(3s.) **v. 2025 (43)** : 1–3. ISSN-0037-8712 doi:10.5269/bspm.66679

Class number and fundamental units of certain pure cubic fields

Jamal Benamara

ABSTRACT: Let $K_{m\pm} = \mathbb{Q}(\sqrt[3]{m^3 \pm 1})$ be a pure cubic number field where m is an integer. We prove that if $m \geq 2$ and $m^3 \pm 1$ is square-free then the class number of $K_{m\pm}$ is a multiple of 3 we also give the fundamental unit of $K_{m\pm}$ when $m^3 \pm 1 \not\equiv \pm 1 \pmod{9}$.

Key Words: Cubic field; Class number; Fundamental unit.

Contents

1	Introduction	1
2	The class number of $K_{m\pm}$	1
3	Fundamental unit of $K_{m\pm}$	2

1. Introduction

We consider a pure cubic number field $K_{m\pm} = \mathbb{Q}(\sqrt[3]{m^3 \pm 1})$ where m is an integer such that $d_{m\pm} = m^3 \pm 1$ is a cube-free. In [6], Louboutin obtained a lower bound for class numbers of pure cubic number fields and applied this bound to prove that there are 2 such $K_{m\pm}$ with class number one, namely K_{1+} and K_{2+} ; there does not exist any such $K_{m\pm}$ with class number two; and there are 3 such $K_{m\pm}$ with class number three, namely K_{2-} and $K_{3\pm}$. Another work concerning this family of fields, is in [2], where the authors explicitly determine the reduced principal ideals. In [5], p8], Honda improved the results of Barrucand and Cohn [3], and gave the list of all the pure cubic fields $\mathbb{Q}(\sqrt[3]{n})$ whose class numbers are not divisible by 3.

Recall that we may assume with no loss of generality that $d_{m\pm} = rs^2$ where r and s are square-free and (r,s)=1. It is well known (see for example [1,4]) that if $d_{m\pm} \not\equiv \pm 1 \pmod 9$, then the ring of integers $\mathcal{O}_{K_{m\pm}}$ of $K_{m\pm}$ has a basis $[1,\theta_{m\pm},\delta_{m\pm}=\theta_{m\pm}/s]$ where $\theta_{m\pm}=\sqrt[3]{d_{m\pm}}$ and the discriminant of $K_{m\pm}$ is $\Delta_{K_{m\pm}}=-27r^2s^2$. In this case, $K_{m\pm}$ is called a pure cubic field of the first kind. If $d_{m\pm}\equiv \pm 1 \pmod 9$, then $\mathcal{O}_{K_{m\pm}}=\left[1,\theta_{m\pm},\delta_{m\pm}=(1+r\theta_{m\pm}+\theta_{m\pm}^2)/3\right]$, $\Delta_{K_{m\pm}}=-27r^2s^2$ and K is called a pure cubic field of the second kind. We also know that the norm of $\alpha=x+y\theta_{m\pm}+z\theta_{m\pm}^2\in K_{m\pm}$ is $\mathcal{N}(\alpha)=x^3+y^3d_{m\pm}+z^3d_{m\pm}^2-3xyzd_{m\pm}$.

In this paper we prove that if $m^3 \pm 1$ is square-free, then the class number of $K_{m\pm}$ is divided by three except K_{1+} , we also determine the fundamental unit of $K_{m\pm}$ when $m \equiv 1, 2 \pmod{3}$.

2. The class number of K_{m+}

Theorem 2.1 Let $K_{m\pm} = \mathbb{Q}(\sqrt[3]{m^3 \pm 1})$ where $m \ge 1$ is an integer such that $d_{m\pm} = m^3 \pm 1$ is square-free. Then the class number $h_{m\pm}$ of $K_{m\pm}$ is a multiple of three, except $h_{1+} = 1$.

Proof: To prove this theorem we will study the decomposition of $d_{m\pm}$ and use the result obtained in [5],p8].

Since $d_{m\pm} = m^3 \pm 1$ is square-free, then $d_{m\pm} = p_1 p_2 ... p_k$ where $p_1, p_2, ..., p_k$ are the distinct primes occur in this factorization.

First case (k=1) is when $d_{m\pm}=m^3\pm 1=(m\pm 1)(m^2\mp m+1)=p$ is a prime number, this is verified for K_{m+} when m=1 and where we have $d_{m+}=2\equiv -1\pmod 3$ and for K_{m-} when m=2 and where we have $d_{+m}=7\not\equiv -1\pmod 3$.

Second case (k=2) is when $d_{m\pm}=m^3\pm 1=(m\pm 1)(m^2\mp m+1)=3p$, in this case, four situations are possible for $K_{m\pm}$:

Submitted January 16, 2023. Published January 01, 2025 2010 Mathematics Subject Classification: Primary 11R16, 11R27, 11R29.

J. Benamara

1. m+1=3p and $m^2-m+1=1$ hence 3p=2 and m=1.

- 2. m+1=1 and $m^2-m+1=3p$.
- 3. m+1=3 and $m^2-m+1=p$.
- 4. m+1=p and $m^2-m+1=3$ hence p=3.

And four situations for K_{m-} :

- 1. m-1=3p and $m^2+m+1=1$.
- 2. m-1=1 and $m^2+m+1=3p$ hence m=2 and 7=3p.
- 3. m-1=3 and $m^2+m+1=p$ hence m=4 and 21=p.
- 4. m-1 = p and $m^2 + m + 1 = 3$ hence 0 = p and m = 1.

Third case k=2, $d_{m\pm}=(m\pm1)(m^2\mp m+1)=pq$, also four situation are possible for K_{m+} :

- 1. m+1 = pq and $m^2 m + 1 = 1$ hence pq = 2 and m = 1.
- 2. m+1=1 and $m^2-m+1=pq$.
- 3. m+1=p and $m^2-m+1=q$ with $p\equiv 2\pmod 9$ and $q\equiv 5\pmod 9$ i.e $m\equiv 1\pmod 9$ and $m^2-m\equiv 4\pmod 9$.
- 4. m+1=q and $m^2-m+1=p$ with $p\equiv 2\pmod 9$ and $q\equiv 5\pmod 9$ i.e $m^2-m\equiv 1\pmod 9$ and $m\equiv 4\pmod 9$ therefore $m^2-m\equiv 1\pmod 9$ and $m^2-m\equiv 3\pmod 9$.

And four situation for K_{m-} :

- 1. m-1 = pq and $m^2 + m + 1 = 1$ hence pq = 2 and m = 0.
- 2. m-1=1 and $m^2+m+1=pq$ hence m=2 and 7=pq.
- 3. m-1=p and $m^2+m+1=q$ with $p\equiv 2\pmod 9$ and $q\equiv 5\pmod 9$ i.e $m\equiv 3\pmod 9$ and $m^2+m\equiv 4\pmod 9$.
- 4. m-1=q and $m^2+m+1=p$ with $p\equiv 2\pmod 9$ and $q\equiv 5\pmod 9$ i.e $m^2+m\equiv 1\pmod 9$ and $m\equiv 6\pmod 9$.

It follows that all the possible forms of $d_{m\pm}$ do not appear in the main result of [[5], p8], except for the case $d_{m\pm} = p = 2$, (m = 1). Which proves our theorem.

3. Fundamental unit of $K_{m\pm}$

Theorem 3.1 Let $K_{m\pm} = \mathbb{Q}(\sqrt[3]{m^3 \pm 1})$ where $m \ge 1$ is an integer such that $d_{m\pm} = m^3 \pm 1$ is square-free and $d_{m\pm} \not\equiv \pm 1 \pmod{9}$. Then the fundamental unit of $K_{m\pm}$ is $\eta_{m\pm} = m^2 + m\theta_{m\pm} + \theta_{m\pm}^2$, where $\theta_{m\pm}$ is defined in the introduction.

Proof: We prove this theorem for K_{m+} . For m=1 we have $K_{1+}=\mathbb{Q}(\sqrt[3]{2})$ and $\eta_{1+}=1+\sqrt[3]{2}+\sqrt[3]{2}$ is the fundamental unit of K_{1+} , (see [7],p1135]). For $m\geq 2$, let η_{m+} be the fundamental unit of K_{m+} and let be $\varepsilon_{m+}=m^2+m\theta_{m+}+\theta_{m+}^2$. We can verify by a simple calculation that $\mathcal{N}(\varepsilon_{m+})=1$ which means that ε_{m+} is a unit of K_{m+} . Since $m\geq 2$, then $|\Delta_{K_{m\pm}}|=27(m^3+1)^2\geq 33$, hence by [1], Theorem 13.6.1] we get

$$\eta_{m+}^3 > \frac{|\Delta_{K_{m+}}| - 27}{4}$$

it follows that

$$\eta_{m+}^3 > \frac{27}{4} m^3 (m^3 + 2) > \frac{27}{8} m^3 (m^3 + 1)$$

therefore $\eta_{m+} > \frac{3}{2} m \theta_{m+}$, so $\eta_{m+}^2 > \frac{9}{4} m^2 \theta_{m+}^2$. Since $\frac{9}{4} m^2 \theta_{m+}^2 > 3 m^2$, $\frac{9}{4} m^2 \theta_{m+}^2 > 3 m \theta_{m+}$ and $\frac{9}{4} m^2 \theta_{m+}^2 > 3 \theta_{m+}^2$, then $\eta_{m+}^2 > 3 m^2$, $\eta_{m+}^2 > 3 m \theta_{m+}$ and $\eta_{m+}^2 > 3 \theta_{m+}^2$, which means that

$$1 < \varepsilon_{m+} < \eta_{m+}^2.$$

But by Dirichlet's unit theorem we have $\varepsilon_{m+} = \pm \eta_{m+}^k, k \in \mathbb{Z}$, hence we must have $\eta_{m+} = \varepsilon_{m+}$. A similar reasoning for K_{m-} .

References

- 1. S. Alaca and K. S. Williams, Introductory Algebraic Number Theory. Cambridge University Press, New York, 2004.
- 2. A. Azizi and J. Benamara and M. C. Ismaili and M. Talbi, On the key-exchange protocol using real quadratic fields. Annals of the University of Craiova, Mathematics and Computer Science, 48(2021), 53–62.
- 3. P. Barrucand and H.Cohn; A rational Genus, Class Number Divisibility, and Unit Theory for Pure Cubic Fields J. Number Theory, 2(1970), 7-21.
- 4. B. N. Delone and D. K. Faddeev, *The Theory of Irrationalities of the Third Degree*. American Mathematical, Society, Providence, Rhode Island, 1964.
- 5. T. Honda, Pure Cubic Fields whose Class Numbers are Multiples of Three, J. Number Theory, 3(1971), 7-12.
- 6. S. Louboutin, Class number problems for cubic number fields. Nagoya Math. J. 138(1995), 199-208.
- 7. H. Wada, A Table of Fundamental Units of Purely Cubic Fields. Proc. Japan Acad., 46(1970), 1135-1140.

J. Benamara,

Department of Mathematics, Faculty of Sciences, Mohammed First University, 60000 Oujda, Morocco.

 $E ext{-}mail\ address:$ benamarajamal@hotmail.fr