
Bol. Soc. Paran. Mat. (3s.) v. 2025 (43) : 1–3.
©SPM – E-ISSN-2175-1188 ISSN-0037-8712
SPM: www.spm.uem.br/bspm doi:10.5269/bspm.66679

Class number and fundamental units of certain pure cubic fields

Jamal Benamara

abstract: Let Km± = Q( 3
√
m3 ± 1) be a pure cubic number field where m is an integer. We prove that if

m ≥ 2 and m3±1 is square-free then the class number of Km± is a multiple of 3 we also give the fundamental
unit of Km± when m3 ± 1 ̸≡ ±1 (mod 9).
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1. Introduction

We consider a pure cubic number field Km± = Q( 3
√
m3 ± 1) where m is an integer such that dm± =

m3 ± 1 is a cube-free. In [6], Louboutin obtained a lower bound for class numbers of pure cubic number
fields and applied this bound to prove that there are 2 such Km± with class number one, namely K1+

and K2+; there does not exist any such Km± with class number two; and there are 3 such Km± with
class number three, namely K2− and K3±. Another work concerning this family of fields, is in [2], where
the authors explicitly determine the reduced principal ideals. In [ [5], p8], Honda improved the results of
Barrucand and Cohn [3], and gave the list of all the pure cubic fields Q( 3

√
n) whose class numbers are

not divisible by 3.
Recall that we may assume with no loss of generality that dm± = rs2 where r and s are square-free
and (r, s) = 1. It is well known (see for example [1,4]) that if dm± ̸≡ ±1 (mod 9), then the ring of
integers OKm± of Km± has a basis [1, θm±, δm± = θm±/s] where θm± = 3

√
dm± and the discriminant of

Km± is ∆Km± = −27r2s2. In this case, Km± is called a pure cubic field of the first kind. If dm± ≡ ±1
(mod 9), then OKm± =

[
1, θm±, δm± = (1 + rθm± + θ2m±)/3

]
, ∆Km± = −27r2s2 and K is called a pure

cubic field of the second kind. We also know that the norm of α = x + yθm± + zθ2m± ∈ Km± is
N (α) = x3 + y3dm± + z3d2m± − 3xyzdm±.
In this paper we prove that if m3 ± 1 is square-free, then the class number of Km± is divided by three
except K1+, we also determine the fundamental unit of Km± when m ≡ 1, 2 (mod 3).

2. The class number of Km±

Theorem 2.1 Let Km± = Q( 3
√
m3 ± 1) where m ≥ 1 is an integer such that dm± = m3±1 is square-free.

Then the class number hm± of Km± is a multiple of three, except h1+ = 1.

Proof: To prove this theorem we will study the decomposition of dm± and use the result obtained in [
[5],p8].
Since dm± = m3± 1 is square-free, then dm± = p1p2...pk where p1, p2, ..., pk are the distinct primes occur
in this factorization.
First case (k = 1) is when dm± = m3 ± 1 = (m± 1)(m2 ∓m+ 1) = p is a prime number, this is verified
for Km+ when m = 1 and where we have dm+ = 2 ≡ −1 (mod 3) and for Km− when m = 2 and where
we have d+m = 7 ̸≡ −1 (mod 3).
Second case (k = 2) is when dm± = m3 ± 1 = (m± 1)(m2 ∓m+1) = 3p, in this case, four situations are
possible for Km+:
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1. m+ 1 = 3p and m2 −m+ 1 = 1 hence 3p = 2 and m = 1.

2. m+ 1 = 1 and m2 −m+ 1 = 3p.

3. m+ 1 = 3 and m2 −m+ 1 = p.

4. m+ 1 = p and m2 −m+ 1 = 3 hence p = 3.

And four situations for Km−:

1. m− 1 = 3p and m2 +m+ 1 = 1.

2. m− 1 = 1 and m2 +m+ 1 = 3p hence m = 2 and 7 = 3p.

3. m− 1 = 3 and m2 +m+ 1 = p hence m = 4 and 21 = p.

4. m− 1 = p and m2 +m+ 1 = 3 hence 0 = p and m = 1.

Third case k = 2, dm± = (m± 1)(m2 ∓m+ 1) = pq, also four situation are possible for Km+:

1. m+ 1 = pq and m2 −m+ 1 = 1 hence pq = 2 and m = 1.

2. m+ 1 = 1 and m2 −m+ 1 = pq.

3. m + 1 = p and m2 − m + 1 = q with p ≡ 2 (mod 9) and q ≡ 5 (mod 9) i.e m ≡ 1 (mod 9) and
m2 −m ≡ 4 (mod 9).

4. m + 1 = q and m2 −m + 1 = p with p ≡ 2 (mod 9) and q ≡ 5 (mod 9) i.e m2 −m ≡ 1 (mod 9)
and m ≡ 4 (mod 9) therefore m2 −m ≡ 1 (mod 9) and m2 −m ≡ 3 (mod 9).

And four situation for Km−:

1. m− 1 = pq and m2 +m+ 1 = 1 hence pq = 2 and m = 0.

2. m− 1 = 1 and m2 +m+ 1 = pq hence m = 2 and 7 = pq.

3. m − 1 = p and m2 + m + 1 = q with p ≡ 2 (mod 9) and q ≡ 5 (mod 9) i.e m ≡ 3 (mod 9) and
m2 +m ≡ 4 (mod 9).

4. m − 1 = q and m2 +m + 1 = p with p ≡ 2 (mod 9) and q ≡ 5 (mod 9) i.e m2 +m ≡ 1 (mod 9)
and m ≡ 6 (mod 9).

It follows that all the possible forms of dm± do not appear in the main result of [ [5], p8], except for the
case dm± = p = 2, (m = 1). Which proves our theorem. 2

3. Fundamental unit of Km±

Theorem 3.1 Let Km± = Q( 3
√
m3 ± 1) where m ≥ 1 is an integer such that dm± = m3±1 is square-free

and dm± ̸≡ ±1 (mod 9). Then the fundamental unit of Km± is ηm± = m2 +mθm± + θ2m±, where θm±
is defined in the introduction.

Proof: We prove this theorem for Km+. For m = 1 we have K1+ = Q( 3
√
2) and η1+ = 1 + 3

√
2 + 3

√
2
2
is

the fundamental unit of K1+, (see [ [7],p1135]). For m ≥ 2, let ηm+ be the fundamental unit of Km+ and
let be εm+ = m2 +mθm+ + θ2m+. We can verify by a simple calculation that N (εm+) = 1 which means
that εm+ is a unit of Km+. Since m ≥ 2, then |∆Km± | = 27(m3 + 1)2 ≥ 33, hence by [ [1], Theorem
13.6.1] we get

η3m+ >
|∆Km+ | − 27

4

it follows that

η3m+ >
27

4
m3(m3 + 2) >

27

8
m3(m3 + 1)
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therefore ηm+ >
3

2
mθm+, so η2m+ >

9

4
m2θ2m+. Since

9

4
m2θ2m+ > 3m2,

9

4
m2θ2m+ > 3mθm+ and

9

4
m2θ2m+ > 3θ2m+, then , η2m+ > 3m2, η2m+ > 3mθm+ and η2m+ > 3θ2m+, which means that

1 < εm+ < η2m+.

But by Dirichlet’s unit theorem we have εm+ = ±ηkm+, k ∈ Z, hence we must have ηm+ = εm+. A similar
reasoning for Km−. 2
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