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Sign-Changing Radial Solutions for a Semilinear Problem on Exterior Domains With
Nonlinear Boundary Conditions

Boubker Azeroual and Abderrahim Zertiti

ABSTRACT: In this paper we are interested to the existence and multiplicity of radial solutions of problem
of elliptic equations AU (x) + ¢(|z|)f(U) = 0 with a nonlinear boundary conditions on exterior of the unite
ball centered at the origin in RV such that u(z) — 0 as |z| — oo, with any given number of zeros where the
nonlinearity f(u) is odd, superlinear for u larger enough and f < 0 on (0,8), f > 0 on (8, 00). The function
@ >0is C! on [R, 00) where 0 < ¢(|z]) < co |2| ™ with a > 2(N — 1) and N > 2 for large |z|.
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1. Introduction

This paper is concerned with the existence of radial solutions for nonlinear boundary-value problem

AU(z) +¢(|lz))f(U) =0 in Q, (1.1)
%_: +Uc(U)=0 in 00, (1.2)
and ‘ I\ILH U(z) =0. (1.3)

Where U : R — R and € is the complement of the ball of the radius R > 0 centered at the origin with
|z|?> = 23+ - -+23 is the standard norm of RY and -2 is the outward normal derivate. And we assuming
that o : [0,00) — (0,00) is a positive and continuous function.

We furthermore impose that the following assumptions:

(H1) f:R — R is odd and locally Lipschitzian. Moreover, f has one positive zero 3 s.t

f<0 on(0,8) , f>0 on(p,00),
and li_r%sup@<0.

(H2)

f(x) = |$|q71x +g(x) and lim lg(z)]

o 2 =0 where ¢ > 1 (fis superlinear at infinity)
x|—oo |X

(H3) The function ¢(r) is the C* on [R,00) s.t

0<o(r)<cor @ foranyr >R, (1.4)
/!

2(N—1)—|—£<0 for any r > R, (1.5)
¥

where a > 2(N — 1), N > 2 and ¢y > 0.
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Remark 1.1.

(i) From (H2) we see that [ is superlinear at infinity, i.e ‘ l‘im
T |—00
(i) By (H1)-(H2) it follows that F(u) = fou f(t)dt is even and has a unique positive zero v > 3 with
F <0 on (0,7).

(#ii) Denoting Fy = —F(B) > 0 it then follows that
F(u) > —Fy for anyu e R. (1.6)

It is well known that the existence of many solutions on this and similar topics has been studied by
several papers. Some have used variational approach, degree theory, or sub/super solutions to prove the
existence of a positive solution [4,5,12,14]. Others with more assumptions have been able to prove the
existence of an infinite number of solutions [7,8,9,10,13]. A common approach in many of these papers
has been the shooting method and the scaling argument.

In [11], the authors studied the problem (1.1)-(1.2) in the case that 0 < a < 2(N — 1) under the
assumptions (H1)-(H2) and assuming that r — ¢() is positive and the C!, p(r) ~ r~=< for larger r and

lim % = —a to prove that (1.1)-(1.2) has an infinitely number of solutions. In this paper, we treat the
r—>00

case that & > 2(NN —1) and we have a much weaker hypothesis (H3). Notice that a key difference between
2

U
this case and the one case already treated in [11] that the "energy function” 55 + F(U) associate to
'

radial solution U of (1.1)-(1.2) is strictly decreasing but in our case, it is strictly increasing. Our aim
here is to prove the existence of an infinite number of solutions of (1.1)-(1.2) which is convenient to count
the number of zeros using ordinary differential equation methods.

Theorem 1.1. If (H1)—(H3) are satisfied then (1.1)—(1.3) has infinitely many radially symmetric so-
lutions. In addition, for each integer n there exist a radially symmetric solutions of problem (1.1)—(1.3)
which have exactly n zeros.

2. Preliminaries

The existence of radially symmetric solution U(z) = U(r) with r = |z| of (1.1)-(1.2) is equivalent to
the existence of a solution U of the nonlinear ordinary differential equation

U”(r)—i—?U’(r)—Hp(r)f(U):O if r > R, (2.1)

U'(R)=U(R)o(U(R)) and Tlgrolo U(r)=0. (2.2)

Let p be positive reel parameter and denoting U (r, p) = U,(r) the solution to the initial value problem
U"(r) + ?U’(T) +o(r) f(U) =0, (2.3)

w(R)=p>0 and ' (R)=po(p), (2.4)

As this initial value problem is not singular so, the existence uniqueness and continuous dependence
with respect to p of the solution of (2.3)-(2.4) on [R, R + €] for some € > 0, it follows by the standard
existence-uniqueness and dependence theorem for ordinary differential equations [6].

We now, for a solution U, of (2.3)-(2.4) we define the energy function as follows

U/2
E,(r)= —2— + F(U, for r > R. 2.5
A simple calculation by using (2.3) yields
U/2 7’(,0/
E! =——L (2(N-1 . 2.
J0) =~ L (2N -+ 7 F) (2.6)
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From (1.4)-(1.5) therefore F}, > 0 which means that the energy is nondecreasing.
On other hand we employing the following transformation
t=r>"N " and U,(r) = V,(t). (2.7)
It then follows that the initial value problem (2.3)-(2.4) is converted to

V) +H(t) f(V,) =0 if0<t<T, (2.8)
Vp(T)=p>0 and V,(T)=—b(p) <0 (2.9)

where T = R*>™N, b(p) = % > 0 and

H(t) = (5m5) 1R ot 7). (2.10)
Furthermore from (1.4) we get
0< H(t) <ert” om (0,7, (2.11)
Whereuzw and ¢1 = 2%z > 0.

Notice that, since a > 2(IN — 1) then v > 0 which implies that lim;_.q+ H(¢) = 0 and it follows that H
is continuous on [0, T]. In addition, from (H3) we have that H is C! on (0,7]) and also

[2(N—1)+t_m71 >0,

which means that H is strictly increasing.

A simple calculation by using (2.8) show that

(V”Iz(t) +H(t)F(V,)) = H'()F(V,). (2.12)

From (2.5) and by integrating (2.12) from ¢ to T gives

Vp/z(t) + H(t) F(V,) = ik + H(T) F(p) — /tT H'(2)F(V,,) da.

2

From (1.6), since H and H are positives we assert that

Vi) _ o)
2 =2

+ H(T)(Fo + F(p)) -

It then follows that
Vo) < cap,s (2.13)

where ¢, = \/b(p)2 + 2 H(T)(Fy + F(p)) > 0. Also we apply the mean value theorem with the initial
conditions (2.9) we get
Vo) <p+Teop=csp. (2.14)

Thus V}, and V;f are bounded on wherever they are defined. For p > 0 fixed it then follows that there is a
unique solution V), of (2.8)-(2.9) defined on all [0,T]. Which assert from the change variables (2.7) that
there is a unique solution U, of (2.3)-(2.4) defined on [R, c0).

Lemma 2.1. Let V, be a solution of (2.8)-(2.9). Then V,(t) > 0 on (0,T] if p is sufficiently small.
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Proof. As V(T) = —b(p) = % < 0 because a(p) > 0 so either,
{ case (A) : Vy(t) <0 onall te(0,T],

case (B): V,has a local maximum at some m,, € (0,7).

For the case(A). Since V), is nonincreasing we get V,(t) > V,(T') = p on (0,7 and so we are done in this
case.

We then consider the case (B). So it follows from (2.8) that V,'(m,) = —H (my) f(V,(myp)) < 0. As H >0
therefore f(V,(m;)) > 0. Which implies from (H1) that V,(m,) > 3.

Next, we will to show the next Claim:
Claim 1. 0 <V, < 8 on (0,T] for p close to 0".

If not, so we suppose that for any p > 0 sufficiently small there is ¢, € (mp,T) such that V,(t,) = 5
and V, < 0on (t,,T).
Let us ¢ € [tp,T] and integrating (2.8) from ¢ to T with the initial conditions (2.9) yields

T
+/t H(z)f(V,) da. (2.15)

Integrating this over [t, T] with the initial conditions (2.9) and using the fact that b(p) is positive we see

that
Vo(t) < / / H(z) (V) de)ds (2.16)

Notice that by condition (H1) we see that  — f( ) is bonded below by some —c; < 0 on [0,00). And
since V,, > 0 is nondecreasing on [t,,T] and from (2 11)-(2.16) it thus follows that

T
Vp(t) §P+C4/t H(s)V,(s)ds,

where H (t ft x) dz is a continuous and positive function on [0, T because H is continuous on[0, T].
We can apply the Cornwall inequality [6] it follows that

T -~

Vp(t)fp604‘/; H(w)dw.

o~
We observe that the function ¢t — ™ ft A@yde - g s positive and bounded above by some ¢; > 0 on
[0, 7). Thus taking t = ¢, in (2.17) and letting p — 07 we get

(2.17)

0<Vp(ty) =B<esp—0. (2.18)

This is a contradiction and the claiml is proven. Consequently, we have V,, > 0 on (0, T for p sufficiently
small. Finally, the result is established for both cases. Which completes the proof of Lemma 2.1. O

Lemma 2.2. Let V, be a solution of (2.8)-(2.9). Then V, has a local mazximum m, on (0,T) if p is
sufficiently large. In addition,

Vp(myp) = 00 asp — oo, (2.19)
andm, =T asp—oco. (2.20)
Proof. From the above discussion at the beginning in the proof of lemma 2.1, we will to assert that the
case (A) is not occurs, if p > 0 is large enough. To the contrary we suppose that V) < 0 on (0, 7] for any

p > 0 large enough. Therefore we have that V,(t) > V,(T) = p > 0 on (0, 7] for any p > 0 sufficiently
large. Consequently, V,(t) — oo as p — oo for all ¢ € (0,T]. Thus if p > 0 is sufficiently large we get

Vp(t) > B for any t € (0,77. (2.21)
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Let us fixed ¢y € (0,T) and p > 0 we denote

. V,
2 = tOISI%fST {H () f(V:) I

By virtue of (2.21) and since H’ > 0 and V,; < 0 we deduce that

Q, > H{(ty) inf {m} for p sufficiently large. (2.22)

p<ax<Vy(to) x

From (i) of Remark 1.1 (superlinearity of f) with H > 0 and taking p — oo in (2.22) consequently we
have that
Qp, 00 asp—00. (2.23)

It is well known the eigenvectors of the operator —% in (to,T") with Dirichlet boundary conditions can
be chosen as () = |/ 725 sin (k7}(t__t§0)) of eigenvalues ), = (%)2 where k is nonnegative integer.
Also, t1 = tg+ T;tg is a zero of the second eigenfunction ), on (t9,T'). In addition, from (2.23) therefore
for suitable large p > 0 it follows that €, > p,. This allows us to apply the Sturm comparison theorem

[6] and consequently, V}, has at least one zero in (to,T") which contradicts to (2.21). Hence, V}, has a local
maximum at some m, € (0,7] for p sufficiently large.

It remains to be shown (2.20). By integrating (2.10) from m,, to t < T gives

V') = [ H)f(V,)ds. (2.24)

myp

By the condition (H2) we see that f(z) > ¢g 27 on [0, 00) for some positive constant ¢g > 0. This and
from (2.24) and using the fact that V}, > 0 is nonincreasing on (m,,,t) implies that

c6 VA(t) t H(z)dz < -V](t). (2.25)

Dividing both sides by V/J(t) and integrating both sides of the resultant inequality over (m,, T') we obtain

1
(g—1) qu_l(mp

1
(g—1)pr=t~

T s
)+66/ H(x)drds <

Since ¢ > 1, V,(m,) > 0 and H > 0 together leads to

1

T s
0</ Hz)drds < ——m—— .
mp v Mp ( ) 06 (q_l)pQ*l

Finally, by making p — oo of this so the limit is necessarily zero and consequently (2.20) is proven. Ends
of the proof of Lemma 2.2. O

Lemma 2.3. Let V), be a solution of (2.8)-(2.9). Then V, has an arbitrary large of number of zeros on
(0,T) if p is large enough.

Proof. To prove this lemma, it is sufficient to show that U, has an arbitrary large of number of zeros on
[R,00) if p is large enough. Using the results obtained in Lemma 2.2 and the change of variables (2.7)
we can assert that U, has a local maximum at M, € (R, co) for p large enough and also,

M,— R as p— o0, (2.26)
and Up(Mp,) - 00 as p—00. (2.27)



6 B. AZEROUAL AND A. ZERTITI

Now, we set

A =Up(Mp) and wy, (1) = Ap " Up(M, + 3 ) r>0
P

From (2.3) an easy computation shows

wy (r)—i—&w’ (7‘)+)\_"2__q1 o(M, —l—L) f()\q%wx )=0 ifr>0 (2.28)
Ap ApMp +r Ap P P )\p P P ’ .
wx,(0) =1 and w) (0)=0. (2.29)
It then follows that
w2t r 2 / N-1 ,,  -se r 2

( 5 +Ap, 0 @(Mp—f—)\—p)F()\p ! wAp)) = —Ww’)\p—i—/\p ! cp’(Mp—F)\—p) F(\g " wy,)- (2.30)

From (1.5) we observe that ¢’ < 0 and by using (1.6)-(2.30) we get

12

w)\p _2((1;%—11) r % / _3q_+11 , r
(M oM+ ) FOF T wa)) =Rk, T ¢ (M + ).
p p
Integrating both sides of this inequality over (0,7) gives
w’)? _2(<1+11) r Ll _2(q—+11) Ll _2(q+11) r
N T (Mt )P Twn) S A T FOT) +Rod T (9(M) = o(My + 3) -
P
This implies that
Wi _ 26at1) 2
<y (F(Ag‘l) + Ry gp(Mp)) (since ¢ > 0). (2.31)
On other hand, from (H2) it follows that
. G(s)
_ +1 _
F(s) = p 1|s|q + G(s) and \sl|li>noo i 0,
where G(s) = [; g(x) dz. Which implies that
. F(s) 1
| = —. 2.32
\9|1£>noo |S|q+1 q+1 ( )

From the continuity of ¢ and (2.26) we deduce that ¢(M,) — ¢(R) as p — oo. Also, by (2.27) and ¢ > 1
2(q+1)
we obtain A\, ' — 0o as p — oo. This implies from (2.32) that

2
FO!
(D), 1 Foel0)
a4 q+1 (‘Ij'll)
AT A’

— 0 asp— oo.

Therefore from (2.31), if p is sufficiently large we have that

2
Wy | € —= for any r > 0.
|, | < 7ER! yr>
Consequently, wy, and w’Ap are uniformly bounded. By the application of Arzela-Ascoli theorem there
is a subsequence (again label wy,) such that wy, — w and oJ’Ap — w’ as p — oo on compact subset of
[0, 00).
We know from (2.27) and since ¢ > 1 that

Ap =00 asp— 00. (2.33)
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By using (2.26)-(2.33) and the continuity of ¢ therefore we have that

N -1

r
ApMp 41

— 0 and (M, +
Ap

) = ¢(R) asp— oo foranyr € [0,00).

Furthermore from (H2) and (2.33) we get

_ _2q 2

Ap 1 g()\g’l wAp(r)) —0 asp— 0,

which implies that

_ 29 2 2q

_2q 2
Ap I f()\,‘,’_l o.))\p(r)) = |w>\p|q*1 wx, +Ap 7 g()\g_l wAp(r)) — w(r)]T w(r) asp— oo,
for any r € [0, 00). Consequently from (2.28) and (2.29) w satisfies

W)+ @(R) |w(r) |9 w(r) =0 if r >0,
(0)=1 and '(0)=0.

€

It is well known that w has an infinite number of zeros on [0, 00) we see [1] (lemma 10, with p = 2). Since
wy, — w as p — oo uniformly on compact subsets of [0,00). Then it follows that w, has an arbitrary
r
Ay
arbitrary large number of zeros on [R, c0) for p large enough and which also allows to obtain the same
conclusion for V, on a interval (0,7']. Which completes the proof of Lemma 2.3. O

2
large number of zeros for p large enough. Finally, since U,(M, + —) = Aj~" wy, () therefore U, has an

Remark 2.1. V, has only simple zeros on (0,T] for any p > 0.

Proof. Tf not, we suppose there is some point to € (0,77] such that V,(to) = V(o) = 0. Then by applying
the uniqueness of solutions of initial value problem (2.8)-(2.9) we assert that V}, = 0 which contradicts to
initial conditions (2.9). Thus V, has only simple zeros. O

3. Proof of the main result
To prove the main theorem we need to recall the technical lemma which has been proved in [13]

(Lemma 4) and it is generalized in [7] (Lemma 2.7) on (R, 00).

Technical lemma: If U, is a solution of (2.3)-(2.4) with k¥ € N zeros on (R, c0) and in addition
Up, (1) = 0 as r — oo then Up, has at most k + 1 zeros on (R, 00), if p is sufficiently close to py.

In what follows, for any integer k£ > 1 we construct the following sets
Sy ={p>0: V, has at least k zero on (0,7} .

By Lemmas 2.3 and 2.2 we see that S; # () and is bounded from below by some positive constant. Thus
we can let
po =inf 51 > 0.

Now, we want to claim the following result first
Claim 2. V,,, >0 on (0,T].

Proof. Otherwise, so we suppose that V,,,(z) = 0 for some point z € (0,T]. By continuous dependence of
solutions on initial conditions it follows that V,,, > 0 on (0,77]. It then follows that V), (2) =V, (2) = 0.
Which contradicts to Remark 2.1. Thus V,, > 0 on (0,7]. By the definition of py, if p > po therefore V,
must have a zero z, on (0,7]. Ends of the proof of Claim 2. g
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Next, we aim to prove the second claim
Claim 3. z, — 0 asp—>p(')".

Proof. To the contrary, so a subsequence of (z,) would converge to a z € (0,T] (still denoted (z,)).
From (2.13)-(2.14) and as I" and ¢ are continuous it then follows that V}, and V, are uniformly bounded
on [0, 7] for p near to pg. Moreover, from (2.8) V" is also uniformly bounded on [0, T] for p close to po.
Thus by using the Arzela-Ascoli theorem a subsequence of V,, and V, converges uniformly on [0, 7] to
Vo and V) . This implies that V}, (z) = 0 which contradicts to V,,, > 0 on (0,7]. Which completes the
proof of Claim 3. 1

From Claim 3 and since V,(z,) = 0 it follows that V,,,(0) = 0 and V,,, > 0 on (0,7]. To refer of the
change variables (2.7) therefore U, is a positive solution of (2.3)-(2.4) and also Up,(r) — 0 as r — oo.

Now, by Lemmas 2.3 and 2.2 the set S92 is non empty and is bounded from below by some positive
constant. And thus we let p; = inf Ss.

On other hand, by the technical lemma, we see that V,, has at most one zero on (0,7] if p — pg. By
definition of py if p is sufficiently close to pd it then follows that V, has exactly one zero on (0, 7). Thus
p1 > po and by the same argument as above, we also show that V},, has exactly one zero on (0,T] and
Vp, (0) = 0. Consequently there is a solution of (2.3)-(2.4) which has exactly one zero on (R, 00) and
Up,(r) = 0 as r — oc.

Proceeding inductively we can show that for every nonnegative integer n there is a solution of (2.1)-
(2.2) which has exactly n zeros on (R, 00). Finally, the proof of Theorem 1.1 is complete as well.

4. Conclusion

By this work, we managed to establish the existence of infinitely many sign-changing radial solution

to superlinear problem (1.1)-(1.3) on exterior domain in R, when f grows superlinearity at infinity, the
proof presented here seems more natural and more easier.
We make the change of variables U(r) = V(r?=%) and investigate the differential equation for V on
[0, R?2~N] this allows us to obtain some qualitative properties of zeros of solutions. Finally, by approx-
imating solutions of (2.8)-(2.9) with an appropriate linear equation, we deduce that there are localized
solutions with any prescribed number of zeros.
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