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abstract: In this article, we introduce some M-topological operators called multiset kernel and multiset
shell operators. Thereafter, we define a new separation axiom termed as multiset TD- spaces and investigate
some of its basic properties. It is observed that this space precisely lies between multiset T0 and multiset
T1-spaces. Also, we characterize multiset T0, T1 and TD-spaces in the light of the mentioned operators.
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1. Introduction

Many generalizations have been explored following an appropriate application of classical set theory
in order to overcome some of the natural difficulties encountered in modeling real-life problems. Zadeh
[26] introduced fuzzy set theory, which was the primary amongst those to offer a general framework
based on the membership value of the elements, followed by soft set reported in [17], rough set by [18],
neutrosophic set by [24], fuzzy soft set by [16]. The notion of multiset (mset) is one of the generalization
of the classical sets. In a multiset, any element may occur more than once and the number of times
occurrence of an element is called the multiplicity of the element, which is a natural number. One can
say that a Zermelo-Fraenkel set is a particular case of a multiset, if the multiplicity of each element is
equal to 1. In real world this is very much essential, as there are identical things like in a statistical
survey repeated data, in a water molecule repetitions of hydrogen atoms, repetitions strands of DNA and
RNA, repetitions of roots in a polynomial and many more.
Over the years the application of multiset has been observed not only in philosophy, logic, linguistics,
and physics, but also in mathematics and computer science and this leads to the development of a com-
prehensive theory of multisets. Blizard [1,2] provided the excellent overview of the theory of multisets.
In 1986, Yager [25] initiated the algebraic properties of multisets. After that many researchers have put
their efforts for studying it rigorously. The basic properties of the multisets can be found in [9,11,25].
In 2012, Girish and John [7] procured the notion of multiset topology. Since then many topological
properties of these concepts have been studied by researchers, for instances [5,6,8,12,13,14,15,20,21,22].
Very recently El-Sharkasy and Badr [3], El-Sharkasy et al. [4] portrayed beautifully multiset topology in
DNA and RNA mutations, and these articles demonstrate how multiset topology can be used to detect
diseases and help biologists in disease treatment.
The points play a significant role in the study of topological space. After proposing the definition of points
in multiset topological spaces, Shravan and Tripathy [23] have introduced the notion of quasi-coincidence
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which has a vital role in the neighborhood structure of multipoint. In a multiset topological space (M, τ )
in general it is not true that cl(A) = A ∪ A′ for all submultiset A of M , which was shown by Jakaria
[10]. Nevertheless, after modifying the definition of accumulation point, Shravan and Tripathy [23] have
proved that the above result is true for all submultiset A of M .
The separation axioms are just axioms in the sense that we could add these conditions as extra axioms
to the definition of topological space to achieve a more restricted definition of what a topological space
is. For developing topology, separation axioms play an important role. In multiset topology, separation
axioms were first introduced by [20]. Later on, it was studied by Ray and Dey [19] by extending it in
the mixed multiset topology. In a topological space, most of the separation axioms are described in the
light of open sets, closed sets, or closure of a set. In this article we study separation axioms in a different
way. First we introduce two multiset operators and then we study their basic properties. Thereafter, we
give the notion of a new separation axiom called Multiset TD-spaces. We show that this space precisely
lies between multiset T0 and multiset T1-spaces.
This article is being written in a fine thread of logic and furnished a well ordered perspective to the devel-
opment of the new concepts. Lucid examples are properly placed to make the treatise more illustrative
and self-contained. To reinforce and solidify the understanding some of the well expected notions, a new
approach has been incorporated and discussed in detail.

2. Preliminaries

In this section, we recall some necessary definitions and results which will be useful for this study.

Definition 2.1. [7] An mset M drawn from the set X is represented by a function count M or CM :
X −→ N , where N represents the set of all non negative integers.
The mset M drawn from the set X = {x1, x2, ....., xk} is denoted by M = {m1/x1, m2/x2, ..., mk/xk},
where M is an mset with x1 appearing m1 times, x2 appearing m2 times and so on.
Here, CM (x) is the number of occurrences of the element x in the mset M . However those elements
which are not included in the mset M have zero count. It is clear that a classical set is a special case of
an mset.

Definition 2.2. [7] A domain X is defined as a set of elements from which msets are constructed. The
mset space [X ]m is the set of all msets whose elements are in X such that no element in the mset occurs
more than m times.
If X = {x1, x2, ....., xk} then
[X ]m = {{m1/x1, m2/x2, ..., mk/xk} : for i = 1, 2, ..., k; mi ∈ {0, 1, 2, ..., m}}.
Let M, N ∈ [X ]m. Then the following are defined:
(i) M = N if CM (x) = CN (x), for all x ∈ X.
(ii) M ⊆ N if CM (x) ≤ CN (x), for all x ∈ X.
(iii) P = M ∪ N if CP (x) = max{CM (x), CN (x)}, for all x ∈ X.
(iv) P = M ∩ N if CP (x) = min{CM (x), CN (x)}, for all x ∈ X.
(v) P = M ⊖ N if CP (x) = max{CM (x) − CN (x), 0}, for all x ∈ X.

Definition 2.3. [11] Let M ∈ [X ]m. Then the complement M c of M is defined by CMc (x) = m−CM (x),
for all x ∈ X.

On the basis of multiplicity of elements there can be defined three types of submset of M from [X ]m.

Definition 2.4. [7] A submset N of M is a whole submset of M with each element in N having full
multiplicity as in M , i.e., CM (x) = CN (x), for all x ∈ N .

Definition 2.5. [7] A submset N of M is a partial whole submset of M is a partial whole submset of M
with at least one element in N having full multiplicity as in M , i.e., CM (x) = CN (x), for some x ∈ N .

Definition 2.6. [7] A submset N of M is a full submset of M if each element in M is an element in N
with the same or lesser multiplicity as in N , i.e., CN (x) ≤ CM (x), for all x ∈ N .

Definition 2.7. [7] Let M ∈ [X ]m. The power set of M is the support set of the power mset P (M) and
is denoted by P ∗(M).
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Definition 2.8. [7] Let M ∈ [X ]m and τ ⊆ P ∗(M). Then τ is called a multiset topology on M if τ
satisfies the following properties
(i) ∅ and M are in τ ;
(ii) The union of the elements of any subcollection of τ is in τ ;
(iii) The intersection of any two elements of τ is in τ .
The ordered pair (M, τ ) is called multiset topological space. By an M-topology we shall mean the multiset
topology.

Definition 2.9. [7] Let (M, τ ) be an M-topological space. Let A be a submset of M . The closure of
an mset A is defined as the intersection of all closed msets containing A and is denoted by cl(A), i.e.,
cl(A) = ∩{K ⊆ M : K is a closed mset and A ⊆ K} and Ccl(A)(x) = Min{CK(x) : A ⊆ K}.

Definition 2.10. [7] Let (M, τ ) be an M-topological space. Let A be a submset of M . The union of
all open msets contained in A is defined as the interior of an mset A, and is denoted by int(A), i.e.,
int(A) = ∪{K ⊆ M : K is an open mset and K ⊆ A} and Cint(A)(x) = Max{CK(x) : K ⊆ A}.

Definition 2.11. [23] Let [X ]m be a space of multisets. A multipoint is a multiset M in X such that

CM (x) =

{

k, for x ∈ X ;

0, for y 6= x, y ∈ X.

Remark 2.12. [23] A multipoint {k/x} is a subset of a multiset M or {k/x} ∈ M if k ≤ CM (x).

Definition 2.13. [23] Let M be a multiset in the space [X ]m. Let k/x ∈ M , then k/x is said to be
quasi-coincident with j/y ∈ M if k + j > m.

Definition 2.14. [23] Let M be a multiset in the space [X ]m. Let N ⊆ M , then k/x is said to be
quasi-coincident with N if k > CNc(x).

Definition 2.15. [23] A multiset M is said to be quasi-coincident with N , i.e., MqN at x iff CM (x) >
CNc(x). By M 6 qN we shall mean the msets M and N are not quasi-coincident.

Remark 2.16. [23] If M and N are quasi-coincident at x then both CM (x) and CN (x) are non-zero
and so M and N intersect at x.

Definition 2.17. [23] A multiset N in an M-topological space (M, τ ) is said to be Q-neighbourhood
(Q-nbd)of k/x if and only if there exists an open mset P such that k/xqP ⊂ N .

Proposition 2.18. [23] Let [X ]m be a space of multisets. Let M, N ∈ [X ]m. Then M ⊆ N iff M and
N c are not quasi-coincident, i.e., k/x ∈ M iff k/x is not quasi-coincident with M c.

3. M-topological operators

In this section, we define M-kernel and M-shell as two M-topological operators. Then the connections
between these two operators and M-closure and M-derived set operators are obtained.

Definition 3.1. Given a submset A of an M-topological space (M, τ ), the M-kernel of A is defined by:
ker(A) = ∩{K ⊆ M : K is an open mset and A ⊆ K} and Cker(A)(x) = Min{CK(x) : A ⊆ K}.

Based on the above definition, we formulate the following result.

Proposition 3.2. Let A, B ∈ M where M ∈ [X ]m. Then we have the following properties.
(i) A ⊆ ker(A).
(ii) A ⊆ B implies ker(A) ⊆ ker(B).
(iii) ker(A) ⊆ ker(ker(A)).
(iv) ker(A ∩ B) ⊆ ker(A) ∩ ker(B).
(v) ker(A ∪ B) = ker(A) ∪ ker(B).
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In an M-topological space (M, τ ), it is found that for any submset A of M , cl(A) = A ∪ A′ is not
true in general, which was verified by Jakaria [10]. Shravan and Tripathy [23] have made a remarkable
observation on here that whether it is possible to think the definition of accumulation point in another way,
so that the above can be true. Nonetheless, they proved that by changing the definition of accumulation
point the above mentioned result is always true. We now add those results.

Proposition 3.3. [23] Let (M, τ ) be an M-topological space. Then k/x ∈ cl(A) iff each Q-nbhd of k/x
is q-coincident with A.

Definition 3.4. [23] A multipoint k/x is said to be an accumulation point of an mset M iff (i) k/x is
the closure point of M .
(ii) Every Q-nbhd of k/x and M are q-coincident at some point different from supp(k/x).

Theorem 3.5. [23] Let (M, τ ) be an M-topological space. Then cl(A) = A ∪ A′ for all submset A of M .

It can be obtained from the above Definitions 2.9 and 3.1 that:

Proposition 3.6. cl({k/x}) = ∩{K ⊆ M : K is closed mset and k/x ∈ K} and Ccl({k/x})(x) =
Min{CK(x) : k/x ∈ K}.

Proposition 3.7. ker({k/x}) = ∩{K ⊆ M : K is an open mset and k/x ∈ K} and Cker(k/x)(x) =
Min{CK(x) : k/x ∈ K}.

Theorem 3.8. [7] Let c : P ∗(M) −→ P ∗(M) be an operator satisfying the following conditions:
(c1) c(φ) = φ;
(c2) A ⊆ c(A);
(c3) c(c(A)) = c(A);
(c4) c(A ∪ B) = c(A) ∪ c(B).
Then we can associate an M-topology in the following way:
τ = {Ac ∈ P ∗(M) : c(A) = A}.
Moreover, with this M-topology τ , cl(A) = c(A) for every submset A of M .

Note 1. The operator c is called M-closure operator.

Theorem 3.9. Let d : P ∗(M) −→ P ∗(M) be an operator satisfying the following conditions:
(d1) d(∅) = ∅;
(d2) k/x ∈ d(A) iff x ∈ d(A − {k/x});
(d3) d(A ∪ d(A)) ⊆ A ∪ d(A);
(d4) d(A ∪ B) = d(A) ∪ d(B).
Then we can associate an M-topology in the following way:
τ = {A ∈ P ∗(M) : d(Ac) ⊆ Ac}.
Moreover, with this M-topology τ , der(A) = d(A), for every submset A of M .

Proof. (i) By (d1), M ∈ τ and by the definition of d, d(M) ⊆ M , thus ∅ ∈ τ .
(ii) Let A, B ∈ τ , then d(Ac) ⊆ Ac and d(Bc) ⊆ Bc. Now, d(Ac ∪ Bc) = d(Ac) ∪ d(Bc) [by (d4)] and thus
d(Ac ∪ Bc) ⊆ Ac ⊆ Bc. Therefore, d(A ∩ B)c ⊆ (A ∩ B)c and hence A ∩ B ∈ τ .
(iii) Let {Ai : i ∈ Λ} ∈ τ . Then d(Ac

i ) ⊆ Ac
i for all i ∈ Λ. Since it is true that ∩i∈ΛAc

i ⊆ Ac
i for

all i ∈ Λ, d(∩i∈ΛAc
i ) ⊆ d(Ac

i ) ⊆ d(Ac
i ) ∪ Ac

i = Ac
i [by monotinicity of d, one can show it easily, since

d(Ac
i ) ⊆ Ac

i , ∀i ∈ Λ]. Thus d(∩i∈ΛAc
i ) ⊆ ∩i∈ΛAc

i and so ∩i∈ΛAc
i ∈ τ . Consequently ∪i∈ΛAc

i ∈ τ .

As, cl(A) = c(A), we have A ∪ der(A) = A ∪ d(A). Therefore, (A ⊖ {k/x}) ∪ der(A ⊖ {k/x}) =
(A ⊖ {k/x}) ∪ d(A ⊖ {k/x}) for every k/x ∈ M . This implies that {k/x} ∈ der(A ⊖ {k/x}) ⇐⇒ {k/x} ∈
d(A ⊖ {k/x}). By the given hypothesis (d2), {k/x} ∈ d(A) ⇐⇒ {k/x} ∈ d(A ⊖ {k/x}), Therefore
{k/x} ∈ der(A) ⇐⇒ {k/x} ∈ d(A) and thus der(A) = d(A). �

Note 2. The operator d is called M-derived set operator.
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Theorem 3.10. If an operator c
∗ is defined by c

∗(A) = A ∪d(A) for every submset A of M , then c
∗ = c.

Proof. (c1) Since d(∅) = ∅, by the definition of c∗, we have c
∗(∅) = ∅.

(c2) It is clear from the definition that A ⊆ c
∗(A).

(c3) c
∗(A ∪ B) = [A ∪ B] ∪ d[A ∪ B] = [A ∪ B] ∪ [d(A) ∪ d(B)] = [A ∪ d(A)] ∪ [B ∪ d(B)] = c

∗(A) ∪ c
∗(B)

[by (d4)].
(c4) c

∗(c∗(A)) = [A ∪ d(A)] ∪ d[A ∪ d(A)] = A ∪ d(A) = c
∗(A) [by (d3)].

Therefore, we have c
∗ = c. �

Definition 3.11. Let (M, τ ) be an M-topological space. A multipoint k/x is said to be weakly separated
from A if there exists an open mset U ∈ τ of k/x such that U 6 qA and which is denoted by k/x ⊢ A.

Based on the above Propositions 3.6, 3.7 and Definition 3.11, we formulate the following:

Remark 3.12. Let (M, τ ) be an M-topological space and k1/x, k2/y be two multipoints in M . Then
(i) cl(k1/x) = {k2/y : k2/y 6⊢ k1/x}.
(ii) ker(k1/x) = {k2/y : k1/x 6⊢ k2/y}.

Definition 3.13. In an M-topological space (M, τ ) we define:
(i) The M-derived set of k/x as der(k/x) = cl(k/x) ⊖ {k/x}.
(ii) The M-shell of k/x as shell(k/x) = ker(k/x) ⊖ {k/x}.

Based on the above results we have the following:

Remark 3.14. Let (M, τ ) be an M-topological space. Then for any two multipoints k1/x and k2/y,
(i) der(k1/x) = {k2/y : k2/y 6= k1/x, k2/y 6⊢ k1/x}.
(ii) shell(k1/x) = {k2/y : k2/y 6= k1/x, k1/x 6⊢ k2/y}.

Proposition 3.15. Let k1/x and k2/y be two multipoints in M . Then we have the following properties:
(i) k2/y ∈ ker(k1/x) if and only if k1/x ∈ cl(k2/y) .
(ii) k2/y ∈ shell(k1/x) if and only if k1/x ∈ der(k2/y).
(iii) k2/y ∈ cl(k1/x) implies cl(k2/y) ⊆ cl(k1/x).
(iv) k2/y ∈ ker(k1/x) implies ker(k2/y) ⊆ ker(k1/x).

Proof. The assertions (i) and (ii) are straightforward.
The statement (iii) follows from the definition of closure immediately.
(iv) Let k3/z ∈ ker(k2/y). Then by (i), k2/y ∈ cl(k3/z) and so by (iii), cl(k2/y) ⊆ cl(k3/z). By the given
condition, k2/y ∈ ker(k1/x) and again by (i), k1/x ∈ cl(k2/y) and hence by (iii), cl(k1/x) ∈ cl(k2/y).
Therefore, cl(k1/x) ⊆ cl(k3/z) and since k1/x ∈ cl(k1/x), we have k1/x ∈ cl(k3/z). By (i), k3/z ∈
ker(k1/x). Thus ker(k2/y) ⊆ ker(k1/x). �

Proposition 3.16. Let (M, τ ) be an M-topological space and let k1/x and k2/y be any two multipoints
in M , then ker(k1/x) 6= ker(k2/y) if and only if cl(k1/x) 6= cl(k2/y).

Proof. Let ker(k1/x) 6= ker(k2/y). Then there is a multipoint k3/z such that k3/z ∈ ker(k1/x) but
k3/z 6∈ ker(k2/y). Now, k3/z ∈ ker(k1/x) implies k1/x ∈ cl(k3/z) [by Proposition 3.15] and so cl(k1/x) ⊆
cl(k3/z). Also, from k3/z 6∈ ker(k2/y) we get k2/y 6∈ cl(k3/z) [by Proposition 3.15] and this implies
cl(k3/z) ∩ k2/y = ∅. Since cl(k1/x) ⊆ cl(k3/z), we have cl(k1/x) ∩ k2/y = ∅ and so k2/y 6∈ cl(k1/x).
Therefore, cl(k1/x) 6= cl(k2/y).

The converse part can be verified in a similar manner to the 1st part. �

4. Multiset TD-spaces

In this section, we introduce a new separation axiom, which is called as ’Multiset TD-spaces’. We show
that this space lies precisely in between T0 and T1-spaces. Also, we study some of its basic properties.
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Definition 4.1. [20] Let (M, τ ) be an M-topological space. Then M is said to be a multiset T0-space
iff for any pair of multipoints k1/x, k2/y in M such that x 6= y, there exists a τ-open mset G such that
k1/x ∈ G, k2/y 6∈ G or there exists a τ -open mset H such that k1/x 6∈ H, k2/y ∈ H.

Definition 4.2. [20] Let (M, τ ) be an M-topological space. Then M is said to be a multiset T1-space iff
for any pair of multipoints k1/x, k2/y in M such that x 6= y, there exist τ -open msets G, H such that
(k1/x ∈ G, k2/y 6∈ G) and (k1/x 6∈ H, k2/y ∈ H).

Definition 4.3. Let (M, τ ) be an M-topological space. Then M is said to be a multiset TD-space if
der(k/x) is a closed mset for every multipoint k/x in M .

Theorem 4.4. If an M-topological space (M, τ ) is TD-space then it is T0-space.

Proof. Let k1/x and k2/y be any two multipoints of M such that x 6= y. If k2/y ∈ der(k1/x), then
[der(k1/x)]c is an open mset [since der(k1/x) is closed mset] such that k1/x ∈ [der(k1/x)]c and k2/y 6∈
[der(k1/x)]c. If k2/y 6∈ der(k1/x), then we have k2/y ∈ [cl(k1/x)]c in such a way that k1/x 6∈ [cl(k1/x)]c.
Thus there exist τ -open msets [der(k1/x)]c and [cl(k1/x)]c such that (k1/x ∈ [der(k1/x)]c, k2/y 6∈
[der(k1/x)]c) or (k1/x 6∈ [ck(k1/x)]c, k2/y ∈ [cl(k1/x)]c). Hence M is T0-space. �

Remark 4.5. The converse of the above theorem may not be true in general.

Example 4.6. Let X = {a, b, c} and M = {2/a, 3/b, 1/c}. Consider τ = {M, ∅, {1/a, 1/b}, {1/a, 3/b},
{1/c}, {1/a, 1/b, 1/c}, {2/a, 1/b, 1/c}, {1/a, 3/b, 1/c}}. Then τ is an M-topology on M . We show that M
is a T0-space but not a TD-space.
Here, we have cl(2/a) = {2/a, 3/b}, and so der(2/a) = {3/b}, which is not closed mset and eventually it
is showing that M is not a TD-space but one can easily verified that it is T0-space.

Theorem 4.7. If an M-topological space (M, τ ) is T1-space then it is TD-space.

Proof. Let k/x be any multipoint of M . Since M is a T1-space, cl(k/x) = {k/x} and therefore by the
Definition 3.13, we have der(k/x) = ∅ and so der(k/x) is closed mset in τ . Thus M is TD-space. �

Remark 4.8. The converse of the above theorem may not be true. The following example justifies the
claim.

Example 4.9. Let X = {a, b, c} and M = {1/a, 2/b, 1/c}. Let τ = {M, ∅, {1/a}, {1/b}, {2/b}, {1/a, 1/b},
{1/a, 2/b}}. Then τ forms an M-topology on M . We show that (M, τ ) is a TD-space but not a T1-space.
Here, cl(1/c) = {1/c}, cl(2/b) = {2/b, 1/c} and cl(1/a) = {1/a, 1/c}. Therefore, der(1/a) = {1/c},
der(2/b) = {1/c} and der(1/c) = ∅.
Since ∅ and {1/c} are closed msets in (M, τ ), we have der(k/x) is closed mset for every multipoint
k/x ∈ M and hence M is TD-space. Also, one can easily verify that M is not a T1-space.

Theorem 4.10. Let (M, τ ) be an M-topological space. Then M is a TD-space if and only if for every
k/x ∈ M there exist an open mset G and a closed mset F such that {k/x} = G ∩ F .

Proof. Let the space (M, τ) be TD-space. Then der(k/x) is closed mset for every k/x ∈ M . By Definition
3.13, we have der(k/x) = cl(k/x) ⊖ {k/x}. This implies that {k/x} = cl(k/x) ⊖ der(k/x). If we let
G = [der(k/x)]c and F = cl(k/x), then G and F are the required open and closed msets respectively
such that {k/x} = G ∩ F .

Let for every multipoint k/x ∈ M there exist an open mset G and a closed mset F such that
{k/x} = G ∩ F . Then one can replace F by cl(k/x). Hence, der(k/x) = cl(k/x) ⊖ {k/x} = cl(k/x) ⊖
(G∩cl(k/x)) = cl(k/x)∩Gc. Which is showing that der(k/x) is closed mset, as intersection of two closed
msets is closed. �

We now give some important characterizations of TD-space.
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Proposition 4.11. Let (M, τ ) be an M-topological space. Then the following statements are equivalent.
(i) M is TD-space.
(ii) der(der(A)) ⊆ der(A) for every mset A.
(iii) der(A) is closed mset for every mset A.

Proof. (i) =⇒ (ii) : The assertion immediately follows from the definition of derived set.
(ii) =⇒ (iii) : It follows from the fact cl(der(A)) = der(der(A)) ∪ der(A) ⊆ der(A).
(iii) =⇒ (i) : If for every submset A of M , der(A) is closed mset, then der(k/x) is closed mset for all
multipoint k/x ∈ M . �

5. Multiset Ti-spaces, for i = 0, 1

In this particular section, we establish several characterizations of multiset T0 and T1-spaces in terms
of the multiset operators introduced in Section 3.

Proposition 5.1. Let (M, τ ) be an M-topological space. Then the following statements are equivalent.
(i) M is T0-space.
(ii) For any multipoints k1/x, k2/y in M with x 6= y, either k1/x ⊢ k2/y or k2/y ⊢ k1/x.
(iii) k2/y ∈ cl(k1/x) implies k1/x 6∈ cl(k2/y).
(iv) For any pair of multipoints k1/x, k2/y with x 6= y, cl(k1/x) 6= cl(k2/y).

Proof. (i) =⇒ (ii) : It is straightforward.
(ii) =⇒ (iii) : Let k2/y ∈ cl(k1/x). Then each Q-nbd of k2/y is quasi-coincident with k1/x. Suppose
G is a Q-nbd of k2/y. Then k1/xqG and this implies k2/y 6⊢ k1/x and therefore by the hypothesis (ii),
k1/x ⊢ k2/y. Hence, there exists a Q-nbd H of k1/x such that k2/y 6 qH and so k1/x 6∈ cl(k2/y).
(iii) =⇒ (iv) : Suppose that cl(k1/x) 6= cl(k2/y) is not true. Then cl(k1/x) ⊆ cl(k2/y) and cl(k2/y) ⊆
cl(k1/x). Since k2/y ∈ cl(k2/y), we have k2/y ∈ cl(k1/x). By the given condition we get k1/x 6∈ cl(k2/y)
and this implies k1/x 6∈ cl(k1/x), which cannot be possible.
(iv) =⇒ (i) : Let for any pair of multipoints k1/x, k2/y with x 6= y, cl(k1/x) 6= cl(k2/y). This implies
that either k1/x 6∈ cl(k2/y) or k2/y 6∈ cl(k1/x). Let us assume that k1/x 6∈ cl(k2/y). Set U = [cl(k2/y)]c.
Then, there exists an open mset U such that k1/x ∈ U and k2/y 6∈ U and so M is T0. �

Proposition 5.2. Let (M, τ ) be an M-topological space. Then the following statements are equivalent.
(i) M is T0-space.
(ii) For any pair of multipoints k1/x, k2/y in M , k2/y ∈ ker(k1/x) implies k1/x 6∈ ker(k2/y).
(iii) For any pair of multipoints k1/x, k2/y with x 6= y, ker(k1/x) 6= ker(k2/y).

Theorem 5.3. An M-topological space (M, τ ) is said to be T0-space iff k2/y ∈ der(k1/x) implies
cl(k2/y) ⊆ der(k1/x) for every multipoints k1/x, k2/y in M .

Proof. Let k1/x, k2/y in M . If k2/y ∈ der(k1/x), then we have k1/x 6= k2/y and k1/x 6∈ cl(k2/y) [since
M is T0], and hence cl(k2/y) ⊆ der(k1/x).

Let k1/x, k2/y in M with k1/x 6= k2/y. If k2/y ∈ der(k1/x), then cl(k2/y) ⊆ der(k1/x). This shows
that k2/y ∈ cl(k1/x) and k1/x 6∈ cl(k2/y). Thus by Proposition 5.1, we have M is T0-space. �

Theorem 5.4. An M-topological space (M, τ ) is said to be T0-space iff k2/y ∈ shell(k1/x) implies
ker(k2/y) ⊆ shell(k1/x) for every multipoints k1/x, k2/y in M .

Proof. This can be established using standard technique. �

Theorem 5.5. An M-topological space (M, τ ) is said to be T0-space iff der(k/x) ∩ shell(k/x) = ∅ for
every multipoints k/x in M .
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Proof. If der(k/x) ∩ shell(k/x) 6= ∅, then there exists k1/y such that k1/y ∈ der(k/x) and k1/y ∈
shell(k/x). Thus k/x 6= k1/y and so k1/y ∈ cl(k/x) and k1/y ∈ ker(k/x). Therefore, by Remark 3.14,
we have k1/y 6⊢ k/x and k/x 6⊢ k1/y, This shows that M cannot be T0, which is a contradiction and
whence the result follows.

For the converse part, if der(k/x) ∩ shell(k/x) = ∅, then for each k1/y 6= k/x, we have either
k1/y ∈ cl(k/x) or k1/y ∈ ker(k/x) and by the Proposition 5.1, M is T0. �

Theorem 5.6. An M-topological space (M, τ ) is said to be T0-space iff der(k/x) is an mset union of
closed msets for every multipoints k/x in M .

Proof. Let (M, τ ) be a T0-space. Since, der(k/x) is closed mset for every k/x in M , for all k1/y ∈ der(k/x)
there must exists an open mset G ∈ τ such that k/x ∈ G and k1/y 6∈ G. Thus, for all k1/y ∈ der(k/x),
we get k1/y ∈ Gc ∩ cl(k/x) ⊆ der(k/x). Since Gc ∩ cl(k/x) is closed mset, so der(k/x) is an mset union
of closed msets.

For the converse part, let der(k/x) = ∪i∈J Ai, where Ai is closed mset for all i ∈ J . If k1/y ∈ der(k/x),
then k1/y ∈ Ai for some i ∈ J and k/x 6∈ Ai. Thus, there exists open mset Ac

i ∈ τ such that k/x ∈ Ac
i

and k1/y 6∈ Ac
i . If k1/y ∈ der(k/x) and k1/y 6= k/x, then k1/y ∈ [cl(k/x)]c, which is an open mset not

containing k/x. This shows that M is T0-space. �

Proposition 5.7. Let (M, τ ) be an M-topological space. Then the following statements are equivalent.
(i) M is T1-space.
(ii) For any multipoints k1/x, k2/y in M with x 6= y, k1/x ⊢ k2/y.
(iii) cl(k/x) = {k/x} for every multipoint k/x ∈ M .
(iv) der(k/x) = ∅ for every multipoint k/x ∈ M .
(v) ker(k/x) = {k/x} for every multipoint k/x ∈ M .
(vi) shell(k/x) = ∅ for every multipoint k/x ∈ M .
(vii) For any pair of multipoints k1/x, k2/y with x 6= y, cl(k1/x) ∩ cl(k2/y) = ∅.
(viii) For any pair of multipoints k1/x, k2/y with x 6= y, ker(k1/x) ∩ ker(k2/y) = ∅.

Proof. (i) ⇐⇒ (ii) : Using the definition it can be easily established.
(i) ⇐⇒ (iii) : It is straightforward.
(iii) =⇒ (iv) : It follows directly from the Definition 3.13.
(iv) =⇒ (v) : If ker(k/x) 6= {k/x}, then there is a multipoint k3/z such that x 6= z and k3/z ∈ ker(k/x).
Hence, k/x ∈ cl(k3/z) and so k/x ∈ cl(k3/z) ⊖ {k3/z} = der(k3/z), a contradiction.
(v) =⇒ (vi) : It follows immediately from the Definition 3.13.
(vi) ⇐⇒ (vii) : If cl(k1/x) ∩ cl(k2/y) 6= ∅, then there is k3/z in M such that k3/z ∈ cl(k1/x) and
k3/z ∈ cl(k2/y). Then we have k1/x ∈ ker(k3/z) and k2/y ∈ ker(k3/z). Thus, k1/x, k2/y ∈ ker(k3/z) ⊖
{k3/z} = shell(k3/z), which is a contradiction.
(vii) =⇒ (viii) : The given hypothesis implies k1/x 6∈ cl(k2/y) and k2/y 6∈ cl(k1/x). Equivalently,
k2/y 6∈ ker(k1/x) and k1/x 6∈ ker(k2/y). Consequently, it follows that ker(k1/x) ∩ ker(k2/y) = ∅.
(viii) =⇒ (i) : The given condition implies k1/x 6∈ ker(k2/y) and k2/y 6∈ ker(k1/x). Equivalently,
k2/y 6∈ cl(k1/x) and k1/x 6∈ cl(k2/y). Then there exist two open msets G and H such that k1/x ∈ G,
k2/y 6∈ G and k2/y ∈ H , k1/x 6∈ G and eventually, M is T1.
�

6. Conclusion

In this article, we have introduced some M-topological operators called them multiset kernel and
multiset shell operators. Then we have discussed the interrelations between these two mset operators
with the M-derived set or M-closure operators. Further, we have defined a new separation axiom termed as
multiset TD-spaces and investigated some of its basic properties. It has observed that this space precisely
lies between multiset T0 and T1-spaces. Lastly, we have given several characterizations of multiset T0,
multiset T1 and multiset TD-spaces in the light of the above mentioned operators.
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