(3s.) **v. 2025 (43)** : 1–7. ISSN-0037-8712 doi:10.5269/bspm.66793

On Some New Scenario of Almost Boundedness Using Matrices

Reham A. Alahmadi

ABSTRACT: The authors M. F. Rahman and A. B. M. R. Karim have structured and studied the space $r_g^w(t,s)$ and have computed its various properties like completeness, duals and many others as can be seen in [24]. The basic structure of this paper is to further study it and investigate for the characterization with sequences of almost bounded f_{∞} , almost convergent f and almost sequences converging to zero f_0 . Also, we will prove that \widetilde{F} is not solid, where symbol \widetilde{F} represents space having Riesz transform in f.

Key Words: Δ -operator, almost convergence, matrices.

Contents

1 Preliminary and Introduction

2 Main Results 2

1. Preliminary and Introduction

Let all sequences be represented by Ω . We call a sequence space as subspace of Ω . Throughout the paper, \mathbb{N} , \mathbb{R} and \mathbb{C} acts as set of whole numbers, the set of real numbers and the set of complex numbers, respectively. Let ℓ_{∞} acts as the set of all bounded sequences and $\ell(t)$ represents the following:

$$\ell(t) = \left\{ v = (v_j) \in \Omega : \sum_j |v_j|^{t_j} < \infty \right\},\,$$

for $0 < t_j \le \mathcal{H} = \sup_j t_j < \infty$ as can be seen in [1], [15], [25], [31].

Consider the spaces \mathcal{U} and \mathcal{V} and let $\mathcal{B} = (b_{nk})$ represent as an infinite matrix. Then, the matrix \mathcal{B} expresses the \mathcal{B} -transformation from \mathcal{U} into \mathcal{V} , if corresponding to all $v = (v_j) \in \mathcal{U}$, $\mathcal{B}v = \{(\mathcal{B}v)_n\}$ exists and belongs to \mathcal{V} ; where $(\mathcal{B}v)_n = \sum_k b_{nk}v_k$. We represent the symbol without limits as runs from 0 to ∞ . The symbol $\mathcal{B} \in (\mathcal{U} : \mathcal{V})$ signifies every matrix from \mathcal{U} to \mathcal{V} i.e., $\mathcal{B} : \mathcal{U} \to \mathcal{V}$. A sequence v is known as \mathcal{B} -summable to v if v approaches to v and it is known as the v-limit of v as can be seen in [3], [9], [10], [26] and many more as can be seen in text.

Thus, for the space \mathcal{U} , the matrix domain $\mathcal{U}_{\mathcal{B}}$ of \mathcal{B} is

$$\mathcal{U}_{\mathcal{B}} = \{ v = (v_j) \in \Omega : \mathcal{B}v \in \mathcal{U} \}. \tag{1.1}$$

As in [27], let \mathcal{T} represents the shift operator on Ω , which means, $\mathcal{T}v = \{v_n\}_{n=1}^{\infty}$, $\mathcal{T}^2v = \{v_n\}_{n=2}^{\infty}$ and so on. By Banach limit \mathcal{L} on ℓ_{∞} represents as a non-negative linear functional so that \mathcal{L} is invariant under the shift operator on ℓ_{∞} , which means, $\mathcal{L}(\mathcal{T}v) = \mathcal{L}(v)$ for each $v \in \ell_{\infty}$ and $\mathcal{L}(e) = 1$, e = (1, 1, 1, ...).

According to author in [20], a sequence $v = \{v_n\} \in \ell_{\infty}$ is almost convergent having \mathcal{F} -lim $v = \lambda$ if and only if

$$\lim_{m \to \infty} t_{mn}(v) = \lambda \quad \text{uniformly in } n \in \mathbb{N},$$

where, $\Psi_{mn}(v) = \frac{1}{m+1} \sum_{j=0}^{m} v_{n+j}$. The work on such have been studied by various authors as in [12], [14], [21], [23], [26]-[29], and many others.

2010 Mathematics Subject Classification: 46A45, 46CO5, 46B50. Submitted January 23, 2023. Published December 04, 2025

1

Also, as in [20], the set f_{∞} is defined as

$$f_{\infty} = \left\{ v \in \ell_{\infty} : \sup_{mn} |\Psi_{mn}(v)| < \infty \right\}.$$

Define the set

$$f = \left\{ v \in \ell_{\infty} : \lim_{m \to \infty} \Psi_{mn}(v) = \beta \text{ uniformly in } n \in \mathbb{N} \right\},$$

and is called as almost convergent sequences.

Define the sequence $\tau = (\tau_m)$ by

$$\tau_m = \begin{cases} 1, & \text{if m is even,} \\ 0, & \text{if m is odd.} \end{cases}$$

It is clear that τ is almost convergent to $\frac{1}{2}$ but is not convergent.

We call a matrix $\mathcal{B} = (b_{rm})$ to be regular (see, [11], [19], [26], [27],) iff it holds the following:

(i)
$$\lim_{r \to \infty} \sum_{m=0}^{\infty} b_{rm} = 1,$$

(ii)
$$\lim_{r \to \infty} b_{rm} = 0$$
, $(m = 0, 1, 2, \cdots)$

(i)
$$\lim_{r \to \infty} \sum_{m=0}^{\infty} b_{rm} = 1,$$

(ii) $\lim_{r \to \infty} b_{rm} = 0, \quad (m = 0, 1, 2, \cdots),$
(iii) $\sum_{m=0}^{\infty} |b_{rm}| < \mathcal{D}, \quad (\mathcal{D} > 0, \ r = 0, 1, 2, \cdots).$

As in [11], define sequence of positive numbers by $w = (w_m)$ and denote $W_i = \sum_{n=0}^{\infty} w_m$ for $i \in \mathbb{N}$. So, $R^w = (r_{im}^w)$ of (R, w_i) - mean is given by

$$r_{im}^{w} = \begin{cases} \frac{w_m}{W_i}, & \text{if } 0 \le m \le i, \\ 0, & \text{if } m > i, \end{cases}$$

and (R, w_i) mean is regular iff $W_i \to \infty$ as $i \to \infty$.

For $0 < t_m \le \mathcal{H} = \sup t_m < \infty$, the author in [23] have defined the space $r^w(g,t)$ as follows:

$$r^{w}(g,t) = \left\{ v = (v_m) \in \Omega : \sum_{m} \left| \frac{1}{W_m} \sum_{j=0}^{m} g_j w_j v_j \right|^{t_m} < \infty \right\},\,$$

where, $g_j \neq 0 \ \forall \ j \in \mathbb{N}$. Represent \mathcal{U}^{β} the β - dual of \mathcal{U} and is the set of every sequence $v = (v_m)$ so that $v\lambda = (v_m\lambda_m) \in cs$ for each $\lambda = (\lambda_m) \in \mathcal{U}$, where cs acts as set of all convergent series.

2. Main Results

Here we will define the space $r_g^w(t,s)$ and compute matrix classes $\left(r_g^w(t,s):f_\infty\right),\,\left(r_g^w(t,s):f\right)$ and $(r_a^w(t,s):f_0)$; where f_∞ , f and f_0 have been defined as before.

Following AlBaidani [4]-[7], Boss [18], Dowlath et al [8], Hamid et al [13,16], Jalal et al [17,28], Mursaleen et al [22], Rahman et al [24], Sheikh and Ganie [26], Tarray et al [30], and others, the sequence space $r_q^w(t,s)$ is defined as the space whose $R_{s,q}^w$ -transform is in $\ell(t)$, that is,

$$r_g^w(t,s) = \left\{ v = (v_m) \in \Omega : \sum_m \left| \frac{1}{W_m^{s+1}} \sum_{i=0}^m g_i w_i v_i \right|^{t_m} < \infty \right\}, \tag{2.1}$$

where, $0 < t_m \le \mathcal{H} = \sup t_m < \infty$, $s \ge 0$ and for each $m \in \mathbb{N}$, we have $g_m \ne 0$...

The set given by (2.1) can be redefined by using (1.1) as

$$\bigg\{\ell(t)\bigg\}_{R^w_{s,g}} = \bigg\{v \in \Omega: R^w_{s,g}v \in \ell(t)\bigg\}.$$

Set $\eta = (\eta_m)$ as $R_{s,q}^w$ -transform of $v = (v_m)$, which means,

$$\eta_m = \frac{1}{W_m^{s+1}} \sum_{i=0}^m g_i w_i v_i. \tag{2.2}$$

Now define the following lemma required for proving the main theorems.

Lemma 2.1 As in [24], define \mathcal{D}_1 , \mathcal{D}_2 as follows:

$$\mathcal{D}_1 = \left\{ b = (b_m) \in \Omega : \right.$$

$$\sup_{m} \left| \triangle \left(\frac{b_m}{g_m w_m} \right) W_m^{s+1} \right|^{t_m} < \infty \ \ and \ \sup_{m} \left| \frac{b_m}{g_m w_m} W_m^{s+1} \right|^{t_m} < \infty \right\}$$

and
$$\mathcal{D}_2 = \bigcup_{C>1} \left\{ b = (b_k) \in \Omega : \right.$$

$$\sum_{m} \left| \triangle \left(\frac{b_m}{g_m w_m} \right) W_m^{s+1} C^{-1} \right|^{t_m'} < \infty \text{ and } \left\{ \left(\frac{b_m}{g_m w_m} W_m^{s+1} C^{-1} \right)^{t_m'} \right\} \in \ell_{\infty} \right\}.$$

Then, for
$$1 < t_m \le \mathcal{H} < \infty$$
, we have $\left[r_g^w(t,s)\right]^{\beta} = \mathcal{D}_1; \ (0 < t_m \le 1) \ and \ \left[r_g^w(t,s)\right]^{\beta} = \mathcal{D}_2.$

It is important to note for s = 0, the space $r_g^w(t, s)$ reduces to $r^q(g, t)$ as can be searched in [14]. To get easiness in notations, we set

$$\Psi_{ir}(\mathcal{B}v) = \frac{1}{i+1} \sum_{j=0}^{i} \mathcal{B}_{r+j}(v) = \sum_{k} b(r, k, i) v_{k}$$

where,

$$b(r, k, i) = \frac{1}{i+1} \sum_{j=0}^{i} b_{r+j,k}; \ (r, k, i \in \mathbb{N}).$$

Also,

$$\widehat{b}(r,k,i) = \triangle \left[\frac{b(r,k,i)}{g_k w_k} \right] W_k^{s+1}$$

where,

$$\triangle \left[\frac{b(r,k,i)}{g_k w_k}\right] W_k^{s+1} = \left[\frac{b(r,k,i)}{g_k w_k} - \frac{b(r,k+1,i)}{g_{k+1} w_{k+1}}\right] W_k^{s+1},$$

where $t_{k}^{'}$ denotes the Holder conjugate and

$$\triangle \left[\frac{b(r,k,i)}{g_k w_k} \right] = \left[\frac{b(r,k,i)}{g_k w_k} \right] - \left[\frac{b(r,k+1,i)}{g_{k+1} w_{k+1}} \right]$$

and it was further considered in [19], [17] and many more.

Theorem 2.1 (i) For each $m \in \mathbb{N}$ with $1 < t_m \le \mathcal{H} < \infty$. We have $\mathcal{B} \in (r_g^w(t, s) : f_\infty)$ iff we have an integer $\varkappa > 1$ so that

$$\sup_{i,r\in\mathbb{N}} \sum_{m} \left| \widehat{b}(i,m,r)\varkappa^{-1} \right|^{t'_{m}} < \infty, \tag{2.3}$$

and

$$\left\{ \left(\frac{b_{im}}{g_m w_m} W_m^{s+1} \varkappa^{-1} \right)^{t_m'} \right\} \in \ell_{\infty} \ \forall \ i \in \mathbb{N}.$$
(2.4)

(ii) If $\forall m \in \mathbb{N} \text{ and } 0 \leq t_m \leq 1$, Then $\mathcal{B} \in (r_q^w(t,s) : \ell_\infty)$ iff

$$\sup_{i,m,r\in\mathbb{N}} \left| \widehat{b}(i,m,r) \right|^{t_m} < \infty \tag{2.5}$$

Proof:

Suppose the conditions (2.3) and (2.4) holds and $v \in r_g^w(t,s)$. Then $\{b_{nm}\}_{m \in \mathbb{N}} \in [r_g^w(t,s)]^{\beta}$, $\forall n \in \mathbb{N}$, the \mathcal{B} -transform of v exists. Now using

$$|ab| \le \varkappa \left\{ |a\varkappa^{-1}|^{t'} + |b|^p \right\},$$

where $\varkappa>0$, $a,\ b\in {\bf C},\ t>1$ along with $t^{-1}+(t')^{-1}=1$ [2], and we see by utilizing the relation (2.2) that

$$\begin{aligned} |\Psi_{rj}(\mathcal{B}v)| &= \left| \sum_{k} b(j, m, r) v_{m} \right| \\ &= \left| \sum_{m} \widehat{b}(j, m, r) \eta_{m} \right| \\ &\leq \sum_{m} \left| \widehat{b}(j, m, r) \eta_{m} \right| \\ &\leq \sum_{m} \varkappa \left\{ \left| \widehat{b}(j, m, r) \varkappa^{-1} \right|^{t'_{m}} + |\eta_{m}|^{t_{m}} \right\}. \end{aligned}$$

Now, take supremum over r, j on both sides, we see $\mathcal{B}v \in f_{\infty}$ for every $v \in r_q^w(t, s)$.

Conversely, we suppose $\mathcal{B} \in \left(r_g^w(t,s): f_\infty\right)$ and $1 < t_m \leq \mathcal{H} < \infty \ \forall \ m \in \mathbb{N}$. Therefore, $\mathcal{B}v$ exists for each $v \in r_g^w(t,s)$ and this implies that $\{b_{n,m}\}_{m \in \mathbb{N}} \in [r_g^w(t,s)]^\beta \ \forall n \in \mathbb{N}$, the necessity is obvious for (2.4). But for all r, n, $\sum_j b(n,j,r)v_j$ exists and $v \in r_g^w(t,s)$, so that $\{b(n,k,m)\}_{k \in \mathbb{N}}$ defines the continuous linear functionals $\phi_{rn}(v)$ on $r_g^w(t,s)$ by

$$\phi_{rn}(v) = \sum_{j} b(n, j, r) v_j; \ (n, j, r \in \mathbb{N}).$$

Since $r_g^w(t,s)$ is complete and $\sup_{n,r} \left| \sum_j b(n,j,r) v_j \right| < \infty$ on $r_g^w(t,s)$, so by Banach–Steinhaus theorem, there exists $\varkappa > 0$ such that

$$\sup_{r,n} |\phi_{rn}(v)| = \sup_{r,n} \sum_{j} |b(n,j,r)v_j| = \sup_{r,n} \left| \widehat{b}(n,j,r)\eta_j \right| < \infty.$$

So there by giving $\sup_{r,n} \left| \widehat{b}(n,j,r)\varkappa^{-1} \right|^{t'_j} < \infty$, yielding the necessity of (2.3) and completed the proof (i). The part (ii) can be proved similarly and the proof of theorem is complete.

Theorem 2.2 For $1 < t_m \le \mathcal{H} < \infty$, $\mathcal{B} \in (r_g^w(t,s):f)$ iff (2.3), (2.4), (2.5) holds for each $m \in \mathbb{N}$ of Theorem 2.2 and there is (β_m) sequence of scalars so that

$$\lim_{r \to \infty} \widehat{b}(n, m, r) = \beta_m, \text{ uniformly in } n \in \mathbb{N}.$$
(2.6)

Proof: Suppose (2.3), (2.4), (2.5) and (2.6) holds good and $v \in r_g^w(t, s)$. Then $\mathcal{B}v$ exists and by (2.6) we see for each $m \in \mathbb{N}$ that

$$|\widehat{b}(l,m,r)\varkappa^{-1}|^{t'_m} \to |\beta_m \varkappa^{-1}|^{t'_m}$$

as $r \to \infty$, uniformly in l, m yielding with (2.3) that

$$\sum_{j=0}^{m} \left| \beta_{j} \varkappa^{-1} \right|^{t'_{j}} = \lim_{r \to \infty} \sum_{j=0}^{m} \left| \widehat{b}(l, j, r) \varkappa^{-1} \right|^{t'_{m}} \quad (uniformly \ in \ l)$$

$$\leq \sup_{l,r\in\mathbb{N}} \sum_{j=0}^{m} \left| \widehat{b}(l,j,r)\varkappa^{-1} \right|^{t'_{m}} < \infty, \tag{2.7}$$

holds for each $m \in \mathbb{N}$. But given $v \in r_g^w(t,s)$ and as in [25]-Theorem 2.2, $r_g^w(t,s)$ is isomorphic to $\ell(t)$ linearly, so yielding $\sigma \in \ell(t)$. Hence, from (2.7), the series $\sum_m \beta_m \eta_m$ and $\sum_m \hat{b}(l,m,r) \eta_m$ converges for each r, l and $\sigma \in \ell(t)$. Thus, for a given $\epsilon > 0$, fix $m_0 \in \mathbb{N}$ so that

$$\left(\sum_{m=m_0+1}^{\infty} |\eta_m|^{t_m}\right)^{\frac{1}{t_m}} < \epsilon.$$

Now clearly for some $r_0 \in \mathbb{N}$, we see

$$\left| \sum_{m=0}^{m_0} \left[\widehat{b}(l, m, r) - \beta_m \right] \right| < \epsilon,$$

for every $r \geq m_0$ and uniformly in l. But (2.6) holds, giving

$$\left| \sum_{m_0+1}^{\infty} \left[\widehat{b}(l, m, r) - \beta_m \right] \right|$$

is arbitrary small. Therefore, we see

$$\lim_{r} \sum_{m} b(l, m, r) v_{m} = \lim_{r} \sum_{m} \widehat{b}(l, m, r) \eta_{m}$$
$$= \sum_{m} \beta_{m} \eta_{m},$$

uniformly in l. Consequently, $\mathcal{B}v \in f$ there by proving sufficiency.

We now let $\mathcal{B} \in (r_g^w(t,s):f)$. Then, necessities of (2.3) and (2.4) are immediate from Theorem 2.2 since $f \subset f_{\infty}$. To establish the necessity of (2.6), we define

$$b_l^m(w) = \begin{cases} (-1)^{l-m} \frac{W_m^{s+1}}{g_l w_l}, & \text{if } m \le l \le m+1, \\ 0, & \text{if } 0 \le l < k \text{ or } l > m+1. \end{cases}$$

But for each $v \in r_g^w(t,s)$, $\mathcal{B}v$ exists and is in f, yielding obviously that $\mathcal{B}b^{(m)}(w) = \left\{ \triangle \left(\frac{b_{lm}}{g_m w_m} \right) W_m^{s+1} \right\}_{n \in \mathbb{N}} \in f$ for each $m \in \mathbb{N}$, which proves the necessity of (2.6). This concludes the proof. \square

Note that if we let $\beta_m \to 0$ for each $m \in \mathbb{N}$ if above theorem, we have the following result.

Theorem 2.3 Let $1 < t_m \le \mathcal{H} < \infty$ for every $m \in \mathbb{N}$. Then $\mathcal{B} \in (r_g^w(t,s):f_0)$ if and only if (2.3), (2.4), (2.5) and (2.6) hold.

Corollary 2.1 If we take $g_m = 1$ for each $m \in \mathbb{N}$, then we get results obtained in [1].

Corollary 2.2 If we take s = 0, then we get results obtained in [14].

Corollary 2.3 If we take $g_m = 1$ and s = 0 for all $m \in \mathbb{N}$, then we get results obtained in [28].

Definition 2.1 Solid spaces [18]: We call a sequence space \mathcal{X} to be solid if and only if $\ell_{\infty}\mathcal{X} \subset \mathcal{X}$.

Definition 2.2 Define a space \widetilde{F} as the sets of all sequences such that its R-transform is in the space f, that is,

$$\widetilde{F} = \left\{ v \in \Omega : \lim_{m \to \infty} \sum_{k=0}^{m} \frac{1}{m+1} \sum_{j=0}^{k} \frac{w_j v_{j+n}}{W_k^{s+1}} = \beta \quad uniformly \ in \ n \in \mathbb{N} \right\}.$$

Theorem 2.4 The space \widetilde{F} is not solid space.

Proof: To prove the result, choose

$$\varsigma = (\varsigma_j) = \left(\frac{W_0}{w_0}, -\left(\frac{W_0}{w_0} + \frac{W_0}{w_0}\right), \left(\frac{W_1}{w_1} + \frac{W_2}{w_2}\right), \cdots, (-1)^j \left(\frac{W_j}{w_j} + \frac{W_{j+1}}{w_{j+1}}\right), \cdots\right); \ s = 0$$

and

$$\xi = (\xi_j) = \left(1, -1, 1, \cdots, (-1)^j, \cdots\right).$$

Then trivially, we see $\zeta \in f$ and $\xi \in \ell_{\infty}$. Define $\zeta = v$, that is, $(\zeta = v)_j = (v_j)$. Also, it is obvious that

$$(v_j) = \left(\frac{W_0}{w_0}, \left(\frac{W_0}{w_0} + \frac{W_0}{w_0}\right), \left(\frac{W_1}{w_1} + \frac{W_2}{w_2}\right), \cdots, \left(\frac{W_j}{w_j} + \frac{W_{j+1}}{w_{j+1}}\right), \cdots\right).$$

So, by definition of Riesz matrix, we see that

$$\mathcal{F}_R - \lim \upsilon = \lim_{m \to \infty} \sum_{k=0}^m \frac{1}{m+1} \sum_{j=0}^k \frac{w_j \upsilon_{j+n}}{W_k} = \infty.$$

Therefore, for spaces ℓ_{∞} and \widetilde{F} , the multiplication $\ell_{\infty}\widetilde{F}$ is not a subset of \widetilde{F} and hence we conclude that the space \widetilde{F} is not solid. \Box

Acknowledgments

We thank the referees for their suggestions, which improved the quality of the paper.

References

- 1. Abdul, H. G. and Dowlath, F., Almost convergence property of generalized Riesz spaces. Journal of Applied Mathematics and Computation 4(4), 249-253, (2020).
- 2. Abdul, H. G., Sigma bounded sequence and some matrix transformations. Algebra Letters 3 , 1-7, (2013).
- 3. Abdul, H. G. and Neyaz, S., Infinite matrices and almost bounded sequences. Vietnam J. Math. 42(2), 153-157, (2014).
- 4. AlBaidani, M. M., Notion of new structure of uncertain sequences using Δ -spaces. Journal of Mathematics, Volume 2022, Article ID 2615772, 6 pages.
- 5. AlBaidani, M. M., Statistical convergence of Δ-spaces using fractional Order. Symmetry 14(8), 1-8, (2022).
- 6. AlBaidani, M. M. and McDonald, J. J., On the block structure and frobenius normal form of powers of matrices. Electron. J. Linear Algebra 35(1), 297-306, (2019).
- AlBaidani M. M., Srivastava, H. M. and Ganie, A. H., Notion of non-absolute family of spaces. Int. J. Nonlinear Anal. Appl. 14(1), 345-354, (2023).

- 8. Dowlath, F. and Ganie, A. H., On some new scenario of Δ-spaces. J. Nonlinear Sci. Appl. 14, 163-167, (2021).
- 9. Ganie, A. H., New Spaces Over Modulus Function . Bol. Soc. Paran. Mat. (3s.) 41, 1-6, (2021).
- Ganie, A. H., Mobin, A., Neyaz, A. S. and Tanweer, J., New type of Riesz sequence space of non-absolute type. J. Appl. Comput. Math. 5(1), 1-4, (2016).
- 11. Gordon, M. P., Regular matrix transformations. McGraw-Hill Publishing Co. Ltd., London-New York-Toronto, (1966).
- 12. Gupkari, S. A., Some new sequence spaces and almost convergence. Filomat 22(2), 59-64, (2008).
- Hamid, G. A. and Albaidan, M. m., Matrix Structure of Jacobsthal numbers. J. Funct. Spaces., 2021 Article ID 2888840, 5pages.
- 14. Hamid, G. A. and Sheikh, N. A., Infinite matrices and almost convergence. Filomat 29(6), 1183-1188, (2015).
- 15. Hamid, G. A. and Ahmad, S. N., On some new sequence space of non-absolute type and matrix transformations. J. Egypt. Math. Soc. 21, 34-40, (2013).
- Hamid, G. A., Tripathy, B. C., Sheikh, N. A. and Sen, M., Invariant means and matrix transformations. Func. Anal.-TMA 2, 28-33, (2016).
- 17. Ishfaq, A. Malik and Tanweer, J., Measures of noncompactness in $(\overline{N}_{\Delta^{-}}^{q})$ summable difference sequence space. J. Math. Ext., 13(4), 155-171, (2019).
- 18. Johann, B., Classical and modern methods in summability. Oxford University Press, Oxford, UK, (2001).
- 19. Kizmaz, H., On certain sequence spaces. Canad. Math. Bull. 24(2), 169-176, (1981).
- 20. Lorentz, G. G., A contribution to the theory of divergent series. Acta Math. (80), 167-190, (1948).
- 21. Mursaleen, M., Infinite matrices and almost convergent sequences. Southeast Asian Bull. Math., 19(1), 45-48, (1995).
- 22. Mursaleen, M., Abdul, H. G., and Neyaz, A. S., New type of difference sequence space and matrix transformation. FILOMAT 28(7), 1381-1392, (2014).
- 23. Nanda, S., Matrix transformations and almost boundedness. Glas. Mat. 14(34), 99-107, (1979).
- Rahman, M. F. and Karim, A. B. M. R., Generalized Riesz sequence space of non-absolute type and some matrix mappings. Pure Appl. Math. J. 4(3), 90-95, (2015).
- 25. Sheikh, N. A. and Abdul, H. G., A new paranormed sequence space and some matrix transformations. Acta Math. Acad. Paedago. Nygr. 28(1), 47-58, (2012).
- 26. Sheikh, N. A. and Ganie, A. H., On the spaces of λ -convergent sequences and almost convergence. Thai J. Math. 11(2), 393-398, (2013).
- 27. Stefan, B., Theöries des operations linéaries. Warszawa, (1932).
- Tanweer, J. and Abdul, H. G., Almost Convergence and some matrix transformation. Shekhar (New Series)- Int. J. Math. 1(1), 133-138, (2009).
- 29. Tanweer, J., Sameer, A. G. and Abdul, H. G., Infinite matrices and σ -convergent sequences. Southeast Asian Bull. Math. 36(6), 825-830, (2012).
- 30. Tarray, A. T., Naik, P. A. and Najar, R. A., Matrix representation of an all-inclusive Fibonacci sequence. Asian Journal of Mathematics and Statistics, 11(1), 18-26, (2018).
- 31. Wilansky, A., Summability Through Functional Analysis. Amsterdam-New York-Oxford, (Mathematics Studies 85), (1984).

Reham A. Alahmadi,

Department of Basic Science, College of Science and Theoretical Studies,

Saudi Electronic University, Riyadh 11673,

Kingdom of Saudi Arabia.

E-mail address: r.alhmadi@seu.edu.sa