(3s.) v. 2025 (43): 1-13. ÌSSŃ-0037-8712 doi:10.5269/bspm.67390

Lacunary \mathcal{I} -Convergent σ -Asymptotically Equivalent Difference Sequences of Fuzzy Real Numbers

Sankar Jyoti Boruah and Amar Jyoti Dutta*

ABSTRACT: In this paper we have introduced the concept lacunary (Δ, σ) \mathcal{I} -asymptotically equivalent sequences of fuzzy real numbers in terms of Orlicz function, which is a natural combination of asymptotic equivalent, σ -convergence, difference sequence, \mathcal{I} -statistically limit, \mathcal{I} -statistically lacunary sequences and Orlicz function of fuzzy real numbers. Let, θ be a lacunary sequence. Two sequences $X=(X_t)$ and $Y=(Y_t)$ of fuzzy real numbers are said to be lacunary (Δ, σ) \mathcal{I} -asymptotically equivalent of multiple L with respect to M, provided that for every $\varepsilon > 0$ and $\delta > 0$,

$$\left\{r \in \mathbb{N}: \frac{1}{h_r} \left\{ \left| t \in I_r: M\left(\bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right)\right) \geq \varepsilon \right| \right\} \geq \delta \right\} \in \mathcal{I}$$

uniformly in m=1,2,3,... and it is denoted by $X \overset{\mathcal{I}\left(S_{L,\theta}^{\sigma}(\Delta,M)\right)}{\sim} Y$. We have established some relations between the classes of the sequences related to our study.

Key Words: Orlicz function; lacunary sequence; statistically convergent; asymptotically equivalent; fuzzy real number; Cesáro summable; Ideal convergence; difference sequence.

Contents

1 Introduction

Definitions and Preliminaries 3

Main Results 4

1. Introduction

In 1993, Marouf [17] introduced the concept of asymptotically equivalent sequences for real numbers. Later, Patterson [19] extended the concepts by introducing asymptotically statistical equivalent sequences. Nuray and Savas [18] proposed statistically convergent and statistically Cauchy sequences for fuzzy numbers. Savaş [28] presented the natural combination of the notion of asymptotically equivalent and λ -statistical convergence of fuzzy numbers. Also, Savaş and Gumuş [25] generalized the concept of \mathcal{I} -asymptotically lacunary statistical equivalent sequences. Dutta [4] showed some important results of asymptotically equivalent generalized difference sequence of fuzzy real numbers by introducing Orlicz function. Patterson and Savas [20] showed lacunary sequences in asymptotically statistical equivalent sequences. Moreover, Savaş [22], Savaş and Başarir [24], Savaş and Patterson [27] and many more ([1], [10], [21], [26]) presented some new concept of σ -convergence in various sequence spaces. In recent time, different researchers ([3], [5], [6], [7], [11], [12], [29], [30], [31], [32], [33], [34], [35], [36], [23], [9], [2]) contributed in the field and established some important results. Lindberg [14], Lindenstrauss and Tzafriri [15] studied the idea of Orlicz sequence spaces and established some relations in Banach space theory.

A continuous, non-decreasing and convex mapping $M:[0,\infty)\to[0,\infty)$ with the conditions: M(0)=0, M(x) > 0, for x > 0 and $M(x) \to \infty$, for $x \to \infty$ is known as Orlicz function. This Orlicz function M is called the modulus function, if the convexity is replaced by $M(x+y) \geq M(x) + M(y)$. Lindenstrauss and Tzafriri [15] defined the Orlicz sequence ℓ_M space as follows:

$$\ell_M = \left\{ x \in w : \sum_{t=1}^{\infty} M\left(\frac{|x_t|}{\rho}\right) < \infty, \text{ for some } \rho > 0 \right\}, \text{ where } w \text{ denotes the class of all real and complex }$$

Submitted March 13, 2023. Published February 21, 2025 2010 Mathematics Subject Classification: 40A05, 40A35, 40A99,40C05,46D25.

^{*} Corresponding author

sequences $x = (x_k)$.

Remark 1.1: For any Orlicz function, the inequality $M(\lambda x) \leq \lambda M(x), \forall \lambda$ with $0 < \lambda < 1$ holds.

A non-empty family $\mathcal{I} \subset 2^{\mathbb{N}}$ is said to be an *ideal* if it satisfies the conditions: (i) for each $A, B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$ and (ii) for each $A \in \mathcal{I}$ and for each $B \subset A$ imply $B \in \mathcal{I}$. A non-empty family of sets $\mathcal{F} \subset 2^{\mathbb{N}}$ is said to be a *filter* of \mathbb{N} if it satisfies the following conditions: (i) $\phi \notin \mathcal{F}$, (ii) for each $A, B \in \mathcal{F}$ implies $A \cap B \in \mathcal{F}$ and (iii) for each $A \in \mathcal{F}$, and for each $B \cup A$ imply $B \in \mathcal{F}$. An ideal I is said to be a non-trivial ideal if $\mathbb{N} \notin \mathcal{I}$ and $\mathcal{I} \neq \phi$. It is clear that I is a non-trivial ideal if and only if $\mathcal{F}(\mathcal{I}) = {\mathbb{N} - B : B \in \mathcal{I}}$ is a *filter* on \mathbb{N} .

Kizmaz [13] introduced the idea of difference sequence space $X(\Delta)$ as follows:

 $X(\Delta) = \{x = (x_t) \in w : (\Delta x_t) \in X\}$, for $X = c_0, c$ and ℓ_∞ ; where $\Delta(x_t) = x_t - x_{t+1}$, for all $t \in \mathbb{N}$. Later, Et and Çolak [8] generalized this as follows:

$$X(\Delta^p) = \{ x = (x_t) \in w : (\Delta^p x_t) \in X \}.$$

The generalized difference operator has the following binomial representation:

$$\Delta^{p} x_{t} = \sum_{n=0}^{p} (-1)^{n} {p \choose n} x_{n+t}$$

Let, σ be a one-to-one mapping from the set of natural numbers to itself such that $\sigma^t(m) = \sigma\left(\sigma^{t-1}(m)\right)$, t = 1, 2, 3, ... A continuous linear functional φ on ℓ_{∞} is said to be an σ -mean or an invariant mean if and only if

- (i) $\varphi(x) \geq 0$ when $x_t \geq 0$ for all t where $x = (x_t)$
- (ii) $\varphi(e) = 1$ where e = (1, 1, 1, ...) and
- (iii) $\varphi(x_{\sigma(m)}) = \varphi(x)$ for all $x \in \ell_{\infty}$.

Lorentz [15] already showed that the σ -mean is the Banach limit when we consider $\sigma(k) = k + 1$ and V_{σ} is the set of almost convergent sequences.

A fuzzy real number X is a fuzzy set on \mathbb{R} , more precisely a mapping $X : \mathbb{R} \to I (= [0, 1])$ associating each real number t, with its grade of membership X(t), which satisfy the following properties:

- (i) X is normal i.e. if there exists $t_0 \in \mathbb{R}$ such that $X(t_0) = 1$.
- (ii) X is upper semi-continuous i.e. if for each $\varepsilon > 0$ and for all $a \in I, X^{-1}([0, a + \varepsilon))$, is open in the usual topology of \mathbb{R} .
- (iii) X is convex i.e. if $X(t) \ge X(s) \wedge X(r) = \min(X(s), X(r))$, where s < t < r.
- (iv) The closure of $\{t \in \mathbb{R} : X(t) > 0\}$ is compact.

The class of all *upper semi-continuous*, *normal*, *convex* fuzzy real numbers is denoted by $\mathbb{R}(I)$. The absolute value of $X \in \mathbb{R}(I)$ is defined by

$$|X|(t) = \begin{cases} \max\{X(t), X(-t)\} & \text{for } t \ge 0; \\ 0 & \text{otherwise.} \end{cases}$$

The set \mathbb{R} of all real numbers can be embedded in $\mathbb{R}(I)$. For $r \in \mathbb{R}$, $\bar{r} \in \mathbb{R}(I)$ is defined by

$$\bar{r}(t) = \begin{cases} 1 & \text{for } t = r; \\ 0 & \text{for } t \neq r. \end{cases}$$

We denote the additive identity and multiplicative identity of $\mathbb{R}(I)$ by $\bar{0}$ and $\bar{1}$ respectively.

For any $X, Y, Z \in \mathbb{R}(I)$, the linear structure of $\mathbb{R}(I)$ induces addition X + Y and scalar multiplication $\lambda X, \lambda \in \mathbb{R}$ in terms of α -level set, defined as $[X + Y]^{\alpha} = [X]^{\alpha} + [Y]^{\alpha}$ and $[\lambda X]^{\alpha} = \lambda [X]^{\alpha}$, for each $\alpha \in [0, 1]$. A subset E of $\mathbb{R}(I)$ is said to be bounded above if there exist a fuzzy real number μ such that $X \leq \mu$ for every $X \in E$. We called μ as the upper bound of E and it is called least upper bound if $\mu \leq \mu^*$ for all upper bound μ^* of E. A lower bound and greatest lower bound can be defined similarly. The set E is said to be bounded if it is both bounded above and bounded below.

Let D be the set of all closed and bounded intervals $X = [X^L, X^R]$ and $Y = [Y^L, Y^R]$. We define a metric on D by

$$d(X, Y) = \max\{|X^L - Y^L|, |X^R - Y^R|\}.$$

It is straight forward that (D, d) is a complete metric space.

Define, $\bar{d}: \mathbb{R}(I) \times \mathbb{R}(I) \to \mathbb{R}$ by

$$\bar{d}(X,Y) = \sup_{0 \le \alpha \le 1} d(X^{\alpha}, Y^{\alpha}) \text{ for } X, Y \in \mathbb{R}(I).$$

It is well established that $(\mathbb{R}(I), \bar{d})$ is a complete metric space.

A sequence $X = (X_t)$ of fuzzy real number is a function X from the set of natural number into $\mathbb{R}(I)$, where X_t is the t^{th} term of the fuzzy sequence.

Let E^F be the class of sequence of fuzzy real numbers, the linearity of E^F can be understand as follows:

For $(X_t), (Y_t) \in E^F$, $p \in \mathbb{R}$ and for all $t \in \mathbb{N}$,

- (i) $(X_t) + (Y_t) = (X_t + Y_t) \in E^F$ and
- (ii) $p(X_t) = (pX_t) \in E^F$, where

$$p(X_t)(k) = \begin{cases} X_t(p^{-1}k) & \text{if } p \neq 0; \\ \overline{0} & \text{if } p = 0. \end{cases}$$

2. Definitions and Preliminaries

In this section we mention some definitions related to the topic.

Definition 2.1 A sequence (X_k) of fuzzy real numbers is said to be convergent to $X_0 \in \mathbb{R}(I)$, if for every $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that $\bar{d}(X_k, X_0) < \varepsilon$, for all $k \ge n_0$.

Definition 2.2 A lacunary sequence is an increasing sequence $\theta = (k_r)$ of positive integer such that $h_r = (k_r - k_{r-1}) \to \infty$ as $r \to \infty$ with $k_0 = 0$. The interval determined by θ is given by $I_r = (k_{r-1}, k_r]$ and the ratio $\frac{k_r}{k_{r-1}}$ is denoted by q_r .

Definition 2.3 A sequence (X_t) of fuzzy real numbers is said to be statistically convergent to a fuzzy real number X_0 if for every $\varepsilon > 0$,

$$\lim_{n \to \infty} \frac{1}{n} \left| \{ t \le n : \bar{d}(X_t, X_0) \ge \epsilon \} \right| = 0$$

(denoted by $st - \lim X = X_0$).

Definition 2.4 A sequence (X_t) of fuzzy real numbers is said to be \mathcal{I} -convergent to a fuzzy real number X_0 if for every $\varepsilon > 0$,

$$\{t \in \mathbb{N} : |X_t - X_0| \ge \varepsilon\} \in \mathcal{I}.$$

Definition 2.5 Two sequences $X = (X_t)$ and $Y = (Y_t)$ of fuzzy real numbers are said to be asymptotically equivalent if

$$\lim_{t \to \infty} \bar{d}\left(\frac{X_t}{Y_t}, \bar{1}\right) = 0$$

It is denoted by $X \sim Y$.

Now, we give the following definitions in connection to our results.

Definition 2.6 Two sequences $X = (X_t)$ and $Y = (Y_t)$ of fuzzy real numbers are said to be (Δ, σ) -statistical asymptotically equivalent of multiple L with respect to M if for every $\varepsilon > 0$,

$$\lim_{n \to \infty} \frac{1}{n} \left| \left\{ t \le n : M\left(\bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right) \right) \ge \varepsilon \right\} \right| = 0$$

uniformly in $m = 1, 2, 3, ... (denoted by X \stackrel{S_L^{\sigma}(\Delta)}{\sim} Y).$

Definition 2.7 Two sequences $X = (X_t)$ and $Y = (Y_t)$ of fuzzy real numbers are said to be (Δ, σ) -strong Cesáro asymptotically equivalent of multiple L with respect to M if

$$\lim_{n \to \infty} \frac{1}{n} \sum_{t=1}^n M\left(\bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right)\right) = 0$$

 $\label{eq:uniformly} \textit{uniformly in } m=1,2,3,\dots \; (\textit{denoted by} X \overset{C^\sigma_L(\Delta)}{\sim} Y).$

Definition 2.8 Two sequences $X = (X_t)$ and $Y = (Y_t)$ of fuzzy real numbers are said to be lacunary (Δ, σ) \mathcal{I} -asymptotically equivalent of multiple L with respect to M if for every $\varepsilon > 0$,

$$\left\{r \in \mathbb{N}: \frac{1}{h_r} \left\{ \left| t \in I_r: M\left(\bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right)\right) \geq \varepsilon \right| \right\} \geq \delta \right\} \in \mathcal{I}$$

uniformly in $m = 1, 2, 3, \dots$ (denoted by $X \stackrel{\mathcal{I}(S_{L,\theta}^{\sigma}(\Delta,M))}{\sim} Y$).

Definition 2.9 Two sequences $X = (X_t)$ and $Y = (Y_t)$ of fuzzy real numbers are said to be lacunary (Δ, σ) strong \mathcal{I} -asymptotically equivalent of multiple L with respect to M if for every $\varepsilon > 0$

$$\left\{r \in \mathbb{N} : \frac{1}{h_r} \left\{ \sum_{t \in I_r} M\left(\bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right)\right) \right\} \ge \varepsilon \right\} \in \mathcal{I}$$

uniformly in m = 1, 2, 3, ... (denoted by $X \overset{\mathcal{I}(N_L^{\sigma}(\Delta, M))}{\sim} Y$).

3. Main Results

Theorem 3.1 Let, $\theta = (k_r)$ be a lacunary sequence, then

(a) If
$$X \overset{\mathcal{I}(N_L^{\sigma}(\Delta))}{\sim} Y$$
, then $X \overset{\mathcal{I}(S_{L,\theta}^{\sigma}(\Delta))}{\sim} Y$,

(b) If
$$X, Y \in l_{\infty}(\Delta, \sigma)$$
 and $X \stackrel{\mathcal{I}(S_{L,\theta}^{\sigma}(\Delta))}{\sim} Y$, then $X \stackrel{\mathcal{I}(N_{L}^{\sigma}(\Delta))}{\sim} Y$.

Proof: (a) If $\lim_{r\to\infty}\inf q_r>1$, then $\exists \ \delta>0$ such that $q_r\geq 1+\delta$, for sufficiently large r. We have, $h_r=(k_r-k_{r-1})$ which implies, $\frac{h_r}{k}\geq \frac{\delta}{1+\delta}$.

Let, $X \stackrel{\mathcal{I}(N_L^{\sigma}(\Delta))}{\sim} Y$. Therefore, for any $\alpha > 0$, we have

$$\left\{r \in \mathbb{N} : \frac{1}{h_r} \sum_{t \in I_r} \bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right) \ge \alpha\right\} \in \mathcal{I}.$$

Now, for a given $\varepsilon > 0$

$$\begin{split} &\sum_{t \in I_r} \bar{d} \left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L \right) \geq \sum_{t \in I_r \ \& \ \bar{d} \left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L \right) \geq \varepsilon} \bar{d} \left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L \right) \\ &\geq \varepsilon \left| \left\{ t \in I_r : \bar{d} \left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L \right) \geq \varepsilon \right\} \right| \\ &\Rightarrow \frac{1}{\varepsilon h_r} \sum_{t \in I_r} \bar{d} \left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L \right) \geq \frac{1}{h_r} \left| \left\{ t \in I_r : \bar{d} \left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L \right) \geq \varepsilon \right\} \right| \\ &\text{Then for any } \delta > 0, \end{split}$$

$$\begin{split} &\left\{r \in \mathbb{N}: \frac{1}{h_r} \left| \left\{t \in I_r: \bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right) \geq \varepsilon\right\} \right| \geq \delta \right\} \\ &\subseteq \left\{r \in \mathbb{N}: \frac{1}{h_r} \sum_{t \in I_r} \bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right) \geq \alpha \right\} \in \mathcal{I}, \text{ where } \alpha = \varepsilon \delta. \end{split}$$

Therefore, $X \stackrel{\mathcal{I}\left(S_{L,\theta}^{\sigma}(\Delta)\right)}{\sim} Y$. This complete the proof.

(b) If $\lim_{r\to\infty}\inf q_r>1$, then $\exists \ \delta>0$ such that $q_r\geq 1+\delta$, for sufficiently large r. We have, $h_r=(k_r-k_{r-1})$ which implies, $\frac{h_r}{k_r}\geq \frac{\delta}{1+\delta}$.

Suppose, $X, Y \in l_{\infty}(\Delta, \sigma)$ and $X \stackrel{\mathcal{I}(S_{L,\theta}^{\sigma}(\Delta))}{\sim} Y$. Therefore, for any $\gamma, \varepsilon > 0$, we get

$$\left\{r \in \mathbb{N} : \frac{1}{h_r} \left| \left\{ t \in I_r : \bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right) \ge \varepsilon \right\} \right| \ge \gamma \right\} \in \mathcal{I}.$$

Then, \exists an integer P such that $\bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right) \leq P$, for all t.

Now, for some $\varepsilon > 0$,

$$\begin{split} &\sum_{t \in I_r} \bar{d} \left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L \right) \\ &= \sum_{t \in I_r \, \& \bar{d} \left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L \right) \geq \varepsilon} \bar{d} \left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L \right) + \sum_{t \in I_r \, \& \, \bar{d} \left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L \right) < \varepsilon} \bar{d} \left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L \right) \\ &\leq P \left| \left\{ t \in I_r : \bar{d} \left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L \right) \geq \varepsilon \right\} \right| + \varepsilon \end{split}$$

Then for any $\delta > \varepsilon > 0$ (ε and δ are independent),

$$\left\{r \in \mathbb{N} : \frac{1}{h_r} \sum_{t \in I_r} \bar{d} \left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L \right) \ge \delta \right\}$$

$$\subseteq \left\{r \in \mathbb{N} : \frac{1}{h_r} \left| \left\{t \in I_r : \bar{d} \left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L \right) \ge \varepsilon \right\} \right| \ge \gamma \right\} \in \mathcal{I},$$
(where $\gamma = \frac{\alpha}{P}$ & $\alpha = (\delta - \varepsilon) > 0$).

Thus, $X \overset{\mathcal{I}(N_L^{\sigma}(\Delta))}{\sim} Y$. This complete the proof.

Theorem 3.2 Let, M be an Orlicz function and $\theta = (k_r)$ be a lacunary sequence with $\lim_{r \to \infty} \inf q_r > 1$, then

(a)
$$X \stackrel{\mathcal{I}(S_L^{\sigma}(\Delta, M))}{\sim} Y \Rightarrow X \stackrel{\mathcal{I}(S_{L,\theta}^{\sigma}(\Delta, M))}{\sim} Y,$$

(b) $X \stackrel{\mathcal{I}(C_L^{\sigma}(\Delta, M))}{\sim} Y \Rightarrow X \stackrel{\mathcal{I}(N_L^{\sigma}(\Delta, M))}{\sim} Y.$

Proof: (a) If $\lim_{r\to\infty}\inf q_r>1$, then $\exists \ \delta>0$ such that $q_r\geq 1+\delta$, for sufficiently large r. We have, $h_r=(k_r-k_r)$ which implies $h_r>\frac{\delta}{2}$

 $h_r = (k_r - k_{r-1})$ which implies, $\frac{h_r}{k_r} \ge \frac{\delta}{1 + \delta}$.

Let, $X \overset{\mathcal{I}(S_L^{\sigma}(\Delta, M))}{\sim} Y.$ Then for any $\alpha > 0$ and $\varepsilon > 0$ we can write

$$\left\{n \in \mathbb{N}: \frac{1}{n} \left| \left\{t \leq n: M\left(\bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right)\right) \geq \varepsilon\right\} \right| \geq \alpha\right\} \in \mathcal{I}.$$

Now, for any $\varepsilon > 0$ and for $k_{r-1} < n \le k_r$ we have

$$\begin{split} &\frac{1}{n} \left| \left\{ t \leq n : M \left(\bar{d} \left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L \right) \right) \geq \varepsilon \right\} \right| \\ &\geq \frac{1}{k_r} \left| \left\{ t \leq k_r : M \left(\bar{d} \left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L \right) \right) \geq \varepsilon \right\} \right| \\ &\geq \frac{1}{k_r} \left| \left\{ t \in I_r : M \left(\bar{d} \left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L \right) \right) \geq \varepsilon \right\} \right| \\ &\geq \left(\frac{\delta}{1+\delta} \right) \frac{1}{h_r} \left| \left\{ t \in I_r : M \left(\bar{d} \left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L \right) \right) \geq \varepsilon \right\} \right| \end{split}$$

Then for any $\alpha > 0$ and for sufficiently large r, we have

$$\left\{r \in \mathbb{N} : \frac{1}{h_r} \left| \left\{ t \in I_r : M\left(\bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right)\right) \ge \varepsilon \right\} \right| \ge \gamma \right\} \right.$$

$$\subseteq \left\{ n \in \mathbb{N} : \frac{1}{n} \left| \left\{ t \le n : M\left(\bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right)\right) \ge \varepsilon \right\} \right| \ge \alpha \right\} \in \mathcal{I}, \text{ where } \alpha = \frac{\gamma \delta}{1 + \delta}.$$

This implies, $X \stackrel{\mathcal{I}\left(S^{\sigma}_{L,\theta}(\Delta,M)\right)}{\sim} Y$. This complete the proof.

(b) If $\lim_{r\to\infty}\inf q_r>1$, then $\exists \ \delta>0$ such that $q_r\geq 1+\delta$, for sufficiently large r. We have, $h_r=(k_r-k_{r-1})$ which implies, $\frac{h_r}{k_r}\geq \frac{\delta}{1+\delta}$.

Let, $X \overset{\mathcal{I}(C_L^{\sigma}(\Delta, M))}{\sim} Y$, then for a given $\varepsilon > 0$ we can write

$$\left\{ n \in \mathbb{N} : \frac{1}{n} \sum_{t=1}^{n} M\left(\bar{d}\left(\frac{\Delta X_{\sigma^{t}(m)}}{\Delta Y_{\sigma^{t}(m)}}, L\right)\right) \ge \varepsilon \right\} \in \mathcal{I}.$$

Now, for $k_{r-1} < n \le k_r$ we get

$$\begin{split} &\frac{1}{n} \sum_{t=1}^{n} M \left(\bar{d} \left(\frac{\Delta X_{\sigma^{t}(m)}}{\Delta Y_{\sigma^{t}(m)}}, L \right) \right) \\ &\geq \frac{1}{k_{r}} \sum_{t=1}^{k_{r}} M \left(\bar{d} \left(\frac{\Delta X_{\sigma^{t}(m)}}{\Delta Y_{\sigma^{t}(m)}}, L \right) \right) \\ &\geq \frac{1}{k_{r}} \sum_{t \in I_{r}} M \left(\bar{d} \left(\frac{\Delta X_{\sigma^{t}(m)}}{\Delta Y_{\sigma^{t}(m)}}, L \right) \right) \\ &= \frac{h_{r}}{k_{r}} \frac{1}{h_{r}} \sum_{t \in I_{r}} M \left(\bar{d} \left(\frac{\Delta X_{\sigma^{t}(m)}}{\Delta Y_{\sigma^{t}(m)}}, L \right) \right) \\ &\geq \left(\frac{\delta}{1+\delta} \right) \frac{1}{h_{r}} \sum_{t \in I_{r}} M \left(\bar{d} \left(\frac{\Delta X_{\sigma^{t}(m)}}{\Delta Y_{\sigma^{t}(m)}}, L \right) \right) \end{split}$$

Then for any $\alpha > 0$ and for sufficiently large value of r, we have

$$\left\{r \in \mathbb{N}: \frac{1}{h_r} \sum_{t \in I_r} M\left(\bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right)\right) \geq \alpha\right\}$$

$$\subseteq \left\{n \in \mathbb{N}: \frac{1}{n} \sum_{t=1}^n M\left(\bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right)\right) \geq \varepsilon\right\} \in \mathcal{I}, \text{ where } \varepsilon = \frac{\alpha \delta}{1+\delta}.$$

This implies, $X \stackrel{\mathcal{I}(N_L^{\sigma}(\Delta, M))}{\sim} Y$. This complete the proof.

To show the next result, we assume that the *lacunary* sequence satisfies the condition that for any set $A \in \mathcal{F}(\mathcal{I}), \cup \{n : k_{r-1} < n < k_r, r \in A\} \in \mathcal{F}(\mathcal{I}).$

Theorem 3.3 Let, M be an Orlicz function and $\theta = (k_r)$ be a lacunary sequence with $\lim_{r \to \infty} \sup q_r < \infty$, then

(a)
$$X \stackrel{\mathcal{I}(S_{L,\theta}^{\sigma}(\Delta,M))}{\sim} Y \Rightarrow X \stackrel{\mathcal{I}(S_{L}^{\sigma}(\Delta,M))}{\sim} Y$$
,

(b)
$$X \stackrel{\mathcal{I}(N_L^{\sigma}(\Delta,M))}{\sim} Y \Rightarrow X \stackrel{\mathcal{I}(C_L^{\sigma}(\Delta,M))}{\sim} Y.$$

Proof: (a) If $\lim_{r\to\infty} \sup q_r < \infty$, then $\exists Q > 0$ such that $q_r < Q, \forall r \geq 1$.

Let, $X \overset{\mathcal{I}\left(S_{L,\theta}^{\sigma}(\Delta,M)\right)}{\sim} Y$. For any α, α_1 and $\varepsilon > 0$ we define the following sets,

$$\begin{split} A &= \left\{ r \in \mathbb{N} : \frac{1}{h_r} \left| \left\{ t \in I_r : M\left(\bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L \right) \right) \geq \varepsilon \right\} \right| < \alpha \right\} \text{ and } \\ B &= \left\{ n \in \mathbb{N} : \frac{1}{n} \left| \left\{ t \leq n : M\left(\bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L \right) \right) \geq \varepsilon \right\} \right| < \alpha_1 \right\} \end{split}$$

We observe that $A \in \mathcal{F}(\mathcal{I})$, the filter of \mathcal{I} . Also for some $\alpha_2 > 0$ we take,

$$C_p = \frac{1}{h_p} \left| \left\{ t \in I_p : M\left(\bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right) \right) \geq \varepsilon \right\} \right| < \alpha_2, \forall p \in A$$

Now, let n be any integer with $k_{r-1} \leq n \leq k_r$. Then for some $r \in A$ we have,

$$\begin{split} &\frac{1}{n}\left|\left\{t\leq n: M\left(\bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}},L\right)\right)\geq\varepsilon\right\}\right|\\ &\leq\frac{1}{k_{r-1}}\left|\left\{t\leq k_r: M\left(\bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}},L\right)\right)\geq\varepsilon\right\}\right|\\ &=\frac{1}{k_{r-1}}\left|\left\{t\in I_1: M\left(\bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}},L\right)\right)\geq\varepsilon\right\}\right|+\frac{1}{k_{r-1}}\left|\left\{t\in I_2: M\left(\bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}},L\right)\right)\geq\varepsilon\right\}\right|\\ &+\frac{1}{k_{r-1}}\left|\left\{t\in I_3: M\left(\bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}},L\right)\right)\geq\varepsilon\right\}\right|+\ldots+\frac{1}{k_{r-1}}\left|\left\{t\in I_r: M\left(\bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}},L\right)\right)\geq\varepsilon\right\}\right|\\ &=\frac{k_1}{k_1k_{r-1}}\left|\left\{t\in I_1: M\left(\bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}},L\right)\right)\geq\varepsilon\right\}\right|+\frac{k_2-k_1}{(k_2-k_1)k_{r-1}}\left|\left\{t\in I_2: M\left(\bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}},L\right)\right)\geq\varepsilon\right\}\right|+\ldots+\frac{k_r-k_{r-1}}{(k_r-k_{r-1})k_{r-1}}\left|\left\{t\in I_r: M\left(\bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}},L\right)\right)\geq\varepsilon\right\}\right|\\ &=\frac{k_1}{k_{r-1}}C_1+\frac{k_2-k_1}{k_{r-1}}C_2+\ldots+\frac{k_r-k_{r-1}}{k_{r-1}}C_r\\ &\leq\{\sup_{p\in A}C_p\}\frac{k_r}{k_{r-1}}\end{split}$$

 $< Q\alpha$

Now, taking $\alpha_1 = Q\alpha$ and as the fact we have $\cup \{n : k_{r-1} < n < k_r, r \in A\} \subset B$, where $A \in \mathcal{F}(\mathcal{I})$ it shows that the set $B \in \mathcal{F}(\mathcal{I})$. This complete the proof.

(b) If $\limsup q_r < \infty$, then $\exists Q > 0$ such that $q_r < Q, \forall r \geq 1$.

Let, $X \overset{\mathcal{I}(N_L^{\sigma}(\Delta, M))}{\sim} Y$. For any $\alpha, \alpha_1, \varepsilon > 0$ we define the following sets,

$$A = \left\{ r \in \mathbb{N} : \frac{1}{h_r} \sum_{t \in I_r} M\left(\bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right)\right) < \alpha \right\} \text{ and }$$

$$B = \left\{ n \in \mathbb{N} : \frac{1}{n} \sum_{t=1}^n M\left(\bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right)\right) < \alpha_1 \right\}.$$

We observe that
$$A \in \mathcal{F}(\mathcal{I})$$
, the filter of \mathcal{I} . Also for some $\alpha_2 > 0$, we take $C_p = \frac{1}{h_p} \sum_{t \in I_p} M\left(\bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right)\right) < \alpha_2, \forall p \in A$

Now, let n be any integer with $k_{r-1} \leq n \leq k_r$. Then for some $r \in A$ we have,

$$\begin{split} &\frac{1}{n} \sum_{t=1}^{n} M \left(\bar{d} \left(\frac{\Delta X_{\sigma^{t}(m)}}{\Delta Y_{\sigma^{t}(m)}}, L \right) \right) \\ &\leq \frac{1}{k_{r-1}} \sum_{t=1}^{k_{r}} M \left(\bar{d} \left(\frac{\Delta X_{\sigma^{t}(m)}}{\Delta Y_{\sigma^{t}(m)}}, L \right) \right) \\ &= \frac{1}{k_{r-1}} \sum_{t \in I_{1}} M \left(\bar{d} \left(\frac{\Delta X_{\sigma^{t}(m)}}{\Delta Y_{\sigma^{t}(m)}}, L \right) \right) + \frac{1}{k_{r-1}} \sum_{t \in I_{2}} M \left(\bar{d} \left(\frac{\Delta X_{\sigma^{t}(m)}}{\Delta Y_{\sigma^{t}(m)}}, L \right) \right) + \frac{1}{k_{r-1}} \sum_{t \in I_{3}} M \left(\bar{d} \left(\frac{\Delta X_{\sigma^{t}(m)}}{\Delta Y_{\sigma^{t}(m)}}, L \right) \right) + \dots \\ &+ \frac{1}{k_{r-1}} \sum_{t \in I_{r}} M \left(\bar{d} \left(\frac{\Delta X_{\sigma^{t}(m)}}{\Delta Y_{\sigma^{t}(m)}}, L \right) \right) \\ &= \frac{k_{1}}{k_{1} k_{r-1}} \sum_{t \in I_{1}} M \left(\bar{d} \left(\frac{\Delta X_{\sigma^{t}(m)}}{\Delta Y_{\sigma^{t}(m)}}, L \right) \right) + \frac{k_{2} - k_{1}}{(k_{2} - k_{1}) k_{r-1}} \sum_{t \in I_{2}} M \left(\bar{d} \left(\frac{\Delta X_{\sigma^{t}(m)}}{\Delta Y_{\sigma^{t}(m)}}, L \right) \right) + \dots \\ &+ \frac{k_{r} - k_{r-1}}{(k_{r} - k_{r-1}) k_{r-1}} \sum_{t \in I_{r}} M \left(\bar{d} \left(\frac{\Delta X_{\sigma^{t}(m)}}{\Delta Y_{\sigma^{t}(m)}}, L \right) \right) \\ &= \frac{k_{1}}{k_{r-1}} C_{1} + \frac{k_{2} - k_{1}}{k_{r-1}} C_{2} + \dots + \frac{k_{r} - k_{r-1}}{k_{r-1}} C_{r} \\ &\leq \left\{ \sup_{p \in A} C_{p} \right\} \frac{k_{r}}{k_{r-1}} \end{split}$$

Now, taking $\alpha_1 = Q\alpha$ and as the fact we have $\cup \{n : k_{r-1} < n < k_r, r \in A\} \subset B$, where $A \in \mathcal{F}(\mathcal{I})$, it shows that the set $B \in \mathcal{F}(\mathcal{I})$. This complete the proof.

Theorem 3.4 Let, M be an Orlicz function.

(a)
$$X \overset{\mathcal{I}(C_L^{\sigma}(\Delta,M))}{\sim} Y \Rightarrow X \overset{\mathcal{I}(S_L^{\sigma}(\Delta))}{\sim} Y.$$

(b) If
$$M$$
 is bounded, then $X \overset{\mathcal{I}(S_L^{\sigma}(\Delta))}{\sim} Y \Rightarrow X \overset{\mathcal{I}(C_L^{\sigma}(\Delta,M))}{\sim} Y$.

Proof: (a) Suppose, $X \stackrel{\mathcal{I}(C_L^{\sigma}(\Delta, M))}{\sim} Y$, then for any $\alpha > 0$, we have

$$\left\{n \in \mathbb{N} : \frac{1}{n} \sum_{t=1}^{n} M\left(\bar{d}\left(\frac{\Delta X_{\sigma^{t}(m)}}{\Delta Y_{\sigma^{t}(m)}}, L\right)\right) \ge \alpha\right\} \in \mathcal{I}.$$

We consider $\bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right) \geq \varepsilon$, for a given $\varepsilon > 0$.

Thus we have,

$$\frac{1}{n} \sum_{t=1}^{n} M\left(\bar{d}\left(\frac{\Delta X_{\sigma^{t}(m)}}{\Delta Y_{\sigma^{t}(m)}}, L\right)\right)$$

$$\geq \frac{1}{n} \sum_{t \leq n \ \& \ \bar{d}\left(\frac{\Delta X_{\sigma^{t}(m)}}{\Delta Y_{\sigma^{t}(m)}}, L\right) \geq \varepsilon} M\left(\bar{d}\left(\frac{\Delta X_{\sigma^{t}(m)}}{\Delta Y_{\sigma^{t}(m)}}, L\right)\right)$$
$$\geq M(\varepsilon) \frac{1}{n} \left| \left\{ t \leq n : \bar{d}\left(\frac{\Delta X_{\sigma^{t}(m)}}{\Delta Y_{\sigma^{t}(m)}}, L\right) \geq \varepsilon \right\} \right|$$

Now, for any $\delta > 0$,

$$\begin{split} &\left\{n \in \mathbb{N} : \frac{1}{n} \left| \left\{t \leq n : \bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right) \geq \varepsilon\right\} \right| \geq \delta\right\} \\ &\subseteq \left\{n \in \mathbb{N} : \frac{1}{n} \sum_{t=1}^n M\left(\bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right)\right) \geq \alpha\right\} \in \mathcal{I}, \text{ where } \alpha = M(\varepsilon)\delta > 0. \end{split}$$

Therefore, $X \stackrel{\mathcal{I}(S_L^{\sigma}(\Delta))}{\sim} Y$. This complete the proof.

(b) Suppose, M is bounded and $X \stackrel{\mathcal{I}(S_L^{\sigma}(\Delta))}{\sim} Y$. Then for any $\delta_1 > 0$, we have

$$\left\{n \in \mathbb{N} : \frac{1}{n} \left| \left\{t \leq n : \bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right) \geq \varepsilon\right\} \right| \geq \delta_1 \right\} \in \mathcal{I}.$$

We consider $\bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right) \geq \varepsilon$ for a given $\varepsilon > 0$. Thus we have,

$$\begin{split} &\frac{1}{n}\sum_{t=1}^{n}M\left(\bar{d}\left(\frac{\Delta X_{\sigma^{t}(m)}}{\Delta Y_{\sigma^{t}(m)}},L\right)\right)\\ &=\frac{1}{n}\sum_{t=1}^{n}\sum_{\&\bar{d}\left(\frac{\Delta X_{\sigma^{t}(m)}}{\Delta Y_{\sigma^{t}(m)}},L\right)\geq\varepsilon}^{n}M\left(\bar{d}\left(\frac{\Delta X_{\sigma^{t}(m)}}{\Delta Y_{\sigma^{t}(m)}},L\right)\right)+\frac{1}{n}\sum_{t=1}^{n}\sum_{\&\bar{d}\left(\frac{\Delta X_{\sigma^{t}(m)}}{\Delta Y_{\sigma^{t}(m)}},L\right)<\varepsilon}^{n}M\left(\bar{d}\left(\frac{\Delta X_{\sigma^{t}(m)}}{\Delta Y_{\sigma^{t}(m)}},L\right)\right)\\ &\leq\sup M(n)\frac{1}{n}\left|\left\{t\leq n:\bar{d}(\frac{\Delta X_{\sigma^{t}(m)}}{\Delta Y_{\sigma^{t}(m)}},L)\geq\varepsilon\right\}\right|+M(\varepsilon) \end{split}$$

Now, for any $\delta > 0$ we have,

$$\left\{n \in \mathbb{N} : \frac{1}{n} \sum_{t=1}^{n} M\left(\bar{d}\left(\frac{\Delta X_{\sigma^{t}(m)}}{\Delta Y_{\sigma^{t}(m)}}, L\right)\right) \ge \varepsilon\right\} \\
\subseteq \left\{n \in \mathbb{N} : \frac{1}{n} \left|\left\{t \le n : \bar{d}\left(\frac{\Delta X_{\sigma^{t}(m)}}{\Delta Y_{\sigma^{t}(m)}}, L\right) \ge \varepsilon\right\}\right| \ge \delta_{1}\right\} \in \mathcal{I}, \left(\text{taking } \delta_{1} = \frac{\delta - M(\varepsilon)}{\sup M(\varepsilon)}\right).$$

Therefore, $X \stackrel{\mathcal{I}(C_L^{\sigma}(\Delta, M))}{\sim} Y$. This complete the proof.

Lemma 3.1 Let, M be an Orlicz function and we consider $0 < \delta < 1$. Then for $y \neq 0$ and each $\left(\frac{x}{y}\right) > \delta$, we have $M\left(\frac{x}{y}\right) \leq 2M(1)\delta^{-1}\left(\frac{x}{y}\right)$.

Theorem 3.5 Let, M be an Orlicz function and $\theta = (k_r)$ be a lacunary sequence. Then

$$X \overset{\mathcal{I}(N_L^{\sigma}(\Delta))}{\sim} Y \Rightarrow X \overset{\mathcal{I}(N_L^{\sigma}(\Delta,M))}{\sim} Y.$$

Proof: If $\lim_{r\to\infty}\inf q_r>1$, then $\exists \ \delta>0$ such that $q_r\geq 1+\delta$, for sufficiently large r. We have, $h_r=(k_r-k_{r-1})$ which implies, $\frac{h_r}{k_r}\geq \frac{\delta}{1+\delta}$.

Let, $X \stackrel{\mathcal{I}(N_L^{\sigma}(\Delta))}{\sim} Y$, where $X = (X_t), Y = (Y_t) \in w_F$. Then for any $\varepsilon > 0$ we have,

$$\left\{r \in \mathbb{N} : \frac{1}{h_r} \sum_{t \in I_r} \bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right) \ge \varepsilon\right\} \in \mathcal{I}.$$

For any $\alpha, \beta, \gamma > 0$, we define the sets,

$$\begin{split} A &= \left\{ r \in \mathbb{N} : \tfrac{1}{h_r} \sum_{t \in I_r} \bar{d} \left(\tfrac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L \right) < \alpha \right\} \text{ and } \\ B &= \left\{ r \in \mathbb{N} : \tfrac{1}{h_r} \sum_{t \in I_r} M \left(\bar{d} \left(\tfrac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L \right) \right) < \beta \right\}. \end{split}$$

Clearly, $A \in \mathcal{F}(\mathcal{I})$, the filter of \mathcal{I} .

Now, for a given $\varepsilon_1 > 0$, we choose $0 < \delta < 1$ such that $M(p) < \varepsilon_1$, for $0 \le p \le \delta$.

Let, r be any integer such that $r \in A$. By using the Lemma 3.8 we have,

$$\begin{split} &\frac{1}{h_r} \sum_{t \in I_r} M\left(\bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right)\right) \\ &= \frac{1}{h_r} \sum_{t \in I_r \ \& \ \bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right) \leq \delta} M\left(\bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right)\right) + \frac{1}{h_r} \sum_{t \in I_r \ \& \ \bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right) > \delta} M\left(\bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right)\right) \\ &\leq \frac{1}{h_r} (h_r \varepsilon_1) + \frac{1}{h_r} 2M(1)\delta^{-1} \sum_{t \in I_r} \bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right) \\ &\leq \varepsilon_1 + \frac{1}{h_r} 2M(1)\delta^{-1} h_r \varepsilon \\ &< \varepsilon_1 + 2M(1)\delta^{-1} \varepsilon \end{split}$$

Taking $\beta > \left(\varepsilon_1 + \frac{1}{h_r} 2M(1)\delta^{-1}h_r\varepsilon\right) > 0$ and as the fact that $\cup\{r: r \in A\} \subset B$, it shows that the

Therefore, $X \stackrel{\mathcal{I}(N_L^{\sigma}(\Delta, M))}{\sim} Y$. This complete the proof.

Theorem 3.6 Let, M be an Orlicz function and $\theta = (k_r)$ be a lacunary sequence. Then,

$$X \overset{\mathcal{I}(N_L^{\sigma}(\Delta,M))}{\sim} Y \Leftrightarrow X \overset{\mathcal{I}(N_L^{\sigma}(\Delta))}{\sim} Y, \ \textit{provided} \ \lim_{t \to \infty} \frac{M(t)}{t} = \gamma > 0.$$

Proof: If $\lim_{r\to\infty}\inf q_r>1$, then $\exists \ \delta>0$ such that $q_r\geq 1+\delta$, for sufficiently large r. We have,

$$h_r = (k_r - k_{r-1})$$
 which implies, $\frac{h_r}{k_r} \ge \frac{\delta}{1 + \delta}$.
We already proved that $X \stackrel{\mathcal{I}(N_L^{\sigma}(\Delta))}{\sim} Y \Rightarrow X \stackrel{\mathcal{I}(N_L^{\sigma}(\Delta, M))}{\sim} Y$.

Now we show that,

$$X \overset{\mathcal{I}(N_L^{\sigma}(\Delta, M))}{\sim} Y \Rightarrow X \overset{\mathcal{I}(N_L^{\sigma}(\Delta))}{\sim} Y \text{ if } \lim_{t \to \infty} \frac{M(t)}{t} = \gamma > 0.$$

Let,
$$X \stackrel{\mathcal{I}(N_L^{\sigma}(\Delta, M))}{\sim} Y$$
, where $X = (X_t)$ and $Y = (Y_t)$.

Let $\gamma > 0$ such that $M(t) \geq \gamma t, \forall t \geq 0$. Therefore, for any $\delta > 0$ we have,

$$\left\{r \in \mathbb{N} : \frac{1}{h_r} \sum_{t \in I_r} M\left(\bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right)\right) > \delta\right\} \in \mathcal{I}.$$

Now, we have

$$\begin{split} &\frac{1}{h_r} \sum_{t \in I_r} M\left(\bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right)\right) \geq \frac{1}{h_r} \sum_{t \in I_r} \gamma\left(\bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right)\right) \\ &= \frac{\gamma}{h_r} \sum_{t \in I_r} \bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right) \end{split}$$

Then for any $\varepsilon > 0$,

$$\begin{split} &\left\{r \in \mathbb{N}: \frac{1}{h_r} \sum_{t \in I_r} \bar{d} \left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right) > \varepsilon \right\} \\ &\subseteq \left\{r \in \mathbb{N}: \frac{1}{h_r} \sum_{t \in I_r} M\left(\bar{d} \left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right)\right) > \gamma \varepsilon \right\} \in \mathcal{I}, \text{ where } \delta = \gamma \varepsilon. \end{split}$$

Therefore, $X \overset{\mathcal{I}(N^{\sigma}_{\Sigma}(\Delta))}{\sim} Y$. This complete the proof.

Theorem 3.7 Let, M be an Orlicz function and $\theta = (k_r)$ be a lacunary sequence.

(a)
$$X \overset{\mathcal{I}(N_L^{\sigma}(\Delta,M))}{\sim} Y \Rightarrow X \overset{\mathcal{I}(S_{L,\theta}^{\sigma}(\Delta))}{\sim} Y.$$

(b) If M is bounded, then
$$X \stackrel{\mathcal{I}(S_{L,\theta}^{\sigma}(\Delta))}{\sim} Y \Rightarrow X \stackrel{\mathcal{I}(N_L^{\sigma}(\Delta,M))}{\sim} Y$$
.

Proof: (a) If $\lim_{r\to\infty}\inf q_r>1$, then $\exists \ \delta>0$ such that $q_r\geq 1+\delta$, for sufficiently large r. We have, $h_r=(k_r-k_{r-1})$ which implies, $\frac{h_r}{k_r}\geq \frac{\delta}{1+\delta}$.

Let, $X \stackrel{\mathcal{I}(N_L^{\sigma}(\Delta, M))}{\sim} Y$. Therefore, for any $\gamma > 0$ we have

$$\left\{r \in \mathbb{N}: \frac{1}{h_r} \sum_{t \in I_r} M\left(\bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right)\right) > \gamma\right\} \in \mathcal{I}.$$

Now for some $\varepsilon > 0$,

$$\begin{split} &\frac{1}{h_r} \sum_{t \in I_r} M\left(\bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right)\right) \geq \frac{1}{h_r} \sum_{t \in I_r \ \& \ \bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right) \geq \varepsilon} M\left(\bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right)\right) \\ &\geq M(\varepsilon) \frac{1}{h_m} \left|\left\{t \in I_r : \bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right) \geq \varepsilon\right\}\right| \end{split}$$

Then for any $\delta > 0$,

$$\begin{split} &\left\{r \in \mathbb{N} : \left|\left\{t \in I_r : \bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right) \geq \varepsilon\right\}\right| > \delta\right\} \\ &\subseteq \left\{r \in \mathbb{N} : \frac{1}{h_r} \sum_{t \in I_r} M\left(\bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right)\right) > \gamma\right\} \in \mathcal{I}, \text{ where } \gamma = M(\varepsilon)\delta. \end{split}$$

Therefore, $X \overset{\mathcal{I}(N_L^{\sigma}(\Delta, M))}{\sim} Y \Rightarrow X \overset{\mathcal{I}\left(S_{L,\theta}^{\sigma}(\Delta)\right)}{\sim} Y$. This complete the proof.

(b) If $\lim_{r\to\infty}\inf q_r>1$, then $\exists \ \delta>0$ such that $q_r\geq 1+\delta$, for sufficiently large r. We have, $h_r=(k_r-k_{r-1})$ which implies, $\frac{h_r}{k_r}\geq \frac{\delta}{1+\delta}$.

Let, $X \stackrel{\mathcal{I}\left(S_{L,\theta}^{\sigma}(\Delta)\right)}{\sim} Y$. This implies for any $\delta_1 > 0$ and $\varepsilon > 0$

$$\left\{r \in \mathbb{N} : \left| \left\{ t \in I_r : \bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right) \ge \varepsilon \right\} \right| > \delta_1 \right\} \in \mathcal{I}.$$

Suppose, M is bounded. Then we have

$$\begin{split} &\frac{1}{h_r} \sum_{t \in I_r} M\left(\bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right)\right) \\ &= \frac{1}{h_r} \sum_{t \in I_r \ \& \ \bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right) \geq \varepsilon} M\left(\bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right)\right) + \frac{1}{h_r} \sum_{t \in I_r \ \& \ \bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right) < \varepsilon} M\left(\bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right)\right) \\ &\leq \sup M(I_r) \frac{1}{h_r} \left|\left\{t \in I_r : \bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right) \geq \varepsilon\right\}\right| + M(\varepsilon) \end{split}$$

Then for any $\delta > M(\varepsilon) > 0$, we have

$$\left\{ r \in \mathbb{N} : \frac{1}{h_r} \sum_{t \in I_r} M\left(\bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right)\right) > \delta \right\}$$

$$\subseteq \left\{ r \in \mathbb{N} : \frac{1}{h_r} \left| \left\{ t \in I_r : \bar{d}\left(\frac{\Delta X_{\sigma^t(m)}}{\Delta Y_{\sigma^t(m)}}, L\right) \ge \varepsilon \right\} \right| > \delta_1 \right\} \in \mathcal{I}, \text{ where } \delta_1 = \frac{\delta - M(\varepsilon)}{\sup M(I_r)}.$$
Therefore, $X \stackrel{\mathcal{I}(S_{L,\theta}^{\sigma}(\Delta))}{\sim} Y \Rightarrow X \stackrel{\mathcal{I}(N_L^{\sigma}(\Delta,M))}{\sim} Y.$ This complete the proof.

References

- 1. T. Bilgin, (σ, f)-asymptotically lacunary equivalent sequences, Int. Jour. Anal., (2014), doi.org/10.1155/2014/945902
- 2. M. Basarir, S. Altundağ, On δ-lacunary statistical asymptotically equivalent sequences, Filomat, 22(1), 161-172, (2008).
- 3. M. Basarir, S. Altundağ, On asymptotically equivalent difference sequences with respect to a modulus function, Riec. Math., 60(2), 299-311, (2011).
- 4. A. J. Dutta, Asymptotically equivalent generalized difference sequences of fuzzy real numbers defined by Orlicz function, Thai Jour. Math., 503-515, (2017).
- 5. A. Esi, On A-Asymptotically lacunary statistical equivalent sequences, Jour. Appl. Funct. Anal., 5(2), 221-226, (2010).
- 6. A. Esi, and A. Esi, On Delta-Asymptotically Equivalent Sequences of Fuzzy Numbers, Inter. Jour. Math. Comp., 1(10), 29-35, (2008).
- 7. A. Esi and M.K. Özdemir, Asymptotically double lacunary equivalent sequences defined by ideals and Orlicz functions, Research and Reviews: Disc. Math. Struc., 4(2), 7-16, (2017).
- 8. M. Et, R. Çolak, On some generalized difference sequence spaces, Soochow Jour. Math., 21(4), 377-386, (1995).
- 9. B. Hazarika, A. Esi, On fuzzy real valued asymptotically equivalent sequences and lacunary ideal convergence, Annal. Univ. Craiova, Math. Comp. Sc. Series, 41(2), 209-225, (2014).
- B. Hazarika, A. Esi, N.L. Braha, On asymptotically Wijsman lacunary σ-statistical convergence of set sequences, Jour. Math. Anal., 4(3), 33-46, (2013).
- 11. B. Hazarika and A. Esi, On asymptotically ideal fi-statistical equivalent sequences of fuzzy real numbers, Jour. Ana. Num. Theory, 3(2), 70-88, (2015).
- 12. B. Hazarika and A. Esi, On asymptoically Wijsman lacunary statistical convergence of set sequences in ideal context, Filomat, 31(9), 2691-2703, (2017).
- 13. H. Kizmaz, On certain sequence spaces, Canad. Math. Bull., 24(2), 169-176, (1981).
- 14. K. Lindberg, On subspaces of Orlicz sequence spaces, Studia Math., 45, 119-146, (1973).
- 15. Lindenstrauss, L. Tzafriri, On Orlicz sequence spaces, Israel Jour. Math., 10, 379-390, (1971).
- 16. G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math., 80(1), 167-190, (1948).
- 17. M. S. Marouf, Asymptotic equivalence and summability, Int. Jour. Math. Math. Sci., 16(4), 755-762, (1993).
- 18. F. Nuray, E. Savaş, Statistical convergence of sequences of fuzzy numbers, Math. Slovaca, 45(3), 269-273, (1995).
- 19. R. F. Patterson, On asymptotically statistical equivalent sequences, Demons. Math., 36(1), 149-154, (2003).
- F. Patterson, E. Savaş, On asymptotically lacunary statistical equivalent sequences, Thai Jour. Math., 4(2), 267-272, (2012).
- 21. E. Savaş, On lacunary strong σ -convergence, Indian Jour. Pure Appl. Math., 21(4), 359-365, (1990).

- 22. E. Savaş, On asymptotically lacunary σ -statistical equivalent sequences of fuzzy numbers, New Math. Natural Comp., 5(3), 589-598, (2009).
- 23. E. Savaş, On I-asymptotically lacunary statistical equivalent sequences, Adv. Diff. Eq., 1-7, (2013).
- 24. R. Savaş, M. Başarir, (σ, δ) -asymptotically statistical equivalent sequences, Filomat, 20(1), 35-42, (2006).
- E. Savaş, H. Gumuş, A generalization on *I*-asymptotically lacunary statistical equivalent sequences, Jour. Inequal. App., 1-9, (2013).
- 26. E. Savaş, F. Nuray, On σ -statistically convergence and lacunary σ -statistically convergence, Math. Slovaca, 43(3), 309-315, (1993).
- 27. E. Savaş, R. F. Patterson, σ -asymptotically lacunary statistical equivalent sequences, Central Euro. Jour. Math., 4(4), 648-655, (2006).
- 28. E. Savaş, R. F. Patterson, An extension asymptotically lacunary statistical equivalent sequences, The Aligarh Bull. Math., 27(2), 109-113, (2008).
- 29. B.C. Tripathy, A. Baruah, M. Et, M. Gungor, On almost statistical convergence of new type of generalized difference sequence of fuzzy numbers, Iran. Jour. Sci. Tech., Transac. A: Sci., 36(2), 147-155, (2012).
- 30. B.C. Tripathy, A. Baruah, New type of difference sequence spaces of fuzzy real numbers, Math. Modell. Anal., 14(3), 391-397, (2009).
- 31. B.C. Tripathy, A. Baruah: Nörlund, Riesz mean of sequences of fuzzy real numbers, Appl. Math. Letters, 23, 651-655, (2010).
- 32. B.C. Tripathy, A. Baruah, Lacunary statistically convergent and lacunary strongly convergent generalized difference sequences of fuzzy real numbers, Kyungpook Math. Jour., 50(4), 565-574, (2010).
- 33. B.C. Tripathy, S. Borgohain, Some classes of difference sequence spaces of fuzzy real numbers defined by Orlicz function, Adv. Fuzzy Sys., 6, (2011).
- 34. B.C. Tripathy, S. Borgohain, The sequence space $m(M, \phi, \Delta_m^n, p)^F$, Math. Model. Anal., 13(4), 577-586, (2008).
- 35. B.C. Tripathy, P. Chandra, On some generalized difference paranormed sequence spaces associated with multiplier sequences defined by modulus function, Anal. Theory Appl., 27(1), 21-27, (2011).
- 36. B.C. Tripathy, H. Dutta, On some lacunary difference sequence spaces defined by a sequence of Orlicz functions and q-lacunary Δ_n^m -statistical convergence, Anal. Stiin. ale Univ. Ovidius, Seria Matem., 20(1), 417-430, (2012).

Sankar Jyoti Boruah,
Department of Mathematics,
Gauhati University,
India.
E-mail address: sankarjyoti647@gmail.com

and

Amar Jyoti Dutta,
Department of Mathematics,
Pragjyotish College,
India.

E-mail address: amar_iasst@yahoo.co.in