(3s.) **v. 2025 (43)** : 1–9. ISSN-0037-8712 doi:10.5269/bspm.67167

Decomposition of $(\alpha - \mathcal{H}_q, \lambda)$ -continuity

R. Ramesh* and Ahmad Al-Omari

ABSTRACT: In this new research paper we introduce and investigate the new kind of open sets α - \mathcal{H}_g -open, σ - \mathcal{H}_g -open, π - \mathcal{H}_g -open, β - \mathcal{H}_g - open and S- β - \mathcal{H}_g - open sets in hereditary generalized topological spaces. Moreover we introduce and study some new types of sets in \mathcal{HGTS} . Also, we obtained a decomposition of $(\alpha$ - $\mathcal{H}_g, \lambda)$ -continuity and decompositions of (g_μ, λ) -continuity.

Key Words: hereditary generalized topology, α - \mathcal{H}_g -open, σ - \mathcal{H}_g -open, π - \mathcal{H}_g -open sets and β - \mathcal{H}_g -open sets.

Contents

1	Introduction and Preliminaries	1
2	α - \mathcal{H}_g -open sets	2
3	Decomposition of $(\alpha$ - $\mathcal{H}_g, \lambda)$ -continuity	8

1. Introduction and Preliminaries

In the year 2002, Csaszar [6] introduced very usefull notions of generalized topology and generalized continuity. Consider \mathcal{Z} be a nonempty set and μ be a collection from the subsets of \mathcal{Z} . Then μ is called a generalized topology (briefly GT) if $\emptyset \in \mu$ and an arbitrary union of elements from μ belongs to μ . The generalized-closure of a subset A of X, denoted by $c_{\mu}(A)$, is the intersection of all μ -closed sets containing A and the interior of A, denoted by $i_{\mu}(A)$, is the union of all μ -open sets contained in A. A subset \mathcal{L} of a space (\mathcal{Z}, μ) is called as μ - α -open [7] (resp. μ - σ -open [7], μ - π -open [7], μ - β -open [7]) if $\mathcal{L} \subset i_{\mu}c_{\mu}i_{\mu}(\mathcal{L})$ (resp. $\mathcal{L} \subset c_{\mu}i_{\mu}(\mathcal{L})$, $\mathcal{L} \subset i_{\mu}c_{\mu}(\mathcal{L})$, $\mathcal{L} \subset i_{\mu}c_{\mu} \cup c_{\mu}i_{\mu}(\mathcal{L})$, $\mathcal{L} \subset c_{\mu}i_{\mu}c_{\mu}(\mathcal{L})$). A space \mathcal{Z} is called a C_0 -space [17], if $C_0 = \mathcal{Z}$, where C_0 is the set of all representative elements of sets of μ and xis called a represent element of $u \in \mu$ if $u \subset v$ for each $v \in \mu(x)$. A subset A of a space (X, μ) is said to be μ -semi-open [10], if $A \subset c_{\mu}i_{\mu}(A)$. A subset A of generalized topological space (X,μ) is said to be g_{μ} -closed [10] (resp. ω_{μ} -closed [12]), if $c_{\mu}(A) \subseteq M$ whenever $A \subseteq M$ and M is μ -open (resp. μ - σ -open) in X. The complement of ω_{μ} -closed (resp. g_{μ} -closed) is ω_{μ} -open [12] (resp. g_{μ} -open [10]). The g_{μ} -interior (resp. ω_{μ} -interior) is the largest g_{μ} -open (resp. ω_{μ} -open) set contained in A and it is denoted by $i_q(A)$ (resp. $i_{\omega}(A)$). A nonempty family \mathcal{H} of subsets of \mathcal{Z} is called as a hereditary class [8], if $\mathcal{L} \in \mathcal{H}$ and $B \subset \mathcal{L}$, then $B \in \mathcal{H}$. For each $\mathcal{L} \subseteq \mathcal{Z}$, $\mathcal{L}^*(\mathcal{H}, \mu) = \{\mathcal{Z} \in \mathcal{Z} : \mathcal{L} \cap V \notin \mathcal{H} \text{ for all } V \in \mu \text{ such that } \mathcal{Z} \in V\}$ [8]. For $\mathcal{L} \subset \mathcal{Z}$, define $c_{\mu}^*(\mathcal{L}) = \mathcal{L} \cup \mathcal{L}^*(\mathcal{H}, \mu)$ and $\mu^* = \{\mathcal{L} \subset \mathcal{Z} : \mathcal{Z} - \mathcal{L} = c_{\mu}^*(\mathcal{Z} - \mathcal{L})\}$. If \mathcal{H} is a hereditary class on \mathcal{Z} then $(\mathcal{Z}, \mu, \mathcal{H})$ is called a hereditary generalized topological space and it is denoted by \mathcal{HGTS} . Also papers [1-5] have introduced some property related to minimal spaces with hereditary classes.

Submitted February 17, 2023. Published April 14, 2025 2010 Mathematics Subject Classification: 54A05.

^{*} Corresponding author

2. α - \mathcal{H}_q -open sets

Definition 2.1 A subset \mathcal{L} of a $\mathcal{HGTS}(\mathcal{Z}, \mu, \mathcal{H})$ is called as

- 1. α - \mathcal{H}_g -open, if $\mathcal{L} \subseteq i_g c_u^* i_g(\mathcal{L})$.
- 2. σ - \mathcal{H}_q -open, if $\mathcal{L} \subseteq c_{\mu}^* i_q(\mathcal{L})$.
- 3. π - \mathcal{H}_q -open, if $\mathcal{L} \subseteq i_q c_u^*(\mathcal{L})$.
- 4. β - \mathcal{H}_q -open, if $\mathcal{L} \subseteq c_{\mu}i_qc_{\mu}^*(\mathcal{L})$.
- 5. S- β - \mathcal{H}_q -open, if $\mathcal{L} \subseteq c_{\mu}^* i_q c_{\mu}^*(\mathcal{L})$.

Proposition 2.1 In \mathcal{HGTS} $(\mathcal{Z}, \mu, \mathcal{H})$, the following holds:

- 1. Every μ -open set is α - \mathcal{H}_q -open.
- 2. Every μ -open set is σ - \mathcal{H}_q -open.
- 3. Every μ -open set is π - \mathcal{H}_q -open.
- 4. Every μ -open set is β - \mathcal{H}_q -open.
- 5. Every μ -open set is S- β - \mathcal{H}_q -open.

Proof: (1). Consider a subset \mathcal{L} of \mathcal{HGTS} $(\mathcal{Z}, \mu, \mathcal{H})$ be μ -open. Then, $\mathcal{L} = i_{\mu}(\mathcal{L})$. Now $\mathcal{L} \subseteq i_{\mu}(\mathcal{L}) = i_{g}(\mathcal{L}) \subseteq i_{g}c_{\mu}^{*}i_{\mu}(\mathcal{L}) \subseteq i_{g}c_{\mu}^{*}i_{g}(\mathcal{L})$. Hence, \mathcal{L} is α - \mathcal{H}_{g} -open.

Proof of 2, 3 4 and 5 are similar to proof 1.

The converse of Proposition 2.1 need not be true from the following example.

Example 2.1 Consider $\mathcal{Z} = \{1, 2, 3, 4\}$, $\mu = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, \{2, 3, 4\}, Z\}$, $\mathcal{H} = \{\emptyset, \{1\}, \{3\}\}$. Then $\mathcal{L} = \{1, 2, 3\}$ is α - \mathcal{H}_q -open (resp. σ - \mathcal{H}_q -open, π - \mathcal{H}_q -open, β - \mathcal{H}_q -open, \mathcal{S} - β - \mathcal{H}_q -open) but not μ -open.

Proposition 2.2 In $\mathcal{HGTS}(\mathcal{Z}, \mu, \mathcal{H})$, the following are holds:

- 1. Every g_{μ} -open set is α - \mathcal{H}_{q} -open.
- 2. Every g_{μ} -open set is σ - \mathcal{H}_q -open.
- 3. Every g_{μ} -open set is π - \mathcal{H}_g -open.
- 4. Every g_{μ} -open set is β - \mathcal{H}_q -open.
- 5. Every g_{μ} -open set is S- β - \mathcal{H}_q -open.

Proof: (1). Consider a subset \mathcal{L} of \mathcal{HGTS} $(\mathcal{Z}, \mu, \mathcal{H})$ is g_{μ} -open. Then, $\mathcal{L} = i_g(\mathcal{L})$. Now $\mathcal{L} \subseteq i_g(\mathcal{L}) \subseteq i_g c_{\mu}^*(\mathcal{L}) \subseteq i_g c_{\mu}^* i_g(\mathcal{L})$. Hence, \mathcal{L} is α - \mathcal{H}_g -open.

Proof of 2, 3, 4 and 5 are similar to proof 1.

Proposition 2.3 In $\mathcal{HGTS}(\mathcal{Z}, \mu, \mathcal{H})$, the following are holds:

1. Every ω_{μ} -open set is α - \mathcal{H}_q -open.

- 2. Every ω_{μ} -open set is σ - \mathcal{H}_{q} -open.
- 3. Every ω_{μ} -open set is π - \mathcal{H}_q -open.
- 4. Every ω_{μ} -open set is β - \mathcal{H}_{q} -open.
- 5. Every ω_u -open set is S- β - \mathcal{H}_a -open.

Proof: (1). Consider a subset \mathcal{L} of \mathcal{HGTS} $(\mathcal{Z}, \mu, \mathcal{H})$ is ω_{μ} -open. Then, $\mathcal{L} = i_{\omega}(\mathcal{L})$. Now $\mathcal{L} = i_{\omega}(\mathcal{L}) \subseteq i_g c_{\mu}^* (\mathcal{L}) \subseteq i_g c_{\mu}^* i_g(\mathcal{L})$. Hence, \mathcal{L} is α - \mathcal{H}_g -open.

Proof of 2, 3 4 and 5 are similar to proof 1.

The converse of Propositions 2.2 and 2.3 need not be true from the following example.

Example 2.2 Consider $\mathcal{Z} = \{1, 2, 3, 4\}$, $\mu = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, \{2, 3, 4\}, \mathcal{Z}\}$, $\mathcal{H} = \{\emptyset, \{1\}, \{3\}\}$. Then $\mathcal{L} = \{1, 2, 3\}$ is α - \mathcal{H}_g -open (resp. σ - \mathcal{H}_g -open, π - \mathcal{H}_g -open, β - \mathcal{H}_g -open, \mathcal{S} - β - \mathcal{H}_g -open) but neither g_{μ} -open nor ω_{μ} -open.

The notions of α - \mathcal{H}_g -open (resp. σ - \mathcal{H}_g -open, π - \mathcal{H}_g -open, β - \mathcal{H}_g -open) and μ - α -open (resp. μ - σ -open, μ - π -open, μ - β -open) are independent.

Example 2.3 Consider $\mathcal{Z} = \{1, 2, 3, 4\}$, $\mu = \{\emptyset, \{1, 2, 3\}, \{3, 4\}, \mathcal{Z}\}$, $\mathcal{H} = \{\emptyset, \{1\}, \{2\}\}$. Then $\mathcal{L} = \{3\}$ is α - \mathcal{H}_g -open (resp. σ - \mathcal{H}_g -open) but not μ - α -open (resp. μ - σ -open) and $\mathcal{M} = \{2, 3, 4\}$ is μ - α -open (resp. μ - σ -open) but not α - \mathcal{H}_g -open (resp. σ - \mathcal{H}_g -open).

Example 2.4 Consider $\mathcal{Z} = \{1, 2, 3, 4\}$, $\mu = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, \{2, 3, 4\}, \mathcal{Z}\}$, $\mathcal{H} = \{\emptyset, \{1\}, \{3\}\}$. Then $\mathcal{L} = \{4\}$ is π - \mathcal{H}_g -open (resp. β - \mathcal{H}_g -open) but not μ - π -open (resp. μ - β -open).

Example 2.5 Consider $\mathcal{Z} = \{1, 2, 3, 4\}$, $\mu = \{\emptyset, \{1\}, \{1, 2, 3\}, \{3, 4\}, \mathcal{Z}\}$, $\mathcal{H} = \{\emptyset, \{1\}, \{3\}\}$. Then $\mathcal{L} = \{2, 4\}$ is μ - π -open but not π - \mathcal{H}_g -open and $\mathcal{M} = \{1, 4\}$ is μ - β -open but not β - \mathcal{H}_g -open.

Proposition 2.4 For a subset of a \mathcal{HGTS} $(\mathcal{Z}, \mu, \mathcal{H})$ the following hold:

- 1. Every α - \mathcal{H} -open is α - \mathcal{H}_q -open set.
- 2. Every σ - \mathcal{H} -open is σ - \mathcal{H}_q -open set.
- 3. Every π - \mathcal{H} -open is π - \mathcal{H}_q -open set.
- 4. Every β - \mathcal{H} -open is β - \mathcal{H}_q -open set.
- 5. Every β^* - \mathcal{H} -open is \mathcal{S} - β - \mathcal{H}_q -open set.

Proof: (1). Consider \mathcal{L} be a α - \mathcal{H} -open set. Then, we have $\mathcal{L} \subseteq i_{\mu}c_{\mu}^{*}i_{\mu}(\mathcal{L}) \subseteq i_{g}c_{\mu}^{*}i_{g}(\mathcal{L})$. Hence, \mathcal{L} is α - \mathcal{H}_{g} -open.

- (2). Consider \mathcal{L} be a σ - \mathcal{H} -open. Then, we have $\mathcal{L} \subseteq c_u^* i_u(\mathcal{L}) \subseteq c_u^* i_g(\mathcal{L})$. Hence, \mathcal{L} is σ - \mathcal{H}_q -open.
- (3). Consider \mathcal{L} be a π - \mathcal{H} -open. Then, we have $\mathcal{L} \subseteq i_{\mu}c_{\mu}^{*}(\mathcal{L}) \subseteq i_{g}c_{\mu}^{*}(\mathcal{L})$. Hence, \mathcal{L} is π - \mathcal{H}_{g} -open.
- (4). Consider \mathcal{L} be a β - \mathcal{H} -open. Then, we have $\mathcal{L} \subseteq c_{\mu}i_{\mu}c_{\mu}^{*}(\mathcal{L}) \subseteq c_{\mu}i_{g}c_{\mu}^{*}(\mathcal{L})$. Hence, \mathcal{L} is β - \mathcal{H}_{g} -open.
- (5). Consider \mathcal{L} be a Strongly β - \mathcal{H} -open. Then, we have $\mathcal{L} \subseteq c_{\mu}^* i_{\mu} c_{\mu}^*(\mathcal{L}) \subseteq c_{\mu}^* i_g c_{\mu}^*(\mathcal{L})$. Hence, \mathcal{L} is \mathcal{S} - β - \mathcal{H}_g -open.

The converse of Proposition 2.4 need not be correct from the following examples.

Example 2.6 Consider $\mathcal{Z} = \{1, 2, 3, 4\}$, $\mu = \{\emptyset, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}, \{1, 4\}, \{1, 3, 4\}, \mathcal{Z}\}, \mathcal{H} = \{\emptyset, \{1, 2\}\}\}$. Then $\mathcal{L} = \{1\}$ is α - \mathcal{H}_g -open (resp. σ - \mathcal{H}_g -open, π - \mathcal{H}_g -open, β - \mathcal{H}_g -open, β - \mathcal{H} -open).

Proposition 2.5 In $\mathcal{HGTS}(\mathcal{Z}, \mu, \mathcal{H})$, every α - \mathcal{H}_q -open is σ - \mathcal{H}_q -open.

Proof: Consider a subset \mathcal{L} of $\mathcal{HGTS}(\mathcal{Z}, \mu, \mathcal{H})$ is α - \mathcal{H}_g -open. Then, $\mathcal{L} \subseteq i_g c_{\mu}^* i_g(\mathcal{L})$. Now $\mathcal{L} \subseteq i_g c_{\mu}^* i_g(\mathcal{L}) \subseteq c_{\mu}^* i_g(\mathcal{L})$. Hence, \mathcal{L} is σ - \mathcal{H}_g -open.

The converse part of the Proposition 2.5 need not be true from the following counter example.

Example 2.7 Consider $\mathcal{Z} = \{1, 2, 3, 4, 5\}$, $\mu = \{\emptyset, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}, \{2, 3, 4\}\}$ $\mathcal{H} = \{\emptyset, \{2\}\}$. Then \mathcal{Z} is σ - \mathcal{H}_g -open but not α - \mathcal{H}_g -open.

Proposition 2.6 In $\mathcal{HGTS}(\mathcal{Z}, \mu, \mathcal{H})$, every α - \mathcal{H}_q -open set is π - \mathcal{H}_q -open.

Proof: Consider a subset \mathcal{L} of $\mathcal{HGTS}(\mathcal{Z}, \mu, \mathcal{H})$ is α - \mathcal{H}_g -open. Then, $\mathcal{L} \subseteq i_g c_{\mu}^* i_g(\mathcal{L})$. Now $\mathcal{L} \subseteq i_g c_{\mu}^* i_g(\mathcal{L}) \subseteq i_g c_{\mu}^*(\mathcal{L})$. Hence, \mathcal{L} is π - \mathcal{H}_g -open.

The converse part of the Proposition 2.6 need not be true from the following counter example.

Example 2.8 Consider $\mathcal{Z} = \{1, 2, 3, 4\}$, $\mu = \{\emptyset, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}, \{1, 4\}, \{1, 3, 4\}, \mathcal{Z}\}$, $\mathcal{H} = \{\emptyset, \{4\}\}$. Then, $\mathcal{L} = \{1, 2\}$ is π - \mathcal{H}_g -open but not α - \mathcal{H}_g -open.

Proposition 2.7 In $\mathcal{HGTS}(\mathcal{Z}, \mu, \mathcal{H})$, every σ - \mathcal{H}_q -open set is β - \mathcal{H}_q -open but not conversely.

Proof: Consider a subset \mathcal{L} of \mathcal{HGTS} $(\mathcal{Z}, \mu, \mathcal{H})$ is σ - \mathcal{H}_g -open. Then, $\mathcal{L} \subseteq c_{\mu}^* i_g(\mathcal{L})$. Now, $\mathcal{L} \subseteq c_{\mu} i_g(\mathcal{L}) \subseteq c_{\mu} i_g c_{\mu}^*(\mathcal{L})$. Hence, \mathcal{L} is β - \mathcal{H}_g -open set.

Example 2.9 Consider $\mathcal{Z} = \{1, 2, 3, 4\}$, $\mu = \{\emptyset, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}, \{1, 4\}, \{1, 3, 4\}, \mathcal{Z}\}$, $\mathcal{H} = \{\emptyset, \{4\}\}$. Then $\mathcal{L} = \{1, 2\}$ is β - \mathcal{H}_q -open but not σ - \mathcal{H}_q -open.

Proposition 2.8 In $\mathcal{HGTS}(\mathcal{Z}, \mu, \mathcal{H})$, every π - \mathcal{H}_q -open set is β - \mathcal{H}_q -open but not conversely.

Proof: Consider a subset \mathcal{L} of \mathcal{HGTS} $(\mathcal{Z}, \mu, \mathcal{H})$ is π - \mathcal{H}_g -open. Then, $\mathcal{L} \subseteq i_g c_\mu^*(\mathcal{L})$. Now, $\mathcal{L} \subseteq i_g c_\mu^*(\mathcal{L}) \subseteq c_\mu i_g c_\mu^*(\mathcal{L})$. Hence, \mathcal{L} is β - \mathcal{H}_g -open set.

Example 2.10 Consider $\mathcal{Z} = \{1, 2, 3, 4, 5\}$, $\mu = \{\emptyset, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\}\}$ $\mathcal{H} = \{\emptyset, \{2\}\}$. Then \mathcal{Z} is β - \mathcal{H}_q -open but not π - \mathcal{H}_q -open.

Proposition 2.9 In $\mathcal{HGTS}(\mathcal{Z}, \mu, \mathcal{H})$, every π - \mathcal{H}_g -open set is S- β - \mathcal{H}_g -open but not conversely.

Proof: Consider a subset \mathcal{L} of \mathcal{HGTS} $(\mathcal{Z}, \mu, \mathcal{H})$ is π - \mathcal{H}_g -open. Then, $\mathcal{L} \subseteq i_g c_{\mu}^*(\mathcal{L})$. Now, $\mathcal{L} \subseteq i_g c_{\mu}^*(\mathcal{L}) \subseteq c_{\mu}^* i_g c_{\mu}^*(\mathcal{L})$. Hence, \mathcal{L} is S- β - \mathcal{H}_g -open set.

Example 2.11 Consider $\mathcal{Z} = \{1, 2, 3, 4, 5\}$, $\mu = \{\emptyset, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\}\}$ $\mathcal{H} = \{\emptyset, \{2\}\}$. Then \mathcal{Z} is S- β - \mathcal{H}_g -open but not π - \mathcal{H}_g -open.

Proposition 2.10 In $\mathcal{HGTS}(\mathcal{Z}, \mu, \mathcal{H})$, every σ - \mathcal{H}_q -open set is S- β - \mathcal{H}_q -open but not conversely.

Proof: Consider a subset \mathcal{L} of \mathcal{HGTS} $(\mathcal{Z}, \mu, \mathcal{H})$ is σ - \mathcal{H}_g -open. Then, $\mathcal{L} \subseteq c_{\mu}^* i_g(\mathcal{L})$. Now, $\mathcal{L} \subseteq c_{\mu} i_g(\mathcal{L}) \subseteq c_{\mu} i_g c_{\mu}^*(\mathcal{L})$. Hence, \mathcal{L} is S- β - \mathcal{H}_g -open set.

Example 2.12 Consider $\mathcal{Z} = \{1, 2, 3, 4\}$, $\mu = \{\emptyset, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}, \{1, 4\}, \{1, 3, 4\}, \mathcal{Z}\}$, $\mathcal{H} = \{\emptyset, \{4\}\}$. Then $\mathcal{L} = \{1, 2\}$ is S- β - \mathcal{H}_q -open but not σ - \mathcal{H}_q -open.

Theorem 2.1 A subset \mathcal{L} of $\mathcal{HGTS}(\mathcal{Z}, \mu, \mathcal{H})$ is σ - \mathcal{H}_q -open if and only if $c_u^*(\mathcal{L}) = c_u^* i_q(\mathcal{L})$.

Proof: Consider a subset \mathcal{L} of $\mathcal{HGTS}(\mathcal{Z}, \mu, \mathcal{H})$ is σ - \mathcal{H}_g -open. Then, $\mathcal{L} \subseteq c_{\mu}^* i_g(\mathcal{L})$. Now, $c_{\mu}^*(\mathcal{L}) \subseteq c_{\mu}^* c_{\mu}^* i_g(\mathcal{L}) \subseteq c_{\mu}^* i_g(\mathcal{L})$. Always $c_{\mu}^* i_g(\mathcal{L}) \subseteq c_{\mu}^* (\mathcal{L})$. Hence, $c_{\mu}^* (\mathcal{L}) = c_{\mu}^* i_g(\mathcal{L})$. Conversely, Consider $c_{\mu}^* (\mathcal{L}) = c_{\mu}^* i_g(\mathcal{L})$. Then, $\mathcal{L} \subseteq c_{\mu}^* (\mathcal{L}) = c_{\mu}^* i_g(\mathcal{L})$. Hence, \mathcal{L} is σ - \mathcal{H}_g -open.

Theorem 2.2 For subset \mathcal{L} of a $\mathcal{HGTS}(\mathcal{Z}, \mu, \mathcal{H})$, the following results are equivalent.

- 1. \mathcal{L} is α - \mathcal{H}_q -open.
- 2. \mathcal{L} is σ - \mathcal{H}_q -open and π - \mathcal{H}_q -open.

Proof: (1) \Rightarrow (2). Consider \mathcal{L} is α - \mathcal{H}_g -open. Then by Proposition 2.5 and 2.6, \mathcal{L} is σ - \mathcal{H}_g -open and π - \mathcal{H}_g -open.

 $(2) \Rightarrow (1)$. Consider \mathcal{L} is both σ - \mathcal{H}_g -open and π - \mathcal{H}_g -open. Then $\mathcal{L} \subseteq i_g c_\mu^* (\mathcal{L}) \subseteq i_g c_\mu^* c_\mu^* i_g(\mathcal{L}) \subseteq i_g c_\mu^* i_g(\mathcal{L})$. Hence \mathcal{L} is α - \mathcal{H}_g -open.

The notions of σ - \mathcal{H}_q -open and π - \mathcal{H}_q -open are independent.

Example 2.13 Consider $\mathcal{Z} = \{1, 2, 3, 4, 5\}$, $\mu = \{\emptyset, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\}\}$ $\mathcal{H} = \{\emptyset, \{2\}\}$. Then \mathcal{Z} is σ - \mathcal{H}_q -open but not π - \mathcal{H}_q -open.

Example 2.14 Consider $\mathcal{Z} = \{1, 2, 3, 4\}$, $\mu = \{\emptyset, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}, \{1, 4\}, \{1, 3, 4\}, \mathcal{Z}\}$, $\mathcal{H} = \{\emptyset, \{4\}\}$. Then $\mathcal{L} = \{1, 2\}$ is π - \mathcal{H}_g -open but not σ - \mathcal{H}_g -open.

Proposition 2.11 Let $(\mathcal{Z}, \mu, \mathcal{H})$ be a \mathcal{HGTS} . If \mathcal{L} is an π - \mathcal{H}_g -open subset of \mathcal{Z} such that $U \subseteq \mathcal{L} \subseteq c^*_{\mu}(U)$, and $U \subseteq \mathcal{Z}$, then U is π - \mathcal{H}_g -open set.

Proof: Since $\mathcal{L} \subseteq i_g c_\mu^*(\mathcal{L})$ and $c_\mu^*(\mathcal{L}) \subseteq c_\mu^*(U)$, then we have $U \subseteq \mathcal{L} \subseteq i_g c_\mu^*(\mathcal{L}) \subseteq i_g c_\mu^*(U)$. Thus U is π - \mathcal{H}_g -open set.

Proposition 2.12 Let $(\mathcal{Z}, \mu, \mathcal{H})$ be a \mathcal{HGTS} . A subset \mathcal{L} is a σ - \mathcal{H} -open if and only if \mathcal{L} is S- β - \mathcal{H}_g -open and $i_g c_{\mu}^*(\mathcal{L}) \subseteq c_{\mu}^* i_{\mu}(\mathcal{L})$.

Proof: Let \mathcal{L} be a σ - \mathcal{H} -open. Then, $\mathcal{L} \subseteq c_{\mu}^* i_{\mu}(\mathcal{L}) \subseteq c_{\mu}^* i_{g} c_{\mu}^*(\mathcal{L})$ and hence, \mathcal{L} is S- β - \mathcal{H}_g -open. In addition $c_{\mu}^*(\mathcal{L}) \subseteq c_{\mu}^* i_{\mu}(\mathcal{L})$ and hence $i_{g} c_{\mu}^*(\mathcal{L}) \subseteq c_{\mu}^* i_{\mu}(\mathcal{L})$. Conversely, let \mathcal{L} be S- β - \mathcal{H}_g -open and $i_{g} c_{\mu}^*(\mathcal{L}) \subseteq c_{\mu}^* i_{\mu} \subseteq (\mathcal{L})$. Then, $\mathcal{L} \subseteq c_{\mu}^* i_{g} c_{\mu}^*(\mathcal{L}) \subseteq c_{\mu}^* i_{\mu}(\mathcal{L}) = c_{\mu}^* i_{\mu}(\mathcal{L})$ and hence, \mathcal{L} is σ - \mathcal{H} -open.

Lemma 2.1 Let $(\mathcal{Z}, \mu, \mathcal{H})$ be a \mathcal{HGTS} and $\mathcal{L} \subseteq \mathcal{Z}$. If U is μ -open subset of \mathcal{Z} then, $U \cap c_{\mu}^* \mathcal{L} \subseteq c_{\mu}^* (U \cap \mathcal{L})$.

Proposition 2.13 Let $(\mathcal{Z}, \mu, \mathcal{H})$ be a \mathcal{HGTS} . Then the intersection of π - \mathcal{H}_g -open set and an μ -open set is π - \mathcal{H}_g -open.

Proof: Let \mathcal{L} is π - \mathcal{H}_g -open set and U be a μ -open set. Then, $\mathcal{L} \subseteq i_g c_{\mu}^*(\mathcal{L})$. Since every μ -open set is g_{μ} -open, $U \cap \mathcal{L} \subseteq i_g(U) \cap i_g c_{\mu}^*(\mathcal{L}) = i_g(U \cap c_{\mu}^*(\mathcal{L})) \subseteq i_g c_{\mu}^*(U \cap \mathcal{L})$ by Lemma 2.1. This shows that $U \cap \mathcal{L}$ is π - \mathcal{H}_g -open.

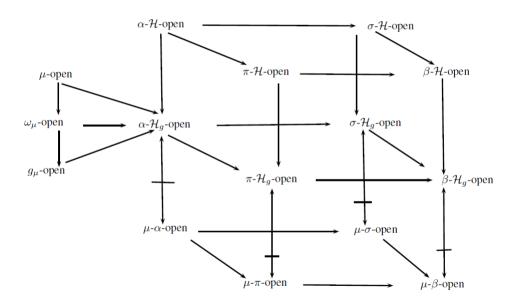
Proposition 2.14 Let $(\mathcal{Z}, \mu, \mathcal{H})$ be a \mathcal{HGTS} . Then the intersection of S- β - \mathcal{H}_g -open set and an μ -open set is S- β - \mathcal{H}_g -open.

Proof: Let \mathcal{L} is $S-\beta-\mathcal{H}_g$ -open set and U be a μ -open set. Then, $\mathcal{L} \subseteq c_{\mu}^*i_gc_{\mu}^*(\mathcal{L})$. Since every μ -open set is g_{μ} -open, $U \cap \mathcal{L} \subseteq U \cap c_{\mu}^*i_g(U)c_{\mu}^* \subseteq c_{\mu}^*(U \cap i_gc_{\mu}^*(\mathcal{L})) \subseteq c_{\mu}^*(i_g(U) \cap i_gc_{\mu}^*(\mathcal{L})) = c_{\mu}^*i_g(U \cap c_{\mu}^*(\mathcal{L})) \subseteq c_{\mu}^*i_gc_{\mu}^*(U \cap \mathcal{L})$ by Lemma 2.1 This shows that $U \cap \mathcal{L}$ is $S-\beta-\mathcal{H}_g$ -open.

Proposition 2.15 Let $(\mathcal{Z}, \mu, \mathcal{H})$ be a \mathcal{HGTS} . Then the intersection of α - \mathcal{H}_g -open set and an μ -open set is α - \mathcal{H}_g -open.

Proof: Let \mathcal{L} is α - \mathcal{H}_g -open set and U be a μ -open set. Then $\mathcal{L} \subseteq i_g c_{\mu}^* i_g(\mathcal{L})$ and $U = i_g(U)$ Since every μ -open set is g_{μ} -open, $U \cap \mathcal{L} \subseteq i_g(U) \cap i_g c_{\mu}^* i_g(\mathcal{L}) = i_g(U \cap c_{\mu}^* i_g(\mathcal{L})) \subseteq i_g(c_{\mu}^* (U \cap i_g \mathcal{L})) = i_g c_{\mu}^* i_g(U \cap \mathcal{L})$. This shows that $U \cap \mathcal{L}$ is α - \mathcal{H}_g -open.

For several sets defined above, we have the following implications.



Definition 2.2 A subset \mathcal{L} of $a\mathcal{HGTS}(\mathcal{Z}, \mu, \mathcal{H})$ is said to be σ - \mathcal{H}_q -closed, if $i_q c_u^*(\mathcal{L}) \subseteq \mathcal{L}$.

Definition 2.3 A subset \mathcal{L} of a $\mathcal{HGTS}(\mathcal{Z}, \mu, \mathcal{H})$ is said to be \mathcal{R}^{*g} -set, if $A = U \cap V$, where U is g_{μ} -open and V is σ - \mathcal{H}_g -closed.

Proposition 2.16 In $\mathcal{HGTS}(\mathcal{Z}, \mu, \mathcal{H})$, every g_{μ} -open is \mathcal{R}^{*g} -set but not conversely.

Proof: Obvious.

Example 2.15 Consider $\mathcal{Z} = \{1, 2, 3, 4\}$, $\mu = \{\emptyset, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}, \{1, 4\}, \{1, 3, 4\}, \mathcal{Z}\}$, $\mathcal{H} = \{\emptyset, \{1\}, \{2\}\}$. Then $L = \{2\}$ is \mathcal{R}^{*g} -set but not g_{μ} -open.

Theorem 2.3 Let $(\mathcal{Z}, \mu, \mathcal{H})$ be a strong \mathcal{HGTS} , where \mathcal{Z} is C_0 -space and $\mathcal{L} \subset \mathcal{Z}$. Then the following conditions are equivalent.

- 1. \mathcal{L} is g_{μ} -open.
- 2. \mathcal{L} is α - \mathcal{H}_g -open and \mathcal{R}^{*g} -set.
- 3. \mathcal{L} is π - \mathcal{H}_q -open and \mathcal{R}^{*g} -set.

Proof: (1) \Rightarrow (2). Let a subset \mathcal{L} of \mathcal{Z} is g_{μ} -open. Then it is α - \mathcal{H}_g -open and R^{*g} -set by Propositions 2.2 and 2.16.

- (2) \Rightarrow (3). Let a subset \mathcal{L} of \mathcal{Z} is both α - \mathcal{H}_g -open and R^{*g} -set. Then it is both π - \mathcal{H}_g -open and R^{*g} -set.
- (3) \Rightarrow (1). Let a subset \mathcal{L} of \mathcal{Z} is both π - \mathcal{H}_g -open and R^{*g} -set. Then $\mathcal{L} \subseteq i_g c_{\mu}^*(\mathcal{L})$ and $\mathcal{L} = U \cap V$, where U is g_{μ} -open and V is σ - \mathcal{H}_g -closed.

Now, $\mathcal{L} \subseteq i_g c_\mu^*(\mathcal{L}) = i_g c_\mu^*(U \cap V) \subseteq i_g(c_\mu^*(U) \cap c_\mu^*(V)) \subseteq i_g c_\mu^*(U) \cap i_g c_\mu^*(V)$.

Since V is σ - \mathcal{H}_g -closed, $i_g c_\mu^*(V) \subseteq V \Rightarrow i_g c_\mu^*(V) \subseteq i_g(V)$.

Hence $\mathcal{L} \subseteq i_q c_u^*(U) \cap i_q(V)$.

Now as $\mathcal{L} \subseteq U$, we have $\mathcal{L} = U \cap \mathcal{L}$

$$\begin{split} &\subseteq U \cap i_g c_\mu^*(U) \cap i_g(V) \\ &= [U \cap i_g c_\mu^*(U)] \cap i_g(V) \\ &= U \cap i_g(V) \\ &= i_g(U) \cap i_g(V) \\ &= i_g(U \cap V) \\ &= i_g(\mathcal{L}). \end{split}$$

Therefor $\mathcal{L} \subseteq i_g(\mathcal{L})$. Hence \mathcal{L} is g_{μ} -open.

The notions of α - \mathcal{H}_q -open (resp. π - \mathcal{H}_q -open) and R^{*g} -set are independent.

Example 2.16 Consider $\mathcal{Z} = \{1, 2, 3, 4\}$, $\mu = \{\emptyset, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}, \{1, 4\}, \{1, 3, 4\}, \mathcal{Z}\}$, $\mathcal{H} = \{\emptyset, \{4\}\}$. Then $\mathcal{L} = \{1, 2, 4\}$ is R^{*g} -set but neither α - \mathcal{H}_q -open nor π - \mathcal{H}_q -open.

Example 2.17 Consider $\mathcal{Z} = \{1, 2, 3, 4\}$, $\mu = \{\emptyset, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}, \{1, 4\}, \{1, 3, 4\}, \mathcal{Z}\}$, $\mathcal{H} = \{\emptyset, \{4\}\}$. Then $\mathcal{L} = \{3, 4\}$ is π - \mathcal{H}_q -open but not R^{*g} -set.

Example 2.18 Consider $\mathcal{Z} = \{1, 2, 3, 4\}$, $\mu = \{\emptyset, \{3, 4\}, \{1, 2, 3\}, \mathcal{Z}\}$, $\mathcal{H} = \{\emptyset, \{1, 2\}\}$. Then $\mathcal{L} = \{1, 3, 4\}$ is α - \mathcal{H}_g -open but not R^{*g} -set.

3. Decomposition of $(\alpha - \mathcal{H}_q, \lambda)$ -continuity

Definition 3.1 A map $f: (\mathcal{Z}, \mu, \mathcal{H}) \to (W, \lambda)$ is $(\alpha - \mathcal{H}_g, \lambda)$ -continuity (resp. $(\sigma - \mathcal{H}_g, \lambda)$ -continuity), if $j^{-1}(V)$ is $\alpha - \mathcal{H}_g$ -open (resp. $\sigma - \mathcal{H}_g$ -open, $\pi - \mathcal{H}_g$ -open) for each λ - open set V in (W, λ) .

Definition 3.2 A map $f: (\mathcal{Z}, \mu, \mathcal{H}) \to (W, \lambda)$ is (R^{*g}, λ) -continuity, if $f^{-1}(V)$ is R^{*g} set for each λ -open set V in (W, λ) .

Theorem 3.1 For a map $f: (\mathcal{Z}, \mu, \mathcal{H}) \to (W, \lambda)$, the following results are equivalent.

- 1. f is $(\alpha \mathcal{H}_a, \lambda)$ -continuity.
- 2. f is $(\sigma \mathcal{H}_q, \lambda)$ -continuity and $(\pi \mathcal{H}_q, \lambda)$ -continuity.

Proof: This is an immediate consequence of Theorem 2.2.

Theorem 3.2 For a map $f: (\mathcal{Z}, \mu, \mathcal{H}) \to (W, \lambda)$ where \mathcal{Z} is C_0 -space, the following results are equivalent.

- 1. f is (q_{μ}, λ) -continuity.
- 2. f is $(\alpha \mathcal{H}_q, \lambda)$ -continuity and (R^{*g}, λ) -continuity.
- 3. f is $(\pi \mathcal{H}_a, \lambda)$ -continuity and (R^{*g}, λ) -continuity.

Proof: This is an immediate consequence of Theorem 2.3.

Acknowledgments

The authors wishes to thank the referees for useful comments and suggestions.

References

- 1. A. Al-omari, S. Modak and T. Noiri, On θ -modifications of generalized topologies via hereditary classes, Commun. Korean Math. Soc. 31 (2016), No. 4, 857-868. http://dx.doi.org/10.4134/CKMS.c160002.
- A. Al-omari and T. Noiri, Operators in minimal spaces with hereditary classes, Mathematica, 61 (84) (2), (2019), 101-110.
- A. Al-omari and T. Noiri, Properties of γH-compact spaces with hereditary classes, Atti della Accademia Peloritana dei Pericolanti, Classe di Scienze Fisiche, Matematiche e Naturali, 98 No. 2 (2020), A4 [11 pages].
- A. Al-omari and T. Noiri, Generalizations of Lindelöf spaces via hereditary classes, Acta Univ. Sapientie Math., 13
 (2021), No. 2, 281-291.
- A. Al-omari and Mohd. Salmi Md. Noorani, Decomposition of continuity via b-open aet, Bol. Soc. Paran. Mat., 26(1-2)(2008), 53-64.
- 6. A. Csaszar, Generalized topology generalized continuity Acta Mathematica Hungarica 96 (2002), 351-357.
- 7. A. Csaszar, Generalized open sets in generalized topologies Acta Mathematica Hungarica 106 (2005), 53-56.
- 8. A. Csaszar, Modification of generalized topologies via hereditary classes Acta Mathematica Hungarica 115(2007), 29-36.
- W. K. Min, Generalized Continuity maps defined by generalized open sets on generalized topological spaces Acta Mathematica Hungarica 128(4) (2010)pp 299-306.

- 10. S.Maragathavalli, M. Sheik John and D. Sivaraj On g-closed sets in generalized topological spaces, Journal of Advanced Research in Pure Mathematics (2)(2010), 3:24-33.
- 11. M. Rajamani, V. Inthumathi and R. Ramesh, Some new generalized topologies via hereditary classes *Bol. Soc. Paran. Mat.* **30(2)**(2012), 71-77.
- 12. M. Rajamani, V. Inthumathi and R. Ramesh, (ω_{μ}, λ) -continuity in generalized topological spaces, International Journal of Mathematical Archive, $\mathbf{3}(10)(2012)$, 3696-3703.
- R. Ramesh and R. Mariappan Generalized open sets in hereditary generalized topological spaces, J. Math. Comput. Sci., 5(2) (2015), 149-159.
- 14. R. Ramesh and Ahmad Al-Omari, b- \mathcal{H}_{σ} -open sets in HGTS, Poincare Journal of Analysis and Applications 9(1) (2022), 31-40.
- 15. R. Ramesh and Ahmad Al-Omari, Decomposition of $(\alpha \mathcal{H}_{\sigma}, \lambda)$ -continuity, Poincare Journal of Analysis and Applications 10(1) (2023), 155-163.
- M. S. Sarsak, On some properties of Generalized open sets in Generalized topological spaces, Demonstratio Math. (2013).
- GE Xun and GE Ying, μ-Separations in generalized topological spaces, Appl. Math. J. Chinese Univ., 25(2)(2010), 243-252.

R. Ramesh,

Department of Science and Humanities,

Dr. Mahalingam College of Engineeirng and Technology,

Pollachi, Tamil Nadu, India.

 $E ext{-}mail\ address: rameshwaran141@gmail.com}$

and

Ahmad Al-omari,

Al al-Bayt University,

Department of Mathematics, Jordan

https://orcid.org/0000-0002-6696-1301.

E-mail address: omarimutah1@yahoo.com