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On the Periodic Solutions for a class of Partial Differential Equations with unbounded
Delay
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abstract: Trough this work we investigate the existence of periodic solutions for the following partial
differential equations with infinite delay of the form ẇ(t) = Lw(t) + D(wt) + H(t). We assume that the
operator (L,D(L)) is generally nondensely defined operator and verifies the Hille-Yosida condition. Using
the theory of perturbation of semi-Fredholm operators, we propose some sufficient conditions on the linear
operators L, D and the phase space B to guarantee the existence of periodic solutions for this class of partial
differential equations from bounded ones on the positive real half-line without considering the compactness
of the semigroup generated by the part of L on the closure of it’s domain. At the end, an application with
numerical simulations, is given to confirm the applicability of the obtained theoretical results.
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1. Introduction and preliminary

Along this work we establish the existence of periodic solutions for the following partial functional
differential equation with infinite delay{

ẇ(t) = Lw(t) +D(wt) +H(t) for t ≥ 0,
w0 = φ ∈ B,

(1.1)

where (L,D(L)) is a linear operator on a Banach space (X, ∥.∥), D : B → X is a bounded linear
operators, H : R+ → X is a continuous function and wt, the history function, is an element of B defined
by wt(θ) = w(t + θ), θ ≤ 0, where B is the space of all functions mapping from (−∞, 0] to X endowed
with a norm |.|B and complies with the followings axioms proposed in [10]:

(A) There is c > 0 and functions M(.),K(.) : R+ → R+ with K is continuous and M is locally bounded
function such that for ς ∈ R, r > 0, if a function w : (−∞, ς + r] → X is continuous on [ς, ς + r] and
wς ∈ B, then for ς ≤ t ≤ ς + r the statements below hold:

(i) wt ∈ B,

(ii) ∥w(t)∥ ≤ c|wt|B,

∗ Corresponding author

Submitted February 06, 2023. Published June 08, 2024
2010 Mathematics Subject Classification: 34k14, 34k30, 35B10, 35B40.

1
Typeset by BSPMstyle.
© Soc. Paran. de Mat.

www.spm.uem.br/bspm
http://dx.doi.org/10.5269/bspm.67017


2 Mohammed Kriche, Abdelhai Elazzouzi and Khalil ezzinbi

(iii) |wt|B ≤ K(t− ς) sup
ς≤s≤t

∥w(t)∥+M(t− ς)|wς |B,

(iv) The function t→ wt is continuous from [ς, ς + r] into B,

(v) The space B is complete.

The problem of periodicity is widely investigated by several researchers in different directions concern
ordinary and partial differential equations. The must popular approach that they employed was primarily
based on the use of fixed points theory. There is a large literature on these topics, see for instance previous
studies [2,3,6,7,8,13,14,15,16,17,18,19,20,22]. The authors, in [6], proved the periodicity of solutions by
applying Horn’s fixed points theorem to the Poincaré map and under the ultimate boundedness condition
on the solutions. Recently, in [19], proceeded by leray-Shauder fixed points theorem to establish the
periodicity for a class of partial differential equations, the authors, in [20], the authors investigated the
existence of periodic solutions of a class of semilinear differential equations by using Banach fixed point
theorem when the semigroup generated by the linear operator is not compact. Whereas, Schauder fixed
point theorem is used when the semigroup is compact. Moreover, the authors in [22] investigate the
existence of periodic solutions for some class of linear partial functional differential equations with delay
by using some properties of semi-Fredholm operators in the case where X = D(L).
The present work would be a continuation and generalization of the work [22] in the case where the
operator (L,D(L)) is not necessarily densely defined. Moreover, we assume that (L,D(L)) verifying the
following Hille-Yosida condition:

(C0) There are constants K̂ ≥ 1 and ν̂ ∈ R such that ρ(L) ⊃ (ν̂,+∞) and

|(ηI − L)−n| ≤ K̂

(η − ν̂)n
for η > ν̂ and n ∈ N,

Trough this work, we denote by HY(X) the set of all operators defined from D(L) to X and verifies the
Hille-Yosida condition. Our approach is essentially based on the combination between the perturbation
theory of semi-Fredholm operators and the following modified Show and Hale fixed point theorem:

Theorem 1.1 Let F be a linear affine map on X with Fx = Fx+ y for x ∈ X. If I −F ∈ SF+(X) and
{Fkx0, k ∈ N} is a bounded set in X for some x0 ∈ X. Then, PF ̸= ∅, where PF means the set of all
fixed points of the operator F .

First, we need to introduce the definition and the principal theorem of perturbation of semi-Fredholm
operators used in this work. A semi-Fredholm operators is the class of bounded linear operators F ∈
L (X,F) such that ker(F ) is of finite dimension and the range of F denoted by Im(F ) is closed in F.
Through this work we denote the set of all semi-Fredholm operators mapping from X to X by SF+(X).
Now, we need the following results taken from [21,22]. Let F ∈ L (X), then the quotient space X/ ker(F )
is a Banach space equipped with the norm

|u| = dist(u, ker(F )),

where u = u+ ker(F ) is an element of X/ ker(F ).
Furthermore, if dimker(F ) <∞, then there exists a closed subspace T of X such that

X = ker(F )⊕ T .

In addition, ST := F |T the restriction of F to T has a bounded inverse.

Proposition 1.1 [21] Let F be a bounded linear operator in X. Then, Im(F ) is closed if and only if
there exists a constant δ such that

|u| ≤ δ ∥Fu∥ for all u ∈ X.
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It is well know in the operator theory that if F is an element of SF+(X), then the operator F perturbed
by a small linear bounded perturbation remains also in SF+(X). More precisely, we have the following
theorem.

Theorem 1.2 [22] Assume that F ∈ SF+(X). If G ∈ L (X) and satisfies the following inequality:

|G| < 1

2δ(1 +
√
dim ker(F ))

,

where δ is the constant given in Proposition 1.1. Then,

F +G ∈ SF+(X) and dimker(F +G) ≤ dimker(F ).

Moreover, we need to introduce some definitions and results concerning the integral solution of Eq. (1.1).

Definition 1.1 [1] A function w defined from [0,+∞) to X is called an integral solution of Eq. (1.1) if:

(i) The function w is continuous, and w0 = φ,

(ii)

∫ t

0

w(s) ds ∈ D(L) for t ∈ [0,+∞),

(iii) w(t) = φ(0) + L
∫ t

0

w(s) ds+

∫ t

0

(D(ws) +H(s)) ds for t ∈ [0,+∞).

As a consequence, from the continuity of the integral solution w one has that for all t ≥ 0, w(t) is an
element of D(L). Now, let L0 be the part of the operator L defined on D(L) by:

(i) D(L0) = {v ∈ D(L) : Lv ∈ D(L)},

(ii) L0v = Lv for v ∈ D(L0).

Then, L0 is the infinitesimal generator of a strongly continuous semigroup {S0(t), t ≥ 0} on D(L). Let
ν0 ∈ R and K0 ≥ 1 such that |S0(t)| ≤ K0e

ν0t for t ≥ 0.

Theorem 1.3 [1] Suppose that (C0) holds. Then, for φ(0) ∈ D(L), Eq. (1.1) admits a unique integral
solution w : (−∞,+∞) → X satisfies

w(t) = S0(t)φ(0) + lim
µ→+∞

∫ t

0

S0(t− s)µ(µI − L)−1 (D(ws) +H(s)) ds for t ≥ 0.

Through this work, let

B0 = {φ ∈ B : φ(0) ∈ D(L)}.

be the phase space of Eq. (1.1). Moreover, we denote by solution the integral solution of Eq. (1.1). Let
w(., φ,D ,H) be the solution of Eq. (1.1) and let M(t)φ = wt(., φ, 0, 0), t ≥ 0 be the linear operator
defined on B0 where w is the solution of the equation:{

ẇ(t) = Lw(t) for t ≥ 0,
w0 = φ.

(1.2)

Theorem 1.4 [2] The bounded linear operator (M(t))t≥0 is a C0-semigroup defined on B0, that is
i) M(0) = I and M(t+ s) = M(t)M(s) for t, s ≥ 0,
ii) for φ ∈ B0, the function M(t)φ is continuous from [0,+∞) to B0,
iii) for t ≥ 0 and θ ∈ (−∞, 0], the operator (M(t))t≥0 verifies

[M(t)φ](θ) =

{
(M(t+ θ)φ)(0) for t ≥ −θ,

φ(t+ θ) for t ≤ −θ.
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Theorem 1.5 [2] Suppose that (C0) holds. Then, the solution of Eq. (1.1) with H = 0 denoted by
W(t)φ = wt(., φ,D, 0), t ≥ 0 is decomposed as:

W(t)φ = M(t)φ+R(t)φ, (1.3)

where R(t), t ≥ 0 is given for φ ∈ B0 by

[R(t)φ](θ) =

 lim
µ→+∞

∫ t+θ

0

S0(t+ θ − s)µ(µI − L)−1D(ws(φ)) ds t ≥ −θ,

0 t ≤ −θ.

Through this work, we investigate the τ -periodicity of solutions of Eq. (1.1) without considering the
compactness condition on the semigroup {S0(t), t ≥ 0} generates by the part of L0 of L on D(L). First,
we discuss the τ -periodicity of Eq. (1.1) in the general case where L ∈ HY(X) and the phase space B
is a fading memory space. Second, in order to establish the τ -periodicity of solutions of Eq. (1.1) in
the case when the semigroup {S0(t), t ≥ 0} is not necessarily exponentially stable, when the phase space
is a fading memory space and also uniform fading memory space, we propose to treat the case where
L is a sum of two operators, the first one, denoted by L̃, is an element of HY(X) and the second one,

denoted by L̂, is an element of L (X). Recall that the case where L̂ = 0 has already treated in [12,22]
and the τ -periodicity of the solution is obtained in the particular case where D(A) = X. We give some

appriori estimates on L̂ to get that I −M(τ) is a semi-Fredholm operator by using Theorem 1.2. This
property allows us to prove, by using Theorem 1.1, that the Poincaré map has a fixed point, which yields
the τ -periodic solution of Eq. (1.1). To achieve this objective, we propose in section 2, to introduce
some useful estimations and some semi-Fredholm properties for the operator I −M(τ) in general case.
Moreover, in section 3, we present some semi-Fredholm properties for the operator I−M(τ) in the special

case of Eq. (1.2) where L = L̃+ L̂ with L̃ ∈ HY(X) and L̂ ∈ L (X). In section 4, we propose to examine
the τ -periodicity of Eq. (1.1) in the global phase space B. To achieve this objectives, we need some
additional properties summarize as follows:

Let C00 : (−∞, 0] → X be the space of continuous function with compact supports. We assume that B
verifies the following hypothesis:

(C) Let (ψn)n≥0 ∈ C00 be an uniformly bounded sequence, if (ψn)n≥0 converges compactly to ψ on
(−∞, 0], then ψ ∈ B and |ψn − ψ|B → 0.

For ψ ∈ B and θ ≤ 0, we define the linear operator X(t), t ≥ 0 as:

[X(t)ψ](θ) =

{
ψ(0), t+ θ ≥ 0,

ψ(t+ θ), t+ θ ≤ 0.

Then the semigroup (X(t))t≥0 satisfies the following equation :{
ẇ(t) = 0,
w0 = ψ.

LetX0(t) = X(t)/B0 such that B0 := {ψ ∈ B : ψ(0) = 0}. Let BC be the space of all bounded continuous
functions maps from (−∞, 0] to X, equipped with the supremum norm, then we introduce the following
proposition.

Definition 1.2 B is called a fading memory space if it satisfies the axioms (A), (C) and X0(t)ψ → 0
as t→ +∞, for all ψ ∈ B0.

Proposition 1.2 Assume that B is a fading memory space. then the space BC included in B and there
is β > 0 verifying |ψ|B ≤ β|ψ|BC. Moreover

|wt|B ≤ β sup
ς≤s≤t

|w(s)|+ (1 + cβ) |X0(t− ς)| |wς | for ς ≥ 0,

for any function w satisfying axiom (A).
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Definition 1.3 The space B is called a uniform fading memory space, if hypothesis (C) holds with
|X0(t)| → 0 as t→ +∞.

Section 5 is devoted to control the value of the constant δ appears in Theorem 1.2. In addition, we propose
to get the results given in section 4, in the special uniform fading memory space B = UCγ(X), γ < 0.
Finally, we confirm, in section 6, the applicability of the obtained theoretical results by a mathematical
model with some numerical simulations.

2. Several estimations and semi-Fredholm properties of the operator I −M(ζ) in general
case:

Before announcing theorems concern the τ -periodicity of Eq. (1.1), we need to introduce the following
useful results.

Proposition 2.1 Suppose that condition (C0) holds. If B is a fading memory space, then, for t > 0,
the operator R(t) satisfies

|R(t)| ≤ (βK0c+M)eν
+
0 t
(
eβK0K̂|D|t − 1

)
,

where ν+0 = max{ν0, 0} and M = (1 + cβ) sup
t≥0

|X0(t)|.

Proof: For t ≥ 0 and t+ θ ≥ 0

(R(t)φ)(θ) = lim
µ→+∞

∫ t+θ

0

S0(t+ θ − s)µ(µI − L)−1D(ws(φ)) ds.

From the decomposition (1.3) in Theorem 1.5 and the fact that B is a fading memory space, one can see
that

|R(t)φ|B ≤ β sup
0≤s≤t

∥(R(s)φ)(0)∥

≤ βK0K̂ sup
0≤s≤t

∫ s

0

eν0(s−ξ)∥D(W(ξ)(φ))∥ dξ

≤ βK0K̂|D| sup
0≤s≤t

∫ s

0

eν0(s−ξ) (|M(ξ)φ|B + |R(ξ)φ|B) dξ

≤ βK0K̂|D|
∫ t

0

eν
+
0 (t−ξ) (|M(ξ)φ|B + |R(ξ)φ|B) dξ.

Then,

e−ν+
0 t|R(t)φ|B ≤ βK0K̂|D|

∫ t

0

e−ν+
0 ξ|M(ξ)φ|B dξ + βK0K̂|D|

∫ t

0

e−ν+
0 ξ|R(ξ)φ|B dξ.

Applying Gronwall’s inequality one has

e−ν+
0 t|R(t)φ|B ≤ βK0K̂|D|

∫ t

0

e−ν+
0 ξ|M(ξ)φ|B dξ

+(βK0K̂|D|)2
∫ t

0

e(βK0K̂|D|)(t−ξ)

∫ ξ

0

e−ν+
0 σ|M(σ)φ|B dσ dξ

≤ βK0K̂|D|
∫ t

0

e−ν+
0 ξ|M(ξ)φ|B dξ

+(βK0K̂|D|)2
∫ t

0

∫ t

σ

e(βK0K̂|D|)(t−ξ) dξ e−ν+
0 σ|M(σ)φ|B dσ

≤ βK0K̂|D|
∫ t

0

e−ν+
0 ξ|M(ξ)φ|B dξ + βK0K̂|D|

∫ t

0

eβK0K̂|D|(t−σ)e−ν+
0 σ|M(σ)φ|B dσ

−βK0K̂|D|
∫ t

0

e−ν+
0 ξ|M(ξ)φ|B dξ.
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Which implies that

|R(t)φ|B ≤ βK0K̂|D|
∫ t

0

e(βK0K̂|D|+ν+
0 )(t−σ)|M(σ)φ|B dσ.

On the other hand, Since B is a fading memory space, one can see that

|M(σ)φ|B ≤ β sup
0≤s≤σ

∥S0(s)φ(0)∥+M |φ|B

≤ βK0ce
ν+
0 σ|φ|B +M |φ|B.

Then,

|M(σ)φ|B ≤ (βK0c+M)eν
+
0 σ|φ|B.

Then, it follows that

|R(t)φ|B ≤ βK0K̂|D|(βK0c+M)e(βK0K̂|D|+ν+
0 )ζ

∫ t

0

e−βK0K̂|D|σ dσ |φ|B.

consequently,

|R(t)φ|B ≤ (βK0c+M)eν
+
0 t
(
eβK0K̂|D|t − 1

)
|φ|B.

which complete the proof of our Proposition. 2

Theorem 2.1 Suppose that condition (C0) holds. Let B be a fading memory space. Let ζ > 0 and n be
a positive integer with dimker(I − S0(ζ)) = n and there is a constant δ > 0 such that

|φ| ≤ δ |(I −M(ζ))φ|B for φ ∈ B0.

If the operator D satisfies the following estimate

|D| < 1

βK0K̂ζ
ln

(
1 +

e−ν+
0 ζ

2δ(1 +
√
n)(βK0c+M)

)
.

Then
I −W(ζ) ∈ SF+(B0) and dimker(I −W(ζ)) ≤ n.

To prove the above Theorem, we need the following proposition taken from [22].

Proposition 2.2 Suppose that condition (C0) hold. If the phase space B satisfies axioms (A) and (C).
Then, for ζ > 0,

dim ker(I −M(ζ)) = dim ker(I − S0(ζ)).

Proof of Theorem 2.1. The proof follows immediately from Theorem 1.2, Proposition 2.1 and Propo-
sition 2.2. 2

Now, to control the value of the positive constant δ appear in the previous Theorem, we need to
introduce one proposition proved in [22] in the densely case D(L) = X. Notice that the same proposition
hold true in the non densely case D(L) ̸= X and the proof is omitted here. Suppose that B verifies
axioms (A) and (C). If I − S0(ζ) ∈ SF+(D(L)), then from Theorem 1.2, D(L) can be decomposed as

D(L) = ker(I − S0(ζ))⊕ T (ν).
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such that T (ν) is a closed subset of D(L). We denote by ST (ν) the restriction of I −S0(ζ) to T (ν) given
by

ST (ν) : T (ν) → Im(I − S0(ζ)),

then, ST (ν) is continuous and bijective linear operator satisfying Im(ST (ν)) = Im(I − S0(ζ)).

Consider S−1
T (ν) the inverse operator of ST (ν), then S−1

T (ν) is continuous, if φ ∈ B0 such that φ(0) ∈
Im(I − S0(ζ)), then S

−1
T (ν)φ(0) is well defined and we get

(I − S0(ζ))S
−1
T (ν)φ(0) = φ(0). (2.1)

Moreover, let Pφ be the B0-valued function given by:

(Pφ)(θ) =
k−1∑
j=0

φ(θ + jζ) + S0(θ + kζ)S−1
T (ν)φ(0), θ ∈ Ik = [−kζ,−(k − 1)ζ); k ≥ 1

and

D(P) = {φ ∈ B0 : φ(0) ∈ Im(I − S0(ζ))}.

Then, we have the following proposition.

Proposition 2.3 Assume that I − S0(ζ) ∈ SF+(D(L)). Let δ be a positive constant such that

|Pφ|B ≤ δ|φ|B for Pφ ∈ B0,

then,
|ψ| ≤ δ|(I −M(ζ)ψ|B for ψ ∈ B0,

equivalently the subspace Im(I −M(ζ)) is closed.

3. Semi-Fredholm properties for the operator I −M(ζ) in the case where L = L̃+ L̂ with

L̃ ∈ HY(X) and L̂ ∈ L (X):

Firstly, in order to introduce a sufficient conditions which guarantee that I − S0(ζ) ∈ SF+(D(L)), we
consider the following differential equation:{

v̇(t) = Lv(t),
v(0) = x.

(3.1)

such that L = L̃+ L̂ and suppose that L̃ verifies the following Hille-Yosida condition:

(C′
0) There are constants K̃ ≥ 1 and ν̃ ∈ R such that ρ(L) ⊃ (ν̃,+∞) and

|(ηI − L)−n| ≤ K̃

(η − ν̃)n
for η > ν̃ and n ∈ N,

and L̂ ∈ L (X). Moreover, let L̃0 be the part of L̃ on D(L). Then, L̃0 generates a C0-semigroup
{T0(t), t ≥ 0} on D(L). If x ∈ D(L), then Eq. (3.1) has a unique solution v(t, x) satisfying:

v(t, x) = T0(t)x+ lim
µ→+∞

∫ t

0

T0(t− s)µ(µI − L̃)−1L̂v(s, x) ds. (3.2)

Proposition 3.1 Suppose that condition (C′
0) holds. Let |T0(t)| ≤ K̃0e

−ν̃0t for t ≥ 0, K̃0 ≥ 1 and
ν̃0 > 0, then, the operator Q(t) defined on D(L) by

Q(t)x = lim
µ→+∞

∫ t

0

T0(t− s)µ(µI − L̃)−1L̂v(s, x) ds,

satisfies

|Q(t)| ≤ K̃0e
−ν̃0ζ

(
eK̃0K̃|L̂|t − 1

)
for t > 0.
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Proof: Let ζ ≥ 0. Then,

∥Q(t)x∥ ≤ K̃K̃0|L̂|
∫ t

0

e−ν̃0(t−s)∥v(s, x)∥ ds.

Since

∥v(s, x)∥ ≤ K̃0e
−ν̃0s∥x∥+ K̃0K̃|L̂|

∫ s

0

e−ν̃0(s−σ)∥v(σ, x)∥ dσ.

and

eν̃0s∥v(s, x)∥ ≤ K̃0∥x∥+ K̃0K̃|L̂|
∫ s

0

eν̃0σ∥v(σ, x)∥ dσ.

Applying Gronwall’s inequality, we obtain that

eν̃0s∥v(s, x)∥ ≤ K̃0e
K̃0K̃|L̂|s∥x∥,

hence,

∥v(s, x)∥ ≤ K̃0e
(K̃0K̃|L̂|−ν̃0)s∥x∥.

Then,

∥Q(t)x∥ ≤ K̃2
0K̃|L̂|e−ν̃0t

∫ t

0

eK̃0K̃|L̂|s ds ∥x∥

≤ K̃0e
−ν̃0t

(
eK̃0K̃|L̂|t − 1

)
∥x∥,

Which prove the Proposition. 2

Lemma 3.1 Suppose that |T0(t)| ≤ K̃0e
−ν̃0t for t ≥ 0, K̃0 ≥ 1 and ν̃0 > 0. Then, for ζ > 0,

I − T0(ζ) ∈ SF+(D(L)) and dimker(I − T0(ζ)) = 0.

Proof: Let us introduce the following new norm on X given by

|z|ν̃0
= sup

t≥0
∥eν̃0tT0(t)z∥,

Then, we have that ∥z∥ ≤ |z|ν̃0
≤ K̃0∥z∥, which implies that the norms ∥.∥ and |.|ν̃0

are equivalent.

Moreover, for every z ∈ D(L) and ζ ≥ 0, one has

|T0(ζ)z|ν̃0
= sup

s≥0
∥eν̃0sT0(s+ ζ)z∥ = e−ν̃0ζ sup

s≥0
∥eν̃0(s+ζ)T0(s+ ζ)z∥

= e−ν̃0ζ sup
σ≥ζ

∥eν̃0σT0(σ)z∥ ≤ e−ν̃0ζ sup
σ≥0

∥eν̃0σT0(σ)z∥ ≤ e−ν̃0ζ |z|ν̃0
,

then I − T0(ζ) is invertible. Which means that I − T0(ζ) ∈ SF+(D(L)) and dimker(I − T0(ζ)). 2

Proposition 3.2 Suppose that condition (C′
0) holds. Let |T0(t)| ≤ K̃0e

−ν̃0t for t ≥ 0, K̃0 ≥ 1 and

ν̃0 > 0. Let ζ > 0. If the operator L̂ verifies

|L̂| < 1

K̃0K̃ζ
ln

(
1 +

eν̃0ζ

2δ0K̃0

)
, (3.3)

where δ0 > 0 be such that |(I − T0(ζ))−1v|ν̃0
≤ δ0|v|ν̃0

for v ∈ D(L). Then,

I − S0(ζ) ∈ SF+(D(L)) and dimker(I − S0(ζ)) = 0.
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Proof: Formula (3.2) implies that for ζ > 0,

I − S0(ζ) = I − T0(ζ)−Q(ζ). (3.4)

From Lemma 3.1, we get that I − T0(ζ) ∈ SF+(D(L)). On the other hand, the estimation (3.3) implies
that

K̃0e
−ν̃0ζ

(
eK̃0K̃|L̂|ζ − 1

)
<

1

2δ0
,

and consequently, Proposition 3.1 gives that

|Q(ζ)| < 1

2δ0
.

Finally, by applying Theorem 1.2 to the formula (3.4), we get that I−S0(ζ) ∈ SF+(D(L)) and dimker(I−
S0(ζ)) = dimker(I − T0(ζ)) = 0. 2

Proposition 3.3 Suppose that condition (C′
0) holds. Let |T0(t)| ≤ K̃0e

−ν̃0t for t ≥ 0, K̃0 ≥ 1 and

ν̃0 > 0. Let ζ > 0. If the operator L̂ satisfies

|L̂| < 1

K̃0K̃ζ
ln

(
1 +

eν̃0ζ − 1

2K̃0

)
. (3.5)

Then
I − S0(ζ) ∈ SF+(D(L)) and dimker(I − S0(ζ)) = 0.

Proof: It suffices to compute the value δ0 in the estimation (3.3). To do this, let v ∈ D(A), then

|v|ν̃0
≤ |v − T0(ζ)v|ν̃0

+ |T0(ζ)v|ν̃0

≤ |v − T0(ζ)v|ν̃0
+ e−ν̃0ζ |v|ν̃0

.

Then,
(1− e−ν̃0ζ)|v|ν̃0

≤ |v − T0(ζ)v|ν̃0
for all v ∈ D(L)

which implies that

|v|ν̃0
≤ 1

1− e−ν̃0ζ
|v − T0(ζ)v|ν̃0

.

and hence,

|(I − T0(ζ))−1v|ν̃0
≤ 1

1− e−ν̃0ζ
|v|ν̃0

.

Then, we choice the value of δ0 such that

δ0 ≤ 1

1− e−ν̃0ζ
.

Finally, from estimation (3.5), we deduce that the estimation (3.3) is satisfy. Then it follows from
Proposition 3.2 that I − S0(ζ) ∈ SF+(D(L)). 2

Proposition 3.4 Suppose that condition (C′
0) holds. Let |T0(t)| ≤ K̃0e

−ν̃0t for t ≥ 0, K̃0 ≥ 1 and

ν̃0 > 0. Let ζ > 0. If the operator L̂ satisfies

|L̂| < 1

K̃0K̃ζ
ln

(
1 +

eν̃0ζ − 1

2K̃0

)
and if Im(I −M(ζ)) is closed. Then,

I −M(ζ) ∈ SF+(D(L)) and dimker(I −M(ζ)) = 0.
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Proof: The proof follows immediately from Proposition 2.2 and Proposition 3.3. 2

Now, the solution w(t, φ) of Eq. (1.2) is given by the following formula:

w(t, φ) = T0(t)φ(0) + lim
µ→+∞

∫ t

0

T0(t− s)µ(µI − L̃)−1L̂w(s, φ) ds for t ≥ 0. (3.6)

Then, the operator (M(t))t≥0 is decomposed on B0 as follows:

M(t) = Y(t) + Z(t) for t ≥ 0, (3.7)

where {Y(t), t ≥ 0} is the strongly continuous semigroup on B0 defined by

(Y(t)ϕ)(θ) =

{
T0(t+ θ)ϕ(0) if t ≥ −θ,
ϕ(t+ θ) if t ≤ −θ,

and the operator Z(t), t ≥ 0 is defined on B0, by

(Z(t)φ)(θ) =

 lim
µ→+∞

∫ t+θ

0

T0(t+ θ − s)µ(µI − L̃)−1L̂w(s, φ) ds for t+ θ ≥ 0,

0 for t+ θ ≤ 0.

Proposition 3.5 Suppose that (C′
0) holds. Let B be a fading memory space. If |T0(t)| ≤ K̃0e

−ν̃0t for

t ≥ 0, K̃0 ≥ 1 and ν̃0 > 0. Then, the operator Z(t) satisfies

|Z(t)φ|B ≤ βK̃0c
(
eK̃0K̃|L̂|t − 1

)
|φ|B. (3.8)

Proof: Let t+ θ ≥ 0, Since

∥(Z(t)φ)(θ)∥ ≤ K̃0K̃|L̂|
∫ t+θ

0

e−ν̃0(t+θ−s)∥w(s, φ)∥ ds

≤ K̃0K̃|L̂|
∫ t

0

eν̃0s∥w(s, φ)∥ ds.

which implies that Z(t)φ ∈ BC and from axiom (C) one has

|Z(t)φ|B ≤ β|Z(t)φ|BC ≤ βK̃0K̃|L̂|
∫ t

0

eν̃0s∥w(s, φ)∥ ds.

On the other hand, from the variation of constant formula (3.6), we obtain that

∥w(s, φ)∥ ≤ K̃0ce
−ν̃0s|φ|B + K̃0K̃|L̂|

∫ s

0

e−ν̃0(s−σ)∥w(σ, φ)∥ dσ.

From Gronwall’s inequality, we obtain that

eν̃0s∥w(s, φ)∥ ≤ K̃0ce
K̃0K̃|L̂|s|φ|B,

then

|Z(t)φ|B ≤ βcK̃2
0K̃|L̂|

∫ t

0

eK̃0K̃|L̂|s ds |φ|B

≤ βK̃0c
(
eK̃0K̃|L̂|t − 1

)
|φ|B.

2
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Proposition 3.6 Let B be a uniform fading memory space. Suppose that |T0(t)| ≤ K̃0e
−ν̃0t for t ≥ 0,

K̃0 ≥ 1 and ν̃0 > 0. Then, {Y(t), t ≥ 0} is exponentially stable, which means that is there exists Ñ0 ≥ 1

and η̃0 > 0 such that |Y(t)| ≤ Ñ0e
−η̃0t for t ≥ 0.

To prove this proposition, we need the following lemma.

Lemma 3.2 [22] Let ξ be the set of continuous functions x : (−∞, a) → X, 0 < a ≤ +∞, such that
x0 ∈ B and x is continuous on [0, a). If ξ0 and ξ|[0,t] are bounded in B and C[0, t], respectively. Then,

(i) H−1α(ξ(t)) ≤ α(ξt) ≤ K(t)α(ξ|[0,t]) +M(t)α(ξ0).

(ii) If the phase space B satisfies the axiom (C), then

α(ξt) ≤ βα(ξ|[0,t]) + (1 + cβ)α(W0(t))α(ξ0).

Proof of proposition 3.6
Let Ω be a bounded set in B. Then for t ≥ 0, it follows from lemma 3.2, that

α(V1(t)Ω) ≤ βα
(
T1(.)Ω(0)|[0,t]

)
+ (1 + cβ)|W0(t)|α α(Ω),

where

Ω(0) = {φ(0) : φ ∈ Ω}.

Since V1(t)Ω = V1(
t
2 )
(
V1(

t
2 )Ω

)
, then

α(V1(t)Ω) ≤ βα

(
T1(.)(V1(

t

2
)Ω)(0)|[0, t2 ]

)
+ (1 + cβ)|W0(

t

2
)|α α((V1(

t

2
)Ω).

By the translation property of (V1(t))t≥0, we get that

α(V1(t)Ω) ≤ βα

(
T1(.)T1(

t

2
)Ω(0)|[0, t2 ]

)
+(1 + cβ)|W0(

t

2
)|α

(
βα
(
T1(.)Ω(0)|[0, t2 ]

)
+ (1 + cβ)|W0(

t

2
)|α α(Ω)

)
≤ β sup

t
2≤s≤t

|T1(s)|α(Ω(0)) + β(1 + cβ)α
(
T1(.)Ω(0)|[0, t2 ]

)
|W0(

t

2
)|α

+(1 + cβ)2|(W0(
t

2
)|2α α(Ω).

From the axiom (A)-ii), we get α(Ω(0)) ≤ cα(Ω), which implies that

α(V1(t)Ω) ≤ cβ sup
t
2≤s≤t

|T1(s)|α(Ω) + cβ(1 + cβ) sup
0≤s≤ t

2

|T1(s)||W0(
t

2
)|α α(Ω)

+(1 + cβ)2|W0(
t

2
)|2α α(Ω),

and consequently,

α(V1(t)Ω) ≤
(
cβM̃e−

ω̃t
2 + cβ(1 + cβ)M̃ |W0(

t

2
)|+ (1 + cβ)2|W0(

t

2
)|2
)
α(Ω).

Moreover, since B is a uniform fading memory space, we have |W0(t)| → 0 as t → +∞, which implies
that

lim
t→+∞

1

t
log |W0(t)| < 0,
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and hence
w0(W0) < 0,

consequently, there exist positive constants N ≥ 1 and η > 0 such that

|W0(t)| ≤ Ne−ηt for all t ≥ 0.

We deduce that

α(V1(t)Ω) ≤
(
βM̃e−

ω̃t
2 + cβ(1 + cβ)M̃Ne−

ηt
2 + (1 + cβ)2N2e−ηt

)
α(Ω)

≤ e−min(ω̃,η) t
2

(
cβM̃ + cβ(1 + cβ)M̃N + (1 + cβ)2N2

)
α(Ω),

which implies that

ωess(V1) = lim
t→+∞

1

t
logα(V1(t)) ≤ −1

2
min(ω̃, η).

2

Let us introduce the following new norm on B0 given by

|ψ|η̃0
= sup

t≥0
|eη̃0tY(t)ψ|B with η̃0 =

1

2
min(ν̃0, η),

Then, we have that |ψ|B ≤ |ψ|η̃0
≤ Ñ0|ψ|B, which implies that the norms |.|B and |.|η̃0

are equivalent.
Moreover, for every ψ ∈ B0 and ζ ≥ 0, one has

|Y(ζ)ψ|η̃0
= sup

s≥0
|eη̃0sY(s+ ζ)ψ|B = e−η̃0ζ sup

s≥0
|eη̃0(s+ζ)Y(s+ ζ)ψ|B

= e−η̃0ζ sup
σ≥ζ

|eη̃0σY(σ)ψ|B ≤ e−η̃0ζ sup
σ≥0

|eη̃0σY(σ)ψ|B ≤ e−η̃0ζ |ψ|η̃0
,

then I − Y(ζ) is invertible and we have the following lemma:

Lemma 3.3 Suppose that |T0(t)| ≤ K̃0e
−ν̃0t for t ≥ 0, K̃0 ≥ 1 and ν̃0 > 0. Then, for ζ > 0,

I − Y(ζ) ∈ SF+(B0) and dimker(I − Y(ζ)) = 0.

Proposition 3.7 Suppose that condition (C′
0) holds. Let B be a uniform fading memory space. Assume

that |T0(t)| ≤ K̃0e
−ν̃0t for t ≥ 0, K̃0 ≥ 1 and ν̃0 > 0. For ζ > 0, if L̂ verifies

|L̂| < 1

K̃0K̃ζ
ln

(
1 +

1

2δ1βK̃0c

)
, (3.9)

where δ1 > 0 be such that |(I − Y(ζ))−1φ|η̃0
≤ δ1|φ|η̃0

for φ ∈ B0. Then,

I −M(ζ) ∈ SF+(B0) and dimker(I −M(ζ)) = 0.

Proof: From the decomposition (3.7), it follows that

I −M(ζ) = I − Y(ζ)−Z(ζ).

Moreover, Lemma 3.3 implies that I − Y(ζ) ∈ SF+(B0). The objective now is to apply Theorem 1.2.
Then, to show that I −M(ζ) ∈ SF+(B0), it suffice to get the following estimation

|Z(ζ)| < 1

2δ1
.

Clearly, the above inequality is satisfied by considering inequalities (3.8) and (3.9) and hence I−M(ζ) ∈
SF+(B0). Moreover, Theorem 1.2 and Lemma 3.3 imply that

dimker(I −M(ζ)) = dimker(I − Y(ζ)) = 0.
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Which complete the proof of the Proposition. 2

Applying the same approach used in the proof of Proposition 3.3, one can choice the value of δ1 such
that

δ1 ≤ 1

1− e−
1
2 min(ν̃0,η)ζ

.

Then, from Proposition 3.7, we get the following result.

Proposition 3.8 Suppose that condition (C′
0) holds. Let B be a uniform fading memory space. Assume

that |T0(t)| ≤ K̃0e
−ν̃0t for t ≥ 0, K̃0 ≥ 1 and ν̃0 > 0. For ζ > 0, if L̂ verefies

|L̂| < 1

K̃0K̃ζ
ln

(
1 +

1− e−
1
2 min(ν̃0,η)ζ

2βK̃0c

)
.

Then,
I −M(ζ) ∈ SF+(B0) and dimker(I −M(ζ)) = 0.

4. The τ-periodicity of solutions for Eq. (1.1) in the general phase space B:

Now, we say that Eq. (1.1) verifies property (BP) if the following equivalence holds:

there exist a τ -periodic solution of Eq. (1.1) if and only if it has a bounded ones on the positive real
half-line.

Now, to discuss the periodicity of solutions of Eq. (1.1), we need to suppose that:

(C1) H is τ -periodic.

We establish the following first result binding between the boundedness of solution on the positive real
half-line and the τ -periodicity of solutions for Eq. (1.1) .

Theorem 4.1 Suppose that (C0) and (C1) hold. Let B be a fading memory space. Assume that
dimker(I − S0(τ)) = n and Im(I −M(τ)) is closed, which means that there is δ > 0 such that

|φ| ≤ δ |(I −M(τ))φ|B for all φ ∈ B0.

If the operator D satisfies

|D| < 1

βK0K̂τ
ln

(
1 +

e−ν+
0 τ

2δ(1 +
√
n)(βK0c+M)

)
. (4.1)

Then, Eq. (1.1) verifies the property (BP).

Proof: It’s enough to prove that the Poincaré map Pτ defined by Pτφ = wτ (., φ,H) on B0 has a fixed
point, where wτ (., φ,H) is the integral solution of Eq. (1.1).
From the uniqueness property of the solution, the Poincaré map is decomposed as

Pτφ = wτ (., φ, 0) + wτ (., 0,H),

where w(., φ, 0) denotes the integral solution of Eq. (1.1) such that H = 0 and w(., 0,H) denotes the

integral solution of Eq. (1.1) such that φ = 0, then, Pτ is given by Pτφ = P̂τφ+ϕ, where P̂τφ = wτ (., φ, 0)

and ϕ = wτ (., 0,H). By decomposition (1.3) given in Theorem 1.5, P̂τ is given by P̂τ = W(τ) =

M(τ) +R(τ). Furthermore, from estimation (4.1), Proposition 2.1 implies that I − P̂ ∈ SF+(B0). Let
w(., φ,H) be a bounded integral solution of Eq. (1.1) . Then,

{Pn
τ φ, n ∈ N} = {wnτ (., φ,H), n ∈ N},
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which implies that (Pn
τ φ)n≥0 is bounded in B0. From Theorem 1.1, we conclude that FPτ

̸= ∅, which
implies that Eq. (1.1) verifies the property (BP). 2

In addition, we obtain the following theorem if L = L̃+ L̂ with L̃ ∈ HY(X) and L̂ ∈ L (X).

Theorem 4.2 Suppose that conditions (C′
0) and (C1) hold. Let B be a fading memory space. Assume

that |T0(t)| ≤ K̃0e
−ν̃0t for t ≥ 0, K̃0 ≥ 1 and ν̃0 > 0. Suppose that Im(I −M(τ)) is closed, equivalently

there exists δ > 0 with

|φ| ≤ δ |(I −M(τ))φ|B for all φ ∈ B0.

If L̂ verifies

|L̂| < 1

K̃0K̃τ
ln

(
1 +

eν̃0τ − 1

2K̃0

)
.

Moreover, if the operator D verifies

|D| < 1

βK0K̂τ
ln

(
1 +

e−ν+
0 τ

2δ(βK0c+M)

)
.

Then, Eq. (1.1) verifies the property (BP).

Proof: The proof is a combination between Proposition 3.4 and Theorem 4.1. 2

Theorem 4.3 Suppose that conditions (C′
0) and (C1) hold. Let B be a uniform fading memory space.

Assume that |T0(t)| ≤ K̃0e
−ν̃0t for t ≥ 0, K̃0 ≥ 1 and ν̃0 > 0. If L̂ verifies

|L̂| < 1

K̃0K̃τ
ln

(
1 +

1− e−
1
2 min(ν̃0,η)τ

2βK̃0c

)
.

Moreover, if the operator D verifies

|D| < 1

βK0K̂τ
ln

(
1 +

e−ν+
0 τ

2δ(βK0c+M)

)
.

Then, Eq. (1.1) verifies the property (BP).

Proof: Since the condition (C′
0) hold, it follows from [9] that the condition (C0) is verified with ν̂ =

ν̃ + K̃|L̂| and K̂ = K̃. Then, the proof follows immediately from Proposition 2.2, Proposition 3.8 and
Theorem 4.1. 2

Remark 4.1 Clearly, if βc ≥ 1, then

ln

(
1 +

1− e−
1
2 min(ν̃0,η)τ

2βK̃0c

)
≤ ln

(
1 +

eν̃0τ − 1

2K̃0

)
.

Consequently, if I −M(τ) is closed, then Theorem 4.2 is more general than Theorem 4.3.
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5. The τ-periodicity of Eq. (1.1) in the phase space B = UCγ(X), γ < 0:

Let us introduce the phase space UCγ(X) with γ < 0 as follows:

UCγ(X) :=
{
φ ∈ UC((−∞, 0];X) :

∥φ(θ)∥
eγθ

is bounded and uniformly continuous on (−∞, 0]

}
endowed with the norm

|φ|γ = sup
θ∈(−∞,0]

∥φ(θ)∥
eγθ

.

Then, from [11], UCγ(X) with γ < 0, is a uniform fading memory space with β = 1, c = 1 and X0(t) = eγt

for t ≥ 0.

Proposition 5.1 Let B = UCγ(X) with γ < 0. Suppose that I−S0(τ) ∈ SF+(D(L)), then Im(I−M(τ))
is closed and I −M(τ) ∈ SF+(B0). Moreover, one can take the value of δ such that

δ ≤ 1

1− eγτ
+ sup

0≤t≤τ
|S0(t)| |S−1

T (ν)|,

Proof: It is enough to verify the hypothesis of Proposition 2.3 to guarantee the result. Let φ ∈ B0 and
θ ∈ Ik, then

∥Pφ(θ)∥
eγθ

≤ 1

eγθ

k−1∑
j=0

∥φ(θ + jτ)∥+ 1

eγθ
|S0(θ + kτ)| |S−1

T (ν)| ∥φ(0)∥

≤
k−1∑
j=0

eγ(θ+jτ)

eγθ
1

eγ(θ+jτ)
∥φ(θ + jτ)∥+ sup

0≤t≤τ
|S0(t)| |S−1

T (ν)| |φ|γ .

Since γ < 0, then
∥Pφ(θ)∥
eγθ

≤
(

1

1− eγτ
+ sup

0≤t≤τ
|S0(t)| |S−1

T (ν)|
)
|φ|γ .

Which implies that

|Pφ|γ ≤
(

1

1− eγτ
+ sup

0≤t≤τ
|S0(t)| |S−1

T (ν)|
)
|φ|γ .

Consequently, all hypothesis of Proposition 2.3 are satisfied and I −M(τ) is closed by taking the value
of the constant δ such that

δ ≤ 1

1− eγτ
+ sup

0≤t≤τ
|S0(t)| |S−1

T (ν)|.

Moreover, using Proposition 2.2, we get that Im(I −M(ζ)) ∈ SF+(B0). 2

Theorem 5.1 Suppose that conditions (C0) and (C1) hold. Let B = UCγ(X) with γ < 0. Assume that

I − S0(τ)) ∈ SF+(D(L)). If the operator D satisfies

|D| < 1

K0K̂τ
ln

1 +
e−ν+

0 τ (1− eγτ )

2(1 +
√
n)(K0 + 2)

(
1 + (1− eγτ ) sup

0≤t≤τ
|S0(t)| |S−1

T (ν)|)
)
 .

Then, Eq. (1.1) verifies the property (BP).
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Proof: Since I − S0(τ)) ∈ SF+(D(L)), it follows from Proposition 5.1 that all conditions of Theorem
4.1 are satisfied by taking

δ ≤ 1

1− eγτ
+ sup

0≤t≤τ
|S0(t)| |S−1

T (ν)|

and β = c = 1 and M = 2. Then, Eq. (1.1) verifies the property (BP). Which complete the proof. 2

Now, we introduce the fundamental theorem in the case where the operator L is decomposed as L = L̃+L̂
with L̃ ∈ HY(X) and L̂ ∈ L (X). Since β = c = 1 and according to Remark 4.1, we have the following
result.

Theorem 5.2 Suppose that (C′
0) and (C1) hold. Let B = UCγ(X) with γ < 0. Assume that |T0(t)| ≤

K̃0e
−ν̃0t for t ≥ 0, K̃0 ≥ 1 and ν̃0 > 0. If the operator L̂ satisfies the following inequality

|L̂| < 1

K̃0K̃τ
ln

(
1 +

eν̃0τ − 1

2K̃0

)
. (5.1)

In addition, if D verifies the following inequality

|D| < 1

K0K̂τ
ln

1 +
e−ν+

0 τ (1− eγτ )

2(K0 + 2)

(
1 + (1− eγτ ) sup

0≤t≤τ
|S0(t)| |S−1

T (ν)|)
)
 .

Then, Eq. (1.1) verifies the property (BP).

Proof: Estimation (5.1) implies that Proposition 3.3 holds, then, from Proposition 5.1, we deduce that
all conditions of Theorem 5.1 are satisfied by taking n = 0 and

δ ≤ 1

1− eγτ
+ sup

0≤t≤τ
|S0(t)| |S−1

T (ν)|.

Then, Eq. (1.1) verifies the property (BP). 2

6. Application:



∂

∂t
w(t, x) =

∂

∂x
w(t, x)− aw(t, ξ) +

∫ +∞

0

ϑ(x, y)w(t, y) dy +

∫ 0

−∞
η(θ)w(t+ θ, x) dθ + G(t, x),

t ∈ R+ and x ∈ R+,
w(t, 0) = lim

x→+∞
w(t, x) = 0, t ∈ R+,

w(θ, x) = w0(θ, x), θ ∈ (−∞, 0] and x ∈ R+,

(6.1)

such that a > 0, η : (−∞, 0] → R+, ϑ : R+ × R+ → R+ satisfies ϑ(x, .) ∈ L1(R+) , G : R+ × R+ → R
is a continuous function and w0 : (−∞, 0] × [0,+∞) → R. Let X = C ([0,+∞]) where C ([0,+∞]) is
the space of continuous functions on [0,+∞) such that lim

x→+∞
w(x) exists. Then, X is a Banach space

provided with the norm
∥z∥∞ = sup

0≤x≤+∞
|z(x)|.

To put problem (6.1) into abstract form , we define the operator L1 from D(L1) ⊂ X to X by:{
D(L1) = {w ∈ C1 ([0,+∞]) : w(0) = lim

x→+∞
w(x) = 0},

L1w = w
′
.
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Using the existing study in [5], we have

ρ(L1) ⊃ (0,+∞) and |(µI − L1)
−1| ≤ 1

µ
for µ > 0.

Furthermore,
D(L1) = {w ∈ C ([0,+∞]) : w(0) = lim

x→+∞
w(x) = 0} ≠ X.

In addition, L1 the part of the operator L1 in D(L1) is expressed by{
D(L1) = {w ∈ C1 ([0,+∞]) : w(0) = w′(0) = lim

x→+∞
w(x) = lim

x→+∞
w

′
(x) = 0},

L1w = w
′
.

Lemma 6.1 [5] L1 generate a strongly continuous semigroup {TL1
(t), t ≥ 0} on D(L1). Moreover,

|TL1
(t)| = 1 for t ≥ 0.

Define the operator L̃ : D(L̃) ⊂ X → X by:{
D(L̃) = {w ∈ C1 ([0,+∞]) : w(0) = lim

x→+∞
w(x) = 0},

L̃w = L1w− aw.

Then, it is clear that

ρ(L̃) ⊃ (−a,+∞) and |(µI − L̃)−1| ≤ 1

µ+ a
for µ > −a.

Hence, hypothesis (C′
0) is satisfied with K̃ = 1 and ν̃ = −a. Moreover, L̃0 the part of L̃ on D(L̃) generate

a C0-semigroup {T0(t), t ≥ 0} such that

|T0(t)| ≤ e−at, t ≥ 0

Now, let the operator L̂ defined on X by

(L̂w)(x) =
∫ +∞

0

ϑ(x, y)w(y) dy for all x ∈ [0,+∞).

Since ϑ(x, .) ∈ L1(R+), the operator L̂ is well defined from X to X. Moreover, if

ϱ = sup
x∈[0,+∞)

∫ +∞

0

ϑ(x, y) dy <∞, clearly L̂ ∈ L (X) and satisfies |L̂| ≤ ϱ.

Lemma 6.2 [9] The part L0 of the operator L = L̃+L̂ generate a C0-semigroup {S0(t), t ≥ 0} satisfying:

|S0(t)| ≤ e(ϱ−a)t, t ≥ 0.

Now, Let UCγ(X), γ < 0. Suppose that w0(0, 0) = w0(0, x) = 0 such that
w0(θ, x)

eγθ
is bounded and

uniformly continuous on (−∞, 0]. Then, φ(0) ∈ D(L). Furthermore, consider the following notations: w(t)(x) = w(t, x), t ≥ 0 and x ∈ R+,
φ(θ)(x) = w0(θ, x), θ ≤ 0 and R+,
H(t)(x) = G(t, x), t ≥ 0 and R+.

Let D : C := C ((−∞, 0],X) → X be defined by

D(ϕ)(x) =

∫ 0

−∞
η(θ)φ(θ)(x) dθ, x ≥ 0.
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It is clear that if

∫ 0

−∞
eγθη(θ) dθ <∞, then D : UCγ(X) → X is a bounded linear operator. Furthermore,

one has that

|D| <
∫ 0

−∞
eγθη(θ) dθ.

So, Eq. (6.1) takes the following form:{
ẇ(t) = Lw(t) +D(wt) +H(t) for t ≥ 0,
w0 = φ.

(6.2)

To examine the boundedness of solutions for Eq. (6.2), we introduce the variation of constant formula
associate to Eq. (1.1):

w(t) = T0(t)φ(0) + lim
µ→+∞

∫ t

0

T0(t− s)µ(µI − L̃)−1(L̂w(s) +D(ws) +H(s)) ds.

Moreover, suppose that:

(C2) there is a constant l ∈ (0, 1) with ϱ+

∫ 0

−∞
η(θ) dθ < a(1− l).

If we put λ = 1 +
|H|∞
a l

, such that |H|∞ = sup
0≤t≤τ

|H(t)|. Then we obtain the following result

Lemma 6.3 Under the above assumption (C2) and let φ ∈ UCγ with γ < 0 such that |φ| < λ. Then,
the integral solution w(t,w0) of Eq. (6.2) satisfies |w(t,w0)| ≤ λ for t ≥ 0.

Proof: Let t1 = inf{t > 0 : |w(t, φ)| > λ}. The continuity of w implies that

|w(t0, φ)| = λ,

and there is ϵ > 0 with

|w(t, φ)| > λ for t ∈ (t1, t1 + ϵ).

Hence, for t1 ≥ 0

|w(t1, φ)| ≤ |T0(t1)| |φ(0)|+
∫ t1

0

e−a(t1−s) (|L̂w(s)|+ |D(ws)|+ |H(s)|) ds,

Since −∞ < s+ θ ≤ s+ t1 ≤ t1 for θ ≤ 0, one has that

|D(ws(., φ))| =
∫ 0

−∞
η(θ)|w(s+ θ, φ)| dθ ≤ λ

∫ 0

−∞
η(θ) dθ,

it follows that

|w(t1, φ)| ≤ λe−at1 + |H|∞
∫ t1

0

e−a(t1−s) ds+ λ

(
|L̂|+

∫ 0

−∞
η(θ) dθ

)∫ t1

0

e−a(t1−s) ds

≤ λe−at1 +
(1− e−at1)

a

(
|H|∞ + λ

(
|L̂|+

∫ 0

−∞
η(θ) dθ

))
≤ λe−at1 +

(1− e−at1)

a

(
|H|∞ + λ

(
ϱ+

∫ 0

−∞
η(θ) dθ

))
≤ λe−at1 +

(1− e−at1)

a
(|H|∞ + a λ(1− l)) ,

≤ λe−at1 + (λ− l) (1− e−at1)

≤ λ− l(1− e−at1)

≤ λ,
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which contradict the above definition of t1, then

|w(t, φ)| ≤ λ for each t ≥ 0.

2

In order to examine the problem of τ -periodicity of solutions for Eq. (6.2), we suppose that:

(C3) H is τ -periodic.

Theorem 6.1 Suppose that (C2) and (C3) hold. If

ϱ <
1

τ
ln

(
1 + eaτ

2

)
, (6.3)

and ∫ 0

−∞
eγθη(θ) dθ <

1

τ
ln

(
1 +

(1− eγτ )(1− e(ϱ−a)τ )

12− 6e(ϱ−a)τ − 6eγτ

)
.

Then, Eq. (6.2) admits a τ -periodic solution.

Proof: Inequality (6.3) implies that

|L̂| < 1

τ
ln

(
1 + eaτ

2

)
.

On the other hand, hypothesis (C2) implies that |S0(τ)| < 1 and hence, by the inequality (2.1), we obtain

that |S−1
T (ν)| ≤

1

1− e(ϱ−a)τ
. Moreover, since K0 = K̂ = 1, we get that

1

τ
ln

(
1 +

(1− eγτ )(1− e(ϱ−a)τ )

12− 6e(ϱ−a)τ − 6eγτ

)

≤ 1

τ
ln

1 +
e−ν+

0 τ (1− eγτ )

6

(
1 + (1− eγτ ) sup

0≤t≤τ
|S0(t)| |S−1

T (ν)|)
)
 .

Thus

|D| < 1

τ
ln

1 +
e−ν+

0 τ (1− eγτ )

6

(
1 + (1− eγτ ) sup

0≤t≤τ
|S0(t)| |S−1

T (ν)|)
)
 .

Consequently, From hypothesis (C3) and Proposition 6.3, it follows that all condition of Theorem 5.2 are

verified with K̃ = K̃0 = 1. Finally, Eq. (6.2) has a τ -periodic solution.

2

The objective now is checking the validity of our theoretical results by presenting some numerical simu-
lations. In the example of application, we consider the phase space UC−1 and the following quantities:

a = 1, ϑ(x, y) = 0.71 e−y and η(θ) = 2.3× 10−2e2θ,
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the initial condition is given by

w(θ, x) =
1

π2
xeθ−x,

the functions G is given by
G(t, x) = sin(πt+ x).

clearly:

• G is 2-periodic function,

• ϱ = sup
x∈[0,+∞)

∫ +∞

0

ϑ(x, y) dy = 0.71,

•
∫ 0

−∞
e−θη(θ) dθ = 0.023.

Then, for ϱ = 0.71 and

∫ 0

−∞
e−θη(θ) dθ = 0.023, all conditions of Theorem 6.1 are satisfied and conse-

quently, Equation (6.1) has a 2-periodic solution. This result is illustrated by some numerical simulations
given in figure 1 in 3D and figures 2 and 3 in 2D for x = 0.5 and 0.9 respectively.
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Figure 1: The graph of the 2-periodic solution of Equation (6.1) in 3D. (the solution w with respect to t
and x).
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Figure 2: The graph of the 2-periodic solution of Equation (6.1) in 2D for x = 0.5 (the solution w with
respect to t).
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Figure 3: The graph of the 2-periodic solution of Equation (6.1) in 2D for x = 0.9 (the solution w with
respect to t).
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