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On Recurrent Sets of Operators
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abstract: An operator T acting on a Banach space X is said to be recurrent if for each U ; a nonempty
open subset of X, there exists n ∈ N such that T n(U) ∩ U 6= ∅. In the present work, we generalize this notion
from a single operator to a set Γ of operators. As application, we study the recurrence of C-regularized group
of operators.
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1. Introduction and Preliminary

Let X be a complex Banach space and B(X) the algebra of all bounded linear operators on X . By
an operator, we always mean a bounded linear operator.

The most studied notion in linear dynamics is that of hypercyclicity, supercyclicity and cyclicity: An
operator T acting on a separable Banach space is said to be hypercyclic if there exists some vector x ∈ X

whose orbit under T ;
Orb(T, x) := {T nx : n ≥ 0},

is a dense subset of X . In this case, the vector x is called a hypercyclic vector for T and the set of all
hypercyclic vectors of T is denoted by HC(T ).

The notion of supercyclic operators was introduced by Hilden and Wallen in [16]. An operator T

acting on X is said to be supercyclic if the homogeneous orbit;

COrb(T, x) := {λT nx : λ ∈ C, n ≥ 0},

is dense in X . In this case, the vector x is called a supercyclic vector for T and the set of all supercyclic
vectors of T is denoted by SC(T ).

For the more detailed information on hypercyclicity and supercyclicity, the reader may refer to [8,15].
On the other hand, a very central notion in topological dynamics is that of recurrence. This notion

goes back to Poincaré and Birkhoff and it refers to the existence of points in the space for which parts of
their orbits under a continuous map ”return” to themselves.

A vector x ∈ X is called recurrent for an operator T ∈ B(X) or T -recurrent vector if there exists a
strictly increasing sequence of positive integers (kn)n∈N such that

T knx −→ x

as n −→ ∞. The set of all recurrent vectors for T is denoted by Rec(T ). The operator T itself is called
recurrent if for each nonempty open set U of X , there exists some n ∈ N such that

T −n(U) ∩ U 6= ∅.
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For more information about recurrent vectors and recurrent operators, the reader may refer to [9,11,
12,13,14,17].

Recently, the notion of hypercyclic operators, supercyclic operators and cyclic operators was general-
ized to subset Γ of B(X). A set Γ of operators is called hypercyclic if there exists a vector x in X such
that its orbit under Γ;

Orb(Γ, x) = {T x : T ∈ Γ}

is dense in X , see [5,6]. If there exists a vector x such that the homogeneous orbit;

COrb(Γ, x) = {αT x : T ∈ Γ, α ∈ C},

is dense in X for some vector x, then Γ is called a supercyclic set of operators, see [2,7]. If

span{Orb(Γ, x)} = span{T x : T ∈ Γ}

is dense in X for some vector x, then Γ is cyclic, see [4,7]. In each case, such a vector x is called a
hypercyclic vector, a supercyclic vector, a cyclic vector for Γ, respectively. Note that this generalization
was consider also for diskcyclic and codiskcyclic operators, see [1,3].

In this paper, we introduce and study concepts of recurrent vectors and recurrent sets in a complex
Banach space X .

In section 2, we introduce and study the notion of recurrent vector for a set Γ of operators. We give
some examples and we prove that the set of all recurrent vectors for a set Γ is a Gδ type.

In section 3, we introduce the notion of recurrent sets of operators. We prove that a set is recurrent if
and only if the set of all recurrent vectors is dense. Moreover, we give a counterexample show that may
a set Γ admits recurrent vectors without being recurrent.

In section 4, we give applications for C- regularized of operators. We show that the recurrent C-
regularized of operators exists on each complex Banach space X and we prove by giving examples that
some proprieties known for hypercyclic strongly continuous semigroups and C- regularized group of
operators does not holds in general in the case of and C- regularized group of operators.

2. Recurrent Vectors of Sets of Operators

Definition 2.1. A vector x ∈ X \{0} is said to be recurrent for Γ or Γ-recurrent if there exist a sequence
{k} of positive integers and a sequence {Tk} ⊂ Γ such that

Tkx −→ x

as k −→ +∞. We denote by Rec(Γ) the set of all recurrent vectors for Γ.

Remark 2.2. Let X be a complex Banach space and T ∈ B(X). A vector x ∈ X is recurrent for T if
and only if x is a recurrent vector for the set

Γ := {T nx : n ≥ 0}.

In this case, we write Rec(T ) instead of Rec(Γ), see [11].

Let X be a complex Banach space and Γ a subset of B(X). It is clear that if x ∈ X is a hypercyclic
vector for Γ, then it is a recurrent vector for Γ. The converse does not holds in general as shows the next
example.

Example 2.3. Let X be a complex Banach space and (an)n≥0 a sequence of complex numbers such that
an −→ 1 as n −→ +∞. For all n ∈ N, let Tn be an operator defined by:

Tn : X −→ X

x 7−→ anx.

Let Γ = {Tn : n ∈ N} ⊂ B(X). For all x ∈ X \ {0}, we have

Tnx = anx −→ x

as n −→ +∞. This means that x is a recurrent vector for Γ for all x ∈ X \ {0}. However, Γ admits no
hypercyclic vectors.
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Remark 2.4. Let X be a complex Banach space. We can deduce, from Example 2.3, that in each complex
Banach space, with finite or infinite dimension, there exists a subset Γ of B(X) which admits recurrent
vectors.

Let X be a complex Banach space and Γ a subset of B(X). We denote by {Γ}
′

the set of all elements
of B(X) which commute with every element of Γ. That is

{Γ}
′

:= {S ∈ B(X) : T S = ST for all T ∈ Γ}.

Proposition 2.5. Let x ∈ Rec(Γ) and S ∈ B(X). If S ∈ {Γ}
′

, then Sx ∈ Rec(Γ).

Proof. Since x ∈ Rec(Γ), there exist a sequence {k} of positive integers and a sequence {Tk} ⊂ Γ such
that

Tkx −→ x

as k −→ +∞. Since S is continuous and S ∈ {Γ}
′

, it follows that

Tk(Sx) −→ Sx

as k −→ +∞. Hence Sx ∈ Rec(Γ). �

Corollary 2.6. If x ∈ Rec(Γ), then αx ∈ Rec(Γ), for all α ∈ C \ {0}.

Proof. let α ∈ C \ {0} and x ∈ Rec(Γ), then T = αI is an operator such that T ∈ {Γ}
′

. Hence, by
Proposition 2.5, αx ∈ Rec(Γ). �

Let X and Y be complex Banach spaces. A set Γ ⊂ B(X) is said to be quasi-similar to a set Γ1 ⊂ B(Y )
if there exists a continuous map φ : X −→ Y of dense range and satisfies for all T ∈ Γ, there exists some
S ∈ Γ1 such that S ◦ φ = φ ◦ T . If φ is a homeomorphism, then Γ and Γ1 are called similar.

The notion of recurrent vectors of a single operator is preserved under quasi-similarity, see [11]. In
the following, we prove that the same result holds in the case of sets of operators.

Proposition 2.7. Assume that Γ and Γ1 are quasi-similar. If x is a recurrent vector for Γ, then φx is
a recurrent vector for Γ1. That is

φ(Rec(Γ) ⊂ Rec(Γ1).

Proof. Since Γ and Γ1 are quasi-similar, there exists a continuous map φ : X −→ Y with dense range
such that for all T ∈ Γ, there exists S ∈ Γ1 satisfying S ◦φ = φ◦T . Assume that Γ is recurrent in X , then
there exist x ∈ X \ {0}, a sequence {k} of positive integers and a sequence {Tk} ⊂ Γ such that Tkx −→ x

as k −→ +∞. Hence, φ ◦ Tk(x) −→ φx as k −→ +∞. Foll all k, let Sk ∈ Γ1 such that Sk ◦ φ = Tk ◦ φ.
Hence,

Sk(φx) −→ φx

as k −→ +∞, which implies that Γ1 is recurrent in Y and φx ∈ Rec(Γ1). �

Remark 2.8. In Proposition 2.7, the condition of density of the range of φ is not necessary. Indeed, we
need only that φ be continuous to prove this proposition.

Corollary 2.9. Let X and Y be complex Banach spaces, Γ a subset of B(X) and Γ1 a subset B(Y ).
Assume that Γ and Γ1 are similar. A vector x ∈ X is a recurrent vector for Γ if and only if φx is a
recurrent vector for Γ1. That is

φ(Rec(Γ) = Rec(Γ1).

Proposition 2.10. Let {Xi}n
i=1 be a family of complex Banach spaces and Γi a subset of B(Xi), for all

1 ≤ i ≤ n. If (x1, x2, . . . , xn) ∈ Rec(⊕n
i=1Γi), then xi ∈ Rec(Γi), for all 1 ≤ i ≤ n. That is

Rec(⊕n

i=1Γi) ⊂ ⊕n

i=1Rec(Γi).
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Proof. Let (x1, x2, . . . , xn) ∈ Rec(⊕n
i=1Γi), then there exist a sequence {k} of positive integers and a

sequence {(T 1
k

, T 2
k

, . . . , T n

k
)} ⊂ ⊕n

i=1Γi such that

(T 1
k x1, T 2

k x2, . . . , T n

k xn) = (T 1
k , T 2

k , . . . , T n

k )(x1, x2, . . . , xn) −→ (x1, x2, . . . , xn)

as k −→ +∞. Hence, for all 1 ≤ i ≤ n, we have T i

k
xi −→ xi as k −→ +∞. Thus, for all 1 ≤ i ≤ n, Γi is

recurrent in Xi and xi ∈ Rec(Γi). �

A characterization of the set of recurrent vectors of set of operators on a complex Banach space is
due the next proposition.

Proposition 2.11. The set of all recurrent vectors for a set Γ is even empty or a Gδ type. In the last
case we have

Rec(Γ) =
⋂

n≥1

⋃

T ∈Γ

{

x ∈ X : ‖T x − x‖ <
1

n

}

.

Proof. Let x ∈ Rec(Γ). Then there exist a sequence {k} of positive integers and a sequence {Tk} ⊂ Γ such
that Tkx −→ x as k −→ +∞. Hence, for all n ≥ 1, there exists k such that ‖Tkx − x‖ < 1

n
, this implies

that x ∈
⋂

n≥1

⋃

T ∈Γ

{

x ∈ X : ‖T x − x‖ <
1

n

}

. For the converse, let x ∈
⋂

n≥1

⋃

T ∈Γ

{

x ∈ X : ‖T x − x‖ <
1

n

}

,

then for all n ≥ 1 there exists Tn ∈ Γ such that ‖T x − x‖ < 1
n

, this means that Tnx −→ x as n −→ +∞.
Hence, x ∈ Rec(Γ). Since for all n ≥ 1 the set

{

x ∈ X : ‖T x − x‖ < 1
n

}

is open, it follows that Rec(Γ)
is a Gδ type. �

Theorem 2.12. Assume that for all T , S ∈ Γ we have T S ∈ Γ and (λT )T ∈Γ be a (multiplicative)
semi-group inside T. Then x ∈ Rec(Γ) if and only if x ∈ Rec(Γ1), where

Γ1 := {λT T : T ∈ Γ}

and T = {α ∈ C : |α| = 1} is the unite circle.

Proof. To prove the proposition we only need to prove that Rec(Γ) ⊂ Rec(Γ1). Let x be a recurrent
vector for Γ). We define a subset F of T by

F := {µ ∈ T : (λkTk)x −→ µx for some sequence (k) ⊂ N with k −→ ∞}.

To show that x ∈ Rec(Γ) we need to prove that 1 ∈ F . For that, we begin by proving that F 6= ∅.
Since x is a recurrent vector for Γ, there exists a sequence of positive integers (k) ⊂ N such that

Tkx −→ x.

Without loss of generality we my suppose that λk −→ ρ for some ρ ∈ T. We conclude that (λkTk)x −→ ρx.
This means that ρ ∈ F .

Now, let µ1, µ2 ∈ F and let ε > 0 fixed. Since µ1 ∈ F there exists n1 ∈ N such that

‖λn1
Tn1

x − µ1x‖ <
ε

2
.

Since µ2 ∈ F there exists n2 ∈ N such that

‖λn2
Tn2

x − µ2x‖ <
ε

2‖λn1
Tn1

‖
.

We thus get

‖(λn1
λn2

Tn1
Tn2

)x − µ1µ2x‖ ≤ ‖(λn1
Tn1

)(λn2
Tn2

x − µ2x)‖ + ‖µ2(λn1
Tn1

x − µ1x)

≤ ‖λn1
Tn1

‖‖λn2
Tn2

x − µ2x‖ +
ε

2
< ε.

So µ1µ2 ∈ F. Hence F is a (multiplicative) semi-group inside T.

Let ρ ∈ F , then for all n ∈ N, we have ρn ∈ F . We have two cases
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• If ρ is a rational rotation this means that 1 ∈ F and we are done.

• If not, there exists sequence of positive integers τk such that ρτk −→ 1. Since F is closed, it follows
that that 1 ∈ F .

�

3. Recurrent Sets of Operators

In the following definition, we introduce the notion of recurrence of sets of operators which generalizes
the notion of recurrence of a single operator.

Definition 3.1. A set Γ ⊂ B(X) is called recurrent if for each nonempty open subset U of X there exists
some operator T ∈ Γ such that

T (U) ∩ U 6= ∅.

Remark 3.2. Let X be a complex Banach space. An operator T ∈ B(X) is recurrent as an operator if
and only if the set

Γ := {T n : n ≥ 0}

is recurrent as a set of operators.

The recurrence of a single operators is preserved under quasi-similarity, see [11]. The following
proposition proves that the same result holds in the case of sets of operators.

Proposition 3.3. Assume that Γ ⊂ B(X) and Γ1 ⊂ B(Y ) are quasi-similar. If Γ is a recurrent set in
X, then Γ1 is a recurrent set in Y .

Proof. Since Γ and Γ1 are quasi-similar, there exists a continuous map φ : X −→ Y with dense range
such that for all T ∈ Γ, there exists S ∈ Γ1 satisfying S ◦ φ = φ ◦ T . Let U be a nonempty open subset
of Y . Since φ is of dense range, φ−1(U) is nonempty and open. If Γ is recurrent in X , then there exist
y ∈ φ−1(U) and T ∈ Γ such that T y ∈ φ−1(U), which implies that φ(y) ∈ U and φ(T y) ∈ U . Let S ∈ Γ1

such that S ◦ φ = φ ◦ T , then φ(y) ∈ U and Sφ(y) ∈ U . From this, we deduce that Γ1 is recurrent in Y .
�

Corollary 3.4. Assume that Γ ⊂ B(X) and Γ1 ⊂ B(Y ) are quasi-similar. Then, Γ is recurrent in Y if
and only if Γ1 is recurrent in Y .

In the following result, we give necessary and sufficient conditions for a set of operators to be recurrent.

Theorem 3.5. Let Γ be a subset of B(X). The following assertions are equivalent:

(i) Γ is recurrent;

(ii) For each x ∈ X, there exists sequences {xk} in X and {Tk} in Γ such that

xk −→ x and Tk(xk) −→ x;

(iii) For each x ∈ X and for W a neighborhood of 0, there exist z ∈ X and T ∈ Γ such that

T (z) − x ∈ W and x − z ∈ W.

Proof. (i) ⇒ (ii) Let x ∈ X . For all k ≥ 1, let Uk = B(x, 1
k

). Then Uk is a nonempty open subset of X .
Since Γ is recurrent, there exists Tk ∈ Γ such that Tk(Uk) ∩ Uk 6= ∅. For all k ≥ 1, let xk ∈ Uk such that
Tk(xk) ∈ Uk, then

‖xk − x‖ <
1

k
and ‖Tk(xk) − x‖ <

1

k
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which implies that
xk −→ x and Tk(xk) −→ x.

(ii) ⇒ (iii) Let x ∈ X . There exists sequences {xk} in X and {Tk} in Γ such that

xk − x −→ 0 and Tk(xk) − x −→ 0.

If W is a neighborhood of 0, then there exists N ∈ N such that x − xk ∈ W and Tk(xk) − x ∈ W , for all
k ≥ N .

(iii) ⇒ (i) Let U be a nonempty open subsets of X . Then there exists x ∈ X such that x ∈ U . Since
for all k ≥ 1, Wk = B(0, 1

k
) is a neighborhood of 0, there exist zk ∈ X and Tk ∈ Γ such that

‖Tk(zk) − x‖ <
1

k
and ‖x − zk‖ <

1

k
.

This implies that
zk −→ x and Tk(zk) −→ x.

Since U is a nonempty open subset of X and x ∈ U , there exists N ∈ N such that zk ∈ U and Tk(zk) ∈ U ,
for all k ≥ N. �

Proposition 3.6. Let {Xi}
n
i=1 be a family of complex Banach spaces and Γi a subset of B(Xi), for all

1 ≤ i ≤ n. If ⊕n
i=1(Γi) is recurrent in ⊕n

i=1(Xi), then Γi is recurrent in Xi, for all 1 ≤ i ≤ n.

Proof. Assume that ⊕n
i=1Γi is recurrent in ⊕n

i=1Xi. If Ui be a nonempty open set of Xi for 1 ≤ i ≤ n,
then U1 × · · · × Un is a nonempty set of ⊕n

i=1(Γi). There exists T 1
k

× . . . T n

k
such that

T 1
k × · · · × T n

k (U1 × · · · × Un) ∩ U1 × · · · × Un 6= ∅.

It follows that T i

k
(Ui) ∩ Ui 6= ∅ for all 1 ≤ i ≤ n. Hence Γi is recurrent in Xi for all 1 ≤ i ≤ n. �

The natural question here is about the relationship between the set Rec(Γ) of all recurrent vectors
for a set Γ and the recurrence of Γ itself. In the following theorem, we prove the equivalence between the
recurrence of Γ and the density of Rec(Γ) in the space X .

Theorem 3.7. Let Γ ⊂ B(X). The following assertions are equivalent:

(i) Rec(Γ) is dense in X;

(ii) Γ is recurrent.

Proof. (i) ⇒ (ii) : We suppose that Rec(Γ) is a dense subset of X and let U be a nonempty open subset
of X . Then Rec(Γ) ∩ U 6= ∅. This implies that there exists x ∈ X a recurrent vector for Γ such that
x ∈ U. There exist a sequence {k} of positive integers and a sequence {Tk} of Γ such that Tkx −→ x as
k −→ +∞. Since U is open and x ∈ U , there exists N ∈ N such that TN(U) ∩ U 6= ∅, and hence Γ is
recurrent.
(ii) ⇒ (i) : Assume that Γ is recurrent, we will prove that Rec(Γ) is dense in X . Let

B := B(x, ε)

be a fixed open ball for some x ∈ X and ε < 1. Since Γ is recurrent, it follows that there exists an
operator T1 ∈ Γ such that T1(B) ∩ B 6= ∅. Hence, there exists x1 ∈ X such that x1 ∈ T −1

1 (B) ∩ B. There
exists ε1 < 1

2 such that

B2 := B(x1, ε1) ⊂ B ∩ T −1
1 (B)

since T1 is continuous. Again, since Γ is recurrent, there exists some T2 ∈ Γ and some x2 ∈ X such that
x2 ∈ T −1

2 (B2) ∩ B2. Now we use the continuity of T2 to conclude that there exists ε2 < 1
22 such that

B3 := B(x2, ε2) ⊂ B2 ∩ T −1
2 (B2).
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Continuing inductively we construct a sequence (xk)k∈N of X , a sequence (Tk)k∈N of Γ and a sequence
of positive real numbers εk < 1

2k , such that

B(xk, εk) ⊂ B(xk−1, εk−1) and Tk(B(xk, εk)) ⊂ B(xk−1, εk−1).

By hypothesis, X is a Banach space, hence it is complete. We use Cantor’s theorem to conclude that
there exists some y ∈ X such that

⋂

k

B(xk, εk) = {y}. (3.1)

Since y ∈ B the original ball, to finish the proof, it suffices to show that y is recurrent vector for Γ. By
3.1, we have y ∈ B(xk, εk) for all k. This is equivalent to the fact that

‖xk − y‖ < εk. (3.2)

On the other hand, Tk+1y ∈ B(xk, εk+1) since Tk+1(B(xk+1, εk+1)) ⊂ B(xk, εk), hence

‖Tk+1y − xk‖ < εk+1. (3.3)

Now using (3.2) and (3.3) we conclude that

‖Tk+1y − y‖ ≤ ‖xk − y‖ + ‖Tk+1y − xk‖ <
1

2k
+

1

2k+1
.

Hence Tky −→ y as k −→ +∞, that is, y is a recurrent point in the original ball B and the proof is
completed. �

Remark 3.8. Observe that the previous proposition remains valid whenever Γ is a set of continuous map
on a complete metric space X.

In particular, Theorem 3.7 proves that if Γ is recurrent, then it admits a nontrivial recurrent vector.
The following example shows that the converse does not holds in general even in the case of single
operator.

Recall from [11], that if an operator acting on a complex Banach space is recurrent, then it is of dense
range.

Example 3.9. Let X = ℓ2(N). Let T be a linear operator defined in ℓ2(N) by

T e1 = e1 and T ek = 0 for all k ≥ 2.

Let Γ = {T n : n ≥ 0}. Since T ne1 = e1, it follows that

T ne1 −→ e1

as n −→ ∞. Hence, e1 is a recurrent vector for T . Since T is not of dense range, it follows that T can
not be recurrent.

Using Theorem 2.12 and Theorem 3.7, it easy to prove the next Proposition.

Proposition 3.10. Let X be a complex Banach space and Γ a subset of B(X). Assume that for all T ,
S ∈ Γ we have T S ∈ Γ and let (λT )T ∈Γ be a (multiplicative) semi-group inside T. Then Γ is recurrent if
and only if

Γ1 := {λT T : T ∈ Γ}

is recurrent

Proof. By Theorem 2.12, we have Rec(Γ) = Rec(Γ1) and then we use Theorem 3.7. �
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4. Recurrent C-Regularized Groups of Operators

In this section, we study the particular case when Γ is a C-regularized group of operators. Recall
from [10], that an entire C-regularized group is an operator family (S(z))z∈C on B(X) that satisfies:

(1) S(0) = C;

(2) S(z + w)C = S(z)S(w) for every z, w ∈ C,

(3) The mapping z 7→ S(z)x, with z ∈ C, is entire for every x ∈ X .

The next example shows that the recurrence of C-regularized groups of operators exists in each Banach
space.

Example 4.1. Let X be a complex Banach space. For all z ∈ C, let S(z) be an operator defined on X

by
S(z) : X −→ X

x 7−→ S(z)x = ezx.

Let U be a nonempty open subset of X. Then there exists z ∈ C such that

S(z)(U) ∩ U 6= ∅.

This means that (S(z))z∈C) is recurrent C-Regularized group of operators.

Remark 4.2. Let X be a complex topological vector space and (S(z))z∈C) a C-regularized group of
operators. The fact that (S(z))z∈C) is recurrent does not implies that S(z0) is recurrent for all z0 ∈ C.
Indeed, let (S(z))z∈C) be the C-Regularized group defined as in Example 4.1. Then (S(z))z∈C) is recurrent.
However, Rec(S(z)) = ∅ whenever |z| > 1.

Lemma 4.3. Let (S(z))z∈C be a recurrent C-regularized group on a complex Banach space. Then Cx ∈
Rec((S(z))z∈C), for all x ∈ Rec((S(z))z∈C).

Proof. Let z ∈ C. By conditions (1) and (2) of the definition of a C-regularized group we have

S(z)C = S(0 + z)C = S(0)S(z) = CS(z),

this means that C commutes with every element of (S(z))z∈C. Hence, C ∈ {(S(z))z∈C}
′

. By using
Proposition 2.5 one can deduce Cx ∈ Rec((S(z))z∈C), for all x ∈ Rec((S(z))z∈C). �

Proposition 4.4. Let (S(z))z∈C be a recurrent C-regularized group on a complex Banach space. If C = I

the identity operator on X, then S(z)x ∈ Rec((S(z))z∈C)) for all x ∈ Rec((S(z))z∈C) and for all z ∈ C.

Proof. By remarking that in this case we have S(z) ∈ {(S(z))z∈C)}
′

and using Proposition 2.5. �

Definition 4.5. Let (S(z))z∈C be a C-regularized group on a complex Banach space. Given another
complex Banach space X and an isomorphism φ from Y onto X, the C-regularized group (h(z))z∈C on
Y , defining by

h(z) = φ−1S(z)φ

is said to be similar to (S(z))z∈C.

Proposition 4.6. Let (S(z))z∈C be a recurrent C-regularized group of operators on a complex Banach
space X. If (h(z))z∈C is a C-regularized group of operators on a complex Banach space Y similar to
(S(z))z∈C, then (h(z))z∈C is recurrent on Y . Moreover,

Rec((S(z))z∈C) = φ((h(z))z∈C).

Proof. Direct consequence of Proposition 2.7. �
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