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Sign-Changing Radial Solutions for a Semilinear Problem on Exterior Domains With
Nonlinear Boundary Conditions

Boubker Azeroual and Abderrahim Zertiti

abstract: In this paper we are interested to the existence and multiplicity of radial solutions of problem
of elliptic equations ∆U(x) + ϕ(|x|)f(U) = 0 with a nonlinear boundary conditions on exterior of the unite
ball centered at the origin in RN such that u(x) → 0 as |x| → ∞, with any given number of zeros where the
nonlinearity f(u) is odd, superlinear for u larger enough and f < 0 on (0, β), f > 0 on (β, ∞). The function
ϕ > 0 is C1 on [R, ∞) where 0 < ϕ(|x|) ≤ c0 |x|−α with α > 2(N − 1) and N > 2 for large |x|.
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1. Introduction

This paper is concerned with the existence of radial solutions for nonlinear boundary-value problem

∆U(x) + ϕ(|x|)f(U) = 0 in Ω, (1.1)

∂ U

∂n
+ Uσ(U) = 0 in ∂Ω , (1.2)

and lim
|x|→∞

U(x) = 0. (1.3)

Where U : R → R and Ω is the complement of the ball of the radius R > 0 centered at the origin with
|x|2 = x2

1 + · · ·+x2
N is the standard norm of RN and ∂

∂n
is the outward normal derivate. And we assuming

that σ : [0,∞) → (0,∞) is a positive and continuous function.
We furthermore impose that the following assumptions:
(H1) f : R → R is odd and locally Lipschitzian. Moreover, f has one positive zero β s.t





f < 0 on (0, β) , f > 0 on (β,∞) ,

and lim
s→0

sup
f(s)

s
< 0 .

(H2)

f(x) = |x|q−1x+ g(x) and lim
|x|→∞

|g(x)|
|x|q = 0 where q > 1 (f is superlinear at infinity)

(H3) The function ϕ(r) is the C1 on [R,∞) s.t

0 < ϕ(r) ≤ c0 r
−α for any r ≥ R , (1.4)

2(N − 1) +
r ϕ′

ϕ
< 0 for any r ≥ R , (1.5)

where α > 2(N − 1) , N > 2 and c0 > 0.
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Remark 1.1.

(i) From (H2) we see that f is superlinear at infinity, i.e lim
|x|→∞

f(x)
x

= ∞.

(ii) By (H1)-(H2) it follows that F (u) =
∫ u

0 f(t)dt is even and has a unique positive zero γ > β with
F < 0 on (0, γ).

(iii) Denoting F0 = −F (β) > 0 it then follows that

F (u) ≥ −F0 for any u ∈ R . (1.6)

It is well known that the existence of many solutions on this and similar topics has been studied by
several papers. Some have used variational approach, degree theory, or sub/super solutions to prove the
existence of a positive solution [4,5,12,14]. Others with more assumptions have been able to prove the
existence of an infinite number of solutions [7,8,9,10,13]. A common approach in many of these papers
has been the shooting method and the scaling argument.
In [11], the authors studied the problem (1.1)-(1.2) in the case that 0 < α < 2(N − 1) under the
assumptions (H1)-(H2) and assuming that r → ϕ(r) is positive and the C1, ϕ(r) ∼ r−α for larger r and

lim
r→∞

r ϕ′

ϕ
= −α to prove that (1.1)-(1.2) has an infinitely number of solutions. In this paper, we treat the

case that α > 2(N−1) and we have a much weaker hypothesis (H3). Notice that a key difference between

this case and the one case already treated in [11] that the ”energy function”
U ′2

2ϕ
+ F (U) associate to

radial solution U of (1.1)-(1.2) is strictly decreasing but in our case, it is strictly increasing. Our aim
here is to prove the existence of an infinite number of solutions of (1.1)-(1.2) which is convenient to count
the number of zeros using ordinary differential equation methods.

Theorem 1.1. If (H1)–(H3) are satisfied then (1.1)–(1.3) has infinitely many radially symmetric so-
lutions. In addition, for each integer n there exist a radially symmetric solutions of problem (1.1)–(1.3)
which have exactly n zeros.

2. Preliminaries

The existence of radially symmetric solution U(x) = U(r) with r = |x| of (1.1)-(1.2) is equivalent to
the existence of a solution U of the nonlinear ordinary differential equation

U ′′(r) +
N − 1

r
U ′(r) + ϕ(r) f(U) = 0 if r > R, (2.1)

U ′(R) = U(R)σ(U(R)) and lim
r→∞

U(r) = 0. (2.2)

Let p be positive reel parameter and denoting U(r, p) = Up(r) the solution to the initial value problem

U ′′(r) +
N − 1

r
U ′(r) + ϕ(r) f(U) = 0, (2.3)

u(R) = p > 0 and u′(R) = p σ(p), (2.4)

As this initial value problem is not singular so, the existence uniqueness and continuous dependence
with respect to p of the solution of (2.3)-(2.4) on [R,R + ǫ] for some ǫ > 0, it follows by the standard
existence-uniqueness and dependence theorem for ordinary differential equations [6].

We now, for a solution Up of (2.3)-(2.4) we define the energy function as follows

Ep(r) =
U ′2

p

2ϕ(r)
+ F (Up) for r ≥ R. (2.5)

A simple calculation by using (2.3) yields

E′
p(r) = − U ′2

p

2r ϕ(r)

(
2(N − 1) +

r ϕ′

ϕ

)
. (2.6)
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From (1.4)-(1.5) therefore E′
p > 0 which means that the energy is nondecreasing.

On other hand we employing the following transformation

t = r2−N and Up(r) = Vp(t) . (2.7)

It then follows that the initial value problem (2.3)-(2.4) is converted to

V ′′
p (t) +H(t) f(Vp) = 0 if 0 < t < T, (2.8)

Vp(T ) = p > 0 and V ′
p(T ) = −b(p) < 0 (2.9)

where T = R2−N , b(p) = p σ(p)RN−1

N−2 > 0 and

H(t) =
( 1

N − 2

)2
t−

2(N−1)
N−2 ϕ(t−

1
N−2 ) . (2.10)

Furthermore from (1.4) we get

0 < H(t) ≤ c1 t
ν on (0, T ] , (2.11)

where ν = 2(N−1)−α

N−2 and c1 = c0

(N−2)2 > 0.

Notice that, since α > 2(N − 1) then ν > 0 which implies that limt→0+ H(t) = 0 and it follows that H
is continuous on [0, T ]. In addition, from (H3) we have that H is C1 on (0, T ]) and also

H ′(t) = − t−
3N−4
N−2 ϕ(t−

1
N−2 )

(N − 2)3

[
2(N − 1) + t−

1
N−2

ϕ′(t−
1

N−2 )

ϕ(t−
1

N−2 )

]
> 0 ,

which means that H is strictly increasing.

A simple calculation by using (2.8) show that

(V ′2
p (t)

2
+H(t)F (Vp)

)′
= H ′(t)F (Vp). (2.12)

From (2.5) and by integrating (2.12) from t to T gives

V ′2
p (t)

2
+H(t)F (Vp) =

b(p)2

2
+H(T )F (p) −

∫ T

t

H ′(x)F (Vp) dx.

From (1.6), since H ′ and H are positives we assert that

V ′2
p (t)

2
≤ b(p)2

2
+H(T )

(
F0 + F (p)

)
.

It then follows that

|V ′
p(t)| ≤ c2,p , (2.13)

where c2,p =
√
b(p)2 + 2H(T )

(
F0 + F (p)

)
> 0. Also we apply the mean value theorem with the initial

conditions (2.9) we get

|Vp(t)| ≤ p+ T c2,p = c3,p . (2.14)

Thus Vp and V ′
p are bounded on wherever they are defined. For p > 0 fixed it then follows that there is a

unique solution Vp of (2.8)-(2.9) defined on all [0, T ]. Which assert from the change variables (2.7) that
there is a unique solution Up of (2.3)-(2.4) defined on [R,∞).

Lemma 2.1. Let Vp be a solution of (2.8)-(2.9). Then Vp(t) > 0 on (0, T ] if p is sufficiently small.
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Proof. As V ′
p(T ) = −b(p) = − p σ(p)RN−1

N−2 < 0 because σ(p) > 0 so either,

{
case (A) : V ′

p(t) < 0 on all t ∈ (0, T ] ,
case (B) : Vp has a local maximum at some mp ∈ (0, T ).

For the case(A). Since Vp is nonincreasing we get Vp(t) > Vp(T ) = p on (0, T ] and so we are done in this
case.
We then consider the case (B). So it follows from (2.8) that V ′′

p (mp) = −H(mp)f(Vp(mp)) ≤ 0. As H > 0

therefore f
(
Vp(mp)

)
≥ 0. Which implies from (H1) that Vp(mp) ≥ β.

Next, we will to show the next Claim:

Claim 1. 0 < Vp < β on (0, T ] for p close to 0+.

If not, so we suppose that for any p > 0 sufficiently small there is tp ∈ (mp, T ) such that Vp(tp) = β

and V ′
p < 0 on (tp, T ).

Let us t ∈ [tp, T ] and integrating (2.8) from t to T with the initial conditions (2.9) yields

V ′
p(t) = b(p) +

∫ T

t

H(x)f(Vp) dx . (2.15)

Integrating this over [t, T ] with the initial conditions (2.9) and using the fact that b(p) is positive we see
that

Vp(t) ≤ p−
∫ T

t

( ∫ T

s

H(x)f(Vp) dx
)
ds . (2.16)

Notice that by condition (H1) we see that x → f(x)
x

is bonded below by some −c4 < 0 on [0,∞). And
since Vp > 0 is nondecreasing on [tp, T ] and from (2.11)-(2.16) it thus follows that

Vp(t) ≤ p+ c4

∫ T

t

Ĥ(s)Vp(s) ds ,

where Ĥ(t) =
∫ T

t
H(x) dx is a continuous and positive function on [0, T ] because H is continuous on[0, T ].

We can apply the Cornwall inequality [6] it follows that

Vp(t) ≤ p e
c4

∫
T

t
Ĥ(x) dx

. (2.17)

We observe that the function t → e
c4

∫
T

t
Ĥ(x) dx

> 0 is positive and bounded above by some c5 > 0 on
[0, T ]. Thus taking t = tp in (2.17) and letting p → 0+ we get

0 < Vp(tp) = β ≤ c5 p → 0. (2.18)

This is a contradiction and the claim1 is proven. Consequently, we have Vp > 0 on (0, T ] for p sufficiently
small. Finally, the result is established for both cases. Which completes the proof of Lemma 2.1. �

Lemma 2.2. Let Vp be a solution of (2.8)-(2.9). Then Vp has a local maximum mp on (0, T ) if p is
sufficiently large. In addition,

Vp(mp) → ∞ as p → ∞ , (2.19)

and mp → T as p → ∞ . (2.20)

Proof. From the above discussion at the beginning in the proof of lemma 2.1, we will to assert that the
case (A) is not occurs, if p > 0 is large enough. To the contrary we suppose that V ′

p < 0 on (0, T ] for any
p > 0 large enough. Therefore we have that Vp(t) ≥ Vp(T ) = p > 0 on (0, T ] for any p > 0 sufficiently
large. Consequently, Vp(t) → ∞ as p → ∞ for all t ∈ (0, T ]. Thus if p > 0 is sufficiently large we get

Vp(t) > β for any t ∈ (0, T ]. (2.21)
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Let us fixed t0 ∈ (0, T ) and p > 0 we denote

Ωp = inf
t0≤t≤T

{
H(t)

f(Vp)

Vp

}
.

By virtue of (2.21) and since H ′ > 0 and V ′
p < 0 we deduce that

Ωp ≥ H(t0) inf
p≤x≤Vp(t0)

{f(x)

x

}
for p sufficiently large. (2.22)

From (i) of Remark 1.1 (superlinearity of f) with H > 0 and taking p → ∞ in (2.22) consequently we
have that

Ωp → ∞ as p → ∞ . (2.23)

It is well known the eigenvectors of the operator − d2

dt2 in (t0, T ) with Dirichlet boundary conditions can

be chosen as ψk(t) =
√

2
T −t0

sin
( kπ(t−t0)

T −t0

)
of eigenvalues µk =

(
k π

T −t0

)2
where k is nonnegative integer.

Also, t1 = t0 + T −t0

2 is a zero of the second eigenfunction ψ2 on (t0, T ). In addition, from (2.23) therefore
for suitable large p > 0 it follows that Ωp > µ2. This allows us to apply the Sturm comparison theorem
[6] and consequently, Vp has at least one zero in (t0, T ) which contradicts to (2.21). Hence, Vp has a local
maximum at some mp ∈ (0, T ] for p sufficiently large.

It remains to be shown (2.20). By integrating (2.10) from mp to t < T gives

−V ′
p(t) =

∫ t

mp

H(x)f(Vp) dx . (2.24)

By the condition (H2) we see that f(x) ≥ c6 x
q on [0,∞) for some positive constant c6 > 0. This and

from (2.24) and using the fact that Vp > 0 is nonincreasing on (mp, t) implies that

c6 V
q

p (t)

∫ t

mp

H(x) dx ≤ −V ′
p(t). (2.25)

Dividing both sides by V q
p (t) and integrating both sides of the resultant inequality over (mp, T ) we obtain

1

(q − 1)V q−1
p (mp)

+ c6

∫ T

mp

∫ s

mp

H(x) dx ds ≤ 1

(q − 1) pq−1
.

Since q > 1, Vp(mp) > 0 and H > 0 together leads to

0 <

∫ T

mp

∫ s

mp

H(x) dx ds ≤ 1

c6 (q − 1) pq−1
.

Finally, by making p → ∞ of this so the limit is necessarily zero and consequently (2.20) is proven. Ends
of the proof of Lemma 2.2. �

Lemma 2.3. Let Vp be a solution of (2.8)-(2.9). Then Vp has an arbitrary large of number of zeros on
(0, T ] if p is large enough.

Proof. To prove this lemma, it is sufficient to show that Up has an arbitrary large of number of zeros on
[R,∞) if p is large enough. Using the results obtained in Lemma 2.2 and the change of variables (2.7)
we can assert that Up has a local maximum at Mp ∈ (R,∞) for p large enough and also,

Mp → R as p → ∞ , (2.26)

and Up(Mp) → ∞ as p → ∞ . (2.27)
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Now, we set

λ
2

q−1
p = Up(Mp) and ωλp

(r) = λ
− 2

q−1
p Up(Mp +

r

λp

) r ≥ 0 .

From (2.3) an easy computation shows

ω′′
λp

(r) +
N − 1

λpMp + r
ω′

λp
(r) + λ

− 2q

q−1
p ϕ

(
Mp +

r

λp

)
f(λ

2
q−1
p ωλp

) = 0 if r > 0, (2.28)

ωλp
(0) = 1 and ω′

λp
(0) = 0 . (2.29)

It then follows that

(ω′2
λp

2
+λ

−
2(q+1)

q−1
p ϕ

(
Mp+

r

λp

)
F (λ

2
q−1
p ωλp

)
)′

= − N − 1

λpMp + r
ω′2

λp
+λ

− 3q+1
q−1

p ϕ′
(
Mp+

r

λp

)
F (λ

2
q−1
p ωλp

) . (2.30)

From (1.5) we observe that ϕ′ < 0 and by using (1.6)-(2.30) we get

(ω′2
λp

2
+ λ

−
2(q+1)

q−1
p ϕ

(
Mp +

r

λp

)
F (λ

2
q−1
p ωλp

)
)′

≤ −F0 λ
− 3q+1

q−1
p ϕ′

(
Mp +

r

λp

)
.

Integrating both sides of this inequality over (0, r) gives

ω′2
λp

2
+ λ

− 2(q+1)
q−1

p

(
Mp +

r

λp

)
F (λ

2
q−1
p ωλp

) ≤ λ
− 2(q+1)

q−1
p F (λ

2
q−1
p ) + F0 λ

− 2(q+1)
q−1

p

(
ϕ(Mp) − ϕ(Mp +

r

λ
)
)
.

This implies that
ω′2

λp

2
≤ λ

−
2(q+1)

q−1
p

(
F (λ

2
q−1
p ) + F0 ϕ(Mp)

)
(since ϕ > 0). (2.31)

On other hand, from (H2) it follows that

F (s) =
1

q + 1
|s|q+1 +G(s) and lim

|s|→∞

G(s)

sq+1
= 0 ,

where G(s) =
∫ s

0
g(x) dx. Which implies that

lim
|s|→∞

F (s)

|s|q+1
=

1

q + 1
. (2.32)

From the continuity of ϕ and (2.26) we deduce that ϕ(Mp) → ϕ(R) as p → ∞. Also, by (2.27) and q > 1

we obtain λ
2(q+1)

q−1
p → ∞ as p → ∞. This implies from (2.32) that

F (λ
2

q−1
p )

λ
2(q+1)

q−1
p

→ 1

q + 1
and

F0 ϕ(Mp)

λ
2(q+1)

q−1
p

→ 0 as p → ∞.

Therefore from (2.31), if p is sufficiently large we have that

|ω′
λp

| ≤ 2√
q + 1

for any r ≥ 0.

Consequently, ωλp
and ω′

λp
are uniformly bounded. By the application of Arzela-Ascoli theorem there

is a subsequence (again label ωλp
) such that ωλp

→ ω and ω′
λp

→ ω′ as p → ∞ on compact subset of

[0,∞).
We know from (2.27) and since q > 1 that

λp → ∞ as p → ∞ . (2.33)
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By using (2.26)-(2.33) and the continuity of ϕ therefore we have that

N − 1

λpMp + r
→ 0 and ϕ

(
Mp +

r

λp

)
→ ϕ(R) as p → ∞ for any r ∈ [0,∞).

Furthermore from (H2) and (2.33) we get

λ
− 2q

q−1
p g

(
λ

2
q−1
p ωλp

(r)
)

→ 0 as p → ∞ ,

which implies that

λ
− 2q

q−1
p f

(
λ

2
q−1
p ωλp

(r)
)

= |ωλp
|q−1 ωλp

+ λ
− 2q

q−1
p g

(
λ

2
q−1
p ωλp

(r)
)

→ |ω(r)|q−1ω(r) as p → ∞ ,

for any r ∈ [0,∞). Consequently from (2.28) and (2.29) ω satisfies

ω′′(r) + ϕ(R) |ω(r)|q−1ω(r) = 0 if r > 0,

ω(0) = 1 and ω′(0) = 0.

It is well known that ω has an infinite number of zeros on [0,∞) we see [1] (lemma 10, with p = 2). Since
ωλp

→ ω as p → ∞ uniformly on compact subsets of [0,∞). Then it follows that ωp has an arbitrary

large number of zeros for p large enough. Finally, since Up(Mp +
r

λp

) = λ
2

q−1
p ωλp

(r) therefore Up has an

arbitrary large number of zeros on [R,∞) for p large enough and which also allows to obtain the same
conclusion for Vp on a interval (0, T ]. Which completes the proof of Lemma 2.3. �

Remark 2.1. Vp has only simple zeros on (0, T ] for any p > 0.

Proof. If not, we suppose there is some point t0 ∈ (0, T ] such that Vp(t0) = V ′
p(t0) = 0. Then by applying

the uniqueness of solutions of initial value problem (2.8)-(2.9) we assert that Vp = 0 which contradicts to
initial conditions (2.9). Thus Vp has only simple zeros. �

3. Proof of the main result

To prove the main theorem we need to recall the technical lemma which has been proved in [13]
(Lemma 4) and it is generalized in [7] (Lemma 2.7) on (R,∞).

Technical lemma: If Upk
is a solution of (2.3)-(2.4) with k ∈ N zeros on (R,∞) and in addition

Upk
(r) → 0 as r → ∞ then Upk

has at most k + 1 zeros on (R,∞), if p is sufficiently close to pk.

In what follows, for any integer k ≥ 1 we construct the following sets

Sk = {p > 0 : Vp has at least k zero on (0, T ]} .

By Lemmas 2.3 and 2.2 we see that S1 6= ∅ and is bounded from below by some positive constant. Thus
we can let

p0 = inf S1 > 0 .

Now, we want to claim the following result first

Claim 2. Vp0 > 0 on (0, T ].

Proof. Otherwise, so we suppose that Vp0 (z) = 0 for some point z ∈ (0, T ]. By continuous dependence of
solutions on initial conditions it follows that Vp0 ≥ 0 on (0, T ]. It then follows that Vp0 (z) = V ′

p0
(z) = 0.

Which contradicts to Remark 2.1. Thus Vp0 > 0 on (0, T ]. By the definition of p0, if p > p0 therefore Vp

must have a zero zp on (0, T ]. Ends of the proof of Claim 2. �
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Next, we aim to prove the second claim

Claim 3. zp → 0 as p → p+
0 .

Proof. To the contrary, so a subsequence of (zp) would converge to a z ∈ (0, T ] (still denoted (zp)).
From (2.13)-(2.14) and as F and σ are continuous it then follows that Vp and V ′

p are uniformly bounded
on [0, T ] for p near to p0. Moreover, from (2.8) V ′′

p is also uniformly bounded on [0, T ] for p close to p0.
Thus by using the Arzela-Ascoli theorem a subsequence of Vp and V ′

p converges uniformly on [0, T ] to
Vp0 and V ′

p0
. This implies that Vp0 (z) = 0 which contradicts to Vp0 > 0 on (0, T ]. Which completes the

proof of Claim 3. �

From Claim 3 and since Vp(zp) = 0 it follows that Vp0 (0) = 0 and Vp0 > 0 on (0, T ]. To refer of the
change variables (2.7) therefore Up0 is a positive solution of (2.3)-(2.4) and also Up0 (r) → 0 as r → ∞.

Now, by Lemmas 2.3 and 2.2 the set S2 is non empty and is bounded from below by some positive
constant. And thus we let p1 = inf S2.

On other hand, by the technical lemma, we see that Vp has at most one zero on (0, T ] if p → p0. By
definition of p0 if p is sufficiently close to p+

0 it then follows that Vp has exactly one zero on (0, T ]. Thus
p1 > p0 and by the same argument as above, we also show that Vp1 has exactly one zero on (0, T ] and
Vp1 (0) = 0. Consequently there is a solution of (2.3)-(2.4) which has exactly one zero on (R,∞) and
Up1(r) → 0 as r → ∞.

Proceeding inductively we can show that for every nonnegative integer n there is a solution of (2.1)-
(2.2) which has exactly n zeros on (R,∞). Finally, the proof of Theorem 1.1 is complete as well.

4. Conclusion

By this work, we managed to establish the existence of infinitely many sign-changing radial solution
to superlinear problem (1.1)-(1.3) on exterior domain in R

N , when f grows superlinearity at infinity, the
proof presented here seems more natural and more easier.
We make the change of variables U(r) = V (r2−N ) and investigate the differential equation for V on
[0, R2−N ] this allows us to obtain some qualitative properties of zeros of solutions. Finally, by approx-
imating solutions of (2.8)-(2.9) with an appropriate linear equation, we deduce that there are localized
solutions with any prescribed number of zeros.
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