?>+m+1=p with p=2 (mod 9) and ¢ =5 (mod 9) i.e m?> + m =1 (mod 9)
and m =6 (mod 9).

It follows that all the possible forms of d,,+ do not appear in the main result of [[5], p8], except for the
case dpypy = p =2, (m = 1). Which proves our theorem. O

3. Fundamental unit of K,,+

Theorem 3.1 Let K+ = Q(v/m3 4 1) where m > 1 is an integer such that d,,o = m>+1 is square-free
and dymt #Z +1 (mod 9). Then the fundamental unit of K+ is Nme = m? + mOp+ + 6%, where 0, +
is defined in the introduction.

Proof: We prove this theorem for K,,,. For m =1 we have K1, = Q(v/2) and 11 = 1+ v/2 + \‘752 is
the fundamental unit of K7, (see [[7],p1135]). For m > 2, let 7,1 be the fundamental unit of K,,; and
let be £y = m? + mb,, + 02, . We can verify by a simple calculation that A(g,,+) = 1 which means
that €,,4+ is a unit of K,,4. Since m > 2, then |Ag, .| = 27(m® + 1)? > 33, hence by [[1], Theorem
13.6.1] we get
3 |AKm+| - 27
Nm+ > 4

it follows that o7 o7

ne > ng(m?’ +2)> gm‘q’(m3 +1)
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3 9 9 9
therefore 7,y > §m0m+, $0 M2, > Zm2672”+' Since 1m20,2n+ > 3m?, ZmQG,Q,H_ > 3mb,,+ and
2

9
~m?02, . > 362, then , 2, > 3m? nZ, > 3mb, and n2, | > 362 . which means that

4 m
1< ey <1y

But by Dirichlet’s unit theorem we have €,y = :i:nfn+, k € Z, hence we must have 7,4 = €,,4. A similar
reasoning for K,,_. O
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