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Local and Global Well-Posedness for Fractional Porous Medium Equation in Critical
Fourier-Besov Spaces
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ABSTRACT: In this paper, we study the Cauchy problem for the fractional porous medium equation in R™ for
n > 2. By using the contraction mapping method, Littlewood-Paley theory and Fourier analysis, we get, when

: S2m2m— Bt p1 51 P2 552
1 < B <2, the local solution v € X7 := £5° ( FB, PR ) n Lt (FBL (R™) N5 (FB2 (R™))
with 1 < p < o0, 1 < r < o0, and the solution becomes global when the initial data is small in critical

2m—B+ 2

.2-
Fourier-Besov spaces F' B v’ (R™). In addition, We establish a blowup criterion for the solutions.

Furthermore, the global existence of solutions with small initial data in Fngfmfﬁ#n (R™) is also established.

In the limit case B = 1, we prove global well-posedness for small initial data in critical Fourier-Besov spaces
L 1—2m+ 2

FB,, ? (R") with 1 < p < oo and FB;O_}”H'" (R™), respectively.

Key Words: Well-posedness, Fractional porous medium equation, Littlewood-Paley theory, Fourier-
Besov spaces.
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1. Introduction

In this article, we investigate the existence of mild solutions for the initial value problem of the
following fractional porous medium equation (FPME):

O+ pAPv+ V- (vVp) =0 for (x,t) € R™ x (0,00),
p=rk(—=A)""v for (z,t) € R" x (0,00), (1.1)
v(x,0) = vo(x) for xeR",

where n > 2, v = v(x,t) denotes the density or concentration, v is the initial data, ;1 > 0 is the dissipative
coefficient, k = +1, and here for simplify the notation, we take = x = 1. The operator A? is the Fourier
multiplier with symbol |[£|?, and p represents the gas pressure which releted to v by an abstract operator;
p = Pu.

When £ = —1 and 0 < m < 1, the system (1.1) was first formulated by Caffarelli and Vézquez [5].
Indeed, the system (1.1) is created by adding to the continuity equation

o+ V- (vV) =0, (1.2)
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where V = Vp is the velocity, the fractional dissipative term pAPv. In that work, they demonstrated
that a weak solution exists when vy is a bounded function with exponential decay at infinity. Please see
literature [20] for more information on the solution of Equation (1.2).

When k = 1, f = 2 and m = 1, Equation (1.1) corresponds to the following classical Keller-Segel
equation:

O+ pAv+ V- (vVp) =0 for (z,t) € R" x (0,00),
—Ap=w for (z,t) € R™ x (0,00), (1.3)
v(z,0) = vo(x) for x e R",

which describes a model of chemotaxis. The system (1.3) was introduced by Keller and Segel [11]. The
well-posedness of the system (1.3) has been studied by several researchers in various spaces, such as
Corrias et al. in the Lebesgue space L' (R") U L% (R") [7], Kozono and Sugiyama in the Sobolev space
L' (R™) U W22 (R") [13], Ogawa and Shimizu in the Hardy space ' (R?) [17] and in the Besov space
BY, (R?) [18], Iwabuchi in the Fourier-Herz B52 (R") [10], for more results, please refer to Lemarié-
Rieusset [15] and the references therein.

For the case k =1, 1 < § < 2 and m = 1, Equation (1.1) was initially analyzed by Escudero [9]. Tt
was utilized to characterize the spatiotemporal patterns exhibited by a population density consisting of
individuals that perform Lévy flights. Furthermore, in that paper, it has been established that Equation
(1.1) in this case, has global in time solutions. Biler and Karch [2] have established, in the critical
Lebesgue space L# (R™), the existence of both local and global solutions of Equation (1.1) with small
initial data. Additionally, they have demonstrated the finite-time blowup of non-negative solutions with
specific initial data that satisfy high-concentration or large-mass conditions. In the critical Besov spaces
B;;B (R2) , it has been proved global well-posedness with small initial data of Equation (1.1) by Biler
and Wu [3]. Zhai [24] has demonstrated the global existence, uniqueness, and stability of solutions
with a general potential type nonlinear term in the critical Besov spaces, given that the initial data is
sufficiently small. Certain aspects of these results were also extended to the fractional power bipolar
type drift-diffusion system. Further information on this topic can be found in [3,19] and the relevant
references cited therein.

Recently, for 1 < 8 < 2, Zhao [25], Xiao and Zhang [22] prove the well-posedness of Equation (1.1)
in critical Besov spaces, when m = 1 and 0 < m < 1, respectively.

Inspired by some results presented in [22,25], this article aims to prove the well-posedness results of
.2-2m—f+ 2
Equation (1.1) in Fourier-Besov spaces F'Bp, . T (RM)for1< <2 1<r<oo, 1<p<oo In

addition, we prove them in the limit cases 8 = 1 and p = oo. To address the system (1.1), we think about
the following integral equations:

t
ety — / e (=N g (vV(=A)""v) dr, (1.4)
0
where et ;= -1 (e‘t"E ‘BEF) , F and F! are the Fourier transform and the inverse Fourier transform,

respectively. We can solve (1.4) by applying the contraction mapping argument to the following mapping;:
B K B
T(v) = e My —/ e~y . (vV(=A)""v) dr. (1.5)
0

Throughout this paper, we use F Bfm’ to denote the homogeneous Fourier-Besov spaces, C' will repre-
sent constants that may differ at different places, A < B denotes the existence of a constant C' > 0 such
that A < B, and py is the conjugate of p € [1,00] (i.e., 1—17 + z% =1).

Our first theorem is as follows:

Theorem 1.1. (Well-posedness for 1 < § < 2) Letn > 2, 1 < < 2. Assume that vy €

. 2—2m—p+2%
FBy,, P (R™) with 1 < p,r < 0o. Then we have the following results:
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1. (Forp<oo)Let1§p<oo,0<£<,8—1and% <m<%(1+§). Then there is a

T =T(vo) > 0 such that the system (1.1) admits a unique solution v € X, where

. 2—2m—6+p£,

Xy = L (FBW (R”)) N Lo (FBS, (R) N L4 (FB, (R™)),

with
B B

n n
s1=1-2m+ — +¢, sa=1-2m+ — —¢, = =—-
! P’ g P’ P B—1+¢ P2 B—-1—¢
Moreover, if T* denotes the mazimal existence time of v,

. 2—2m—p+L%
(a) If vo € FBy, o

(b) If T* < oo, then

(R™) is sufficiently small, then T* = oco. i.e., the solution v is global;

[ll con (rB21)neez (Pizz) = O

2. (For p=0o0) Let p = o0 and % <m < 3*5% Suppose that ||v0|\FB§;%mfa+n is small enough.

Then the system (1.1) admits a unique solution v satisfying

v e L (FB?;}’”*“" (R”)) NLL (FBZ2mm (RM) .

Remark 1.2. The results of this work remain valid if we take the Fourier-Herz space Bﬁ or Lei-Lin space
X"t instead of Fourier-Besov space FB;_T, Indeed, FBfJ, = Bﬁ and FBl_i =x"L

It is further worth noting that, in the spécial case m = 1, Equation (1.1) becomes the generalized Keller-
Segel system.

Corresponding to Theorem 1.1, in the case § = 1, We get the following theorem:

72m+pi,

-1
Theorem 1.3. (Well-posedness for 3 = 1) Let n > 2, 8 = 1. Assume that vo € F'B, (R™)
with 1 < p < oco. Then we have the following results:

1. (Forp < oo) Let 1 < p < oo and 1 < m < %(1—1— ﬁ) Suppose that ||| -2t is small
FB

p,1
enough. Then the system (1.1) admits a unique solution v satisfying

(R")).

o 1-2m+Z
vE LS (FBPJ z

2. (Forp=o00) Let p =00 and 5 <m <1+ 2. Suppose that H'U(]”FBl—fern is small enough. Then

the system (1.1) admits a unique solution v satisfying
v e LF (FBLII™™ (R™) N L (FBZL T (R™).

2. Preliminaries

This section introduces some basic knowledge of Littlewood-Paley theory and Fourier-Besov spaces
and reviews some lemmas that are pertinent to our purposes.

We start by recall the Littlewood-Paley decomposition (see [1] for more details). Let ¢ € §(R™) be a
smooth radial function such that

0<e<l,

3 8
suppr{ﬁeanzélflég},

Z(p (2*j§) =1, forall & #0,

=
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and we denote ¢;(£) = ¢(277¢). Then for every u € 8'(R™), we define the frequency localization operators
for all j € Z, as follows

Aju:fr"_lgoj * U and Sju = Z Aju, (2.1)
k<j—1

with F~1 the inverse Fourier transform. Here, we observe that the almost orthogonality property of the
Littlewood-Paley decomposition is satisfied, i.e. for any u,v € 8'(R™)/P,

AidAju=0, if |i—j| >2,
A; (Sj—1udjv) =0, if |i—j]>5,

where P is the set of all polynomials on R™.
Throughout the paper, the following Bony paraproduct decomposition will be used:

wv = T, + Tyu + R(u,v), (2.2)

with

T = Z S’j_luAjv, R(u,v) = Z Z AjuAlv.

J J o |i-1l<1

With the decomposition stated above, the homogeneous Fourier-Besov space can be defined as follows:

Definition 2.1. [21] For s e R,1 < p,r < oo and u € 8'(R™), set

—r \ M7
(ZjeZ 9jsr HAju Lp) for r < oo,

Js || A _
Supjez 2 HAJUHLP for q= .

sy, =

Then the homogeneous Fourier-Besov space FB;’T (R™) is defined by
P, (R") = {ue s (R") /P |[upp, < oo}

Definition 2.2. [21] For s e R, 0 < T

! < o0 and 1 < p,r,p < oco. We define the mized time-space
L4 (FB; ., (R™)) as the completion of € ([0,T];8

(R™)) by the norm

s

T
lull g s,y 2= | D2 (/ |Aju<-,t>||ipdt> < oo,

JEZL
with the standard modification if 1 = oo or p = oo. For simplicity, we use H“HL/’(FBS ) instead of
t Do
lellge, (rms)-

We notice that we have FBiT = B5 and FBi1 = x*, where B¢ and x* are the Fourier-Herz space [6]
and the Lei-Lin space [16], respectively.
Due to Minkowski’s inequality, we have

L4 (FBs, (R™) < L4 (FB;,. (R™), if p>r,
LY (FBy, (R") = L4 (FB; . (R™)), if p<r,

T
where [[ull ;)= (fo G015, dt)

Lemma 2.3. [12]
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1. (Bernstein’s inequality) For any multiindex 8 and 1 < r < p < oo the following inequality is
valid:
. ; \Ba 18l4+ni(L—1)) A
supp @ C {|§| < A2j} = H(zf)ﬁuHLr < C2i181+ i(3 p)HuHLp (2.3)

2. (Young’s inequality) Let p,q,r € [1,00] such that 1 + 1 = % +
g € LYR™) we have

. Then for f € LP(R™) and

1
q
1 * gl =l fllzellgllze- (2.4)

Lemma 2.4. [8] Let g be a homogeneous smooth function on R" \ {0} of degree m. Then for every s € R
and 1 < p,q < oo, the operator g(D) is continuous from FB,  (R") to FB, ™ (R").

3. Well-posedness for 1 < g < 2: Proof of Theorem 1.1

In this section, we establish well-posedness of the system (1.1) in critical Fourier-Besov spaces

. 2-2m—p+Z
FBy " (R") with 1 < <2 ,and 1 <p,r < oco.
3.1. The case p < c©

We first consider the fractional power dissipative equation,

{515@ +APv=f inR"”x(0,00), (3.1)

v(z,0) = vo(z) in R™,
for which we give the following result:
Proposition 3.1. [23] Let 0 < T < 00, s € R and 1 < p,r,y < co. Assume that vy € FB;’T (R™) and
felry <FB;;%_[3 (R")) . Then (3.1) has a unique solution v such that for any v < p < oo, we have

o]l Lo\ SO vollps,s  + 111l LB : (3.2)
<h (FB;TJ) 3 (FB;?B)

Next, we get the following key bilinear estimate.
Lemma 3.2. Lets >0, T € (0,00], &€ >max{0,—2m+1}, 2m+e—1>0and1 < p, py, py, 7 < 00
with % = % + p—12. There holds

|09 (=80l () S Il e (3:3)

Lo (FByE)NLs? (FBP,T
X ||w —om4 e\ .
1l (it (0077

Proof. Using the following paraproduct decomposition due to J. M. Bony [4], for fixed j,

A; (0V(=A) ) = J T+ T, (3.4)
where
J{ = Z Aj (AlvV(—A)fmS'l,lw) R
[1—j]<4
Ji = Z A, (S’l,lvV(—A)*mAlw) ,
[1—j]<4
Jg = Z Z Aj (AIUV(—A)fmpr).

1>5-2|1-1'|<1
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So we can write,

1/r 1/r
[0V (=A) " w]l oy ) S > 20| ) +9 Y 2|7 (3.5)
’ JEZ L% (LP) jEZ L4.(LP)
1/r
+9Y 29 |1A
jez LE.(LP)

We estimate the above three terms one by one. First, applying Young’s inequality (2.4), Holder’s in-
equality, Bernstein’s inequality (2.3) and Lemma 2.4, when € > 0, one has

’ J{ ,S Z Aﬂ}V(-A)—mSl_lw
L2(@P) ji—j<a Lo(Lr)
S Z AIU*V(_A)—mSl_lw‘
[1—j]<4 LA.(LP)
S Z A . Z V(=A)"mAuw )
s ’ k<i-2 L2 (LY)
< Ao k(l1-2m+2% -
~ Z Al'U Pl (L?) Z 2 ( P ) HAkw .
=dl=4 . k<i-2 L2 (LP)
1/r’
S ZI\U 257”, |‘U}H 1-2m4 e
Il%:<4 Lo (L) kézlzz o2 (FBP.T - )
DD 70 R T
|l_]Z‘S4 Lt (LP) ch2 (FBp.r » )

Multiplying by 2%7, and taking {"—norm of both sides in the above estimate, we get

1/r
T
2597 || i < v astey |lw ot oy - 3.6
jgz e e g pgi | ”L%Q (FB;,TQ o ) o
Similarly, when 2m +¢ — 1 > 0, we prove that
1/r
— T
25 || 7 < Jw serey v oy - 3.7
jgz ey r) S leg pyie | HL%Q (FB;,TQ o ) o

Now for the third term, using Young’s inequality (2.4), Holder’s inequality, Bernstein’s inequality (2.3)
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and Lemma 2.4, one has

—

JI < AV (=A)"mApw

Lo(LP)  i>j—2|1-1|<1

(]
(]

L.(LP)

-

S Z Z AZ’U*V(_A)—mAl,w
1>j—2[1-1'|<1 LA.(L?)
DY /z\v’ ‘V(—A/)\T”Al,w
I rs b LE2(LY)
< . 2[’(1—2m+§) A/:U
~ Z Z ! ‘ L;l(Lp) l L
1>j=2|1-I'|<1 2 1oy
S 2 | A ol s o
lzjl:<4 Ly (LP) 02 (FBW » )

Multiplying by 2%/, and taking I”—norm of both sides in the above estimate, when s > 0, we get

1/r
27 |73 S ollgn (ppeey 0l 7 samia oy (3:5)
P P L ey
Combining the estimates (3.5), (3.6), (3.7) and (3.8), we get the inequality (3.3). O

We can now start to prove the first assertion of Theorem 1.1. For ¢ € [0, T], we define the following
map:

Uo(t) = et g — /Ot P el v (vV(=A)"") dr, (3.9)
in the metric space:
er = {v: lollegr (rpgp o (rgz) <7 AW0) = 0 = wllop (papr sz (ro) ) -
with
B

51:1—2m+§+5,82:1—2m+§—5, O<e<f—1.

M= oire TR

Using Proposition 3.1 and Lemma 3.2 by choosing v = p = %, for any v, w € Ep, we obtain

—tAP —
||\I’(’U)||L;1 (FB;}r)ﬁL;Q (FB;?T) ,S ||€ ’UOHL;l (FB;}T)HLQQ (FB;?,r) + ||’UV(—A) mUHL2/3ﬁ—2 (F31—2m+ﬁ)
T p,r
2
Sl ranmsety +W0llegs (rign e (i) (310)

and

A2, %) < (lleg (pagnneg (rig) +10lep (rogn e (rags) ) 10 =l (ron)ne (rg)

< nd(v,w). (3.11)

Using the standard contraction mapping argument ( [14]) with these two estimates (3.10) and (3.11), we
can demonstrate that if 7' is appropriately small, then ¥ is a contraction mapping from (€7, d) into itself,
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and here, we omit the details. Hence there is v € &p such that U(v) = v, which is a unique solution of
Equation (1.1). Furthermore, Proposition 3.1 has given us,

”””f’( ) S lvoll o-amesvr + Wolean (rogs )nem (roge,)

T p,T p,T
Slvoll a-smesiz + 1 (3.12)
FB, ., P
Thus
. 2—2m—ﬁ+p—",

v € Xy = LF (B, (R™)) N (FBy, (R™) N L4 (FB;2, (R™)).

-2—-2m—p3+2 .
Let T be the maximal existence time of v in Xr-. Note that if vg € F B, T (R™) is small enough,

we can directly choose T' = oo in (3.10) and (3.12), which gives that T = cc. i.e., the solution v is global.
Now, if T* < co. and ||v||L;1* (FBIL o2 (FBg) < OO Let Ty € (0,7%), and for ¢ € [Ty, T'), we consider

the following integer equation
t
u(t) — e_(t_TO)Aﬁv(TO) — / e~ (=N g (vV(=A)""v) dr.
To

As before, we can show that

0]l s (To, T F By )NL52 (To, T F By, S ||U0||FB§;2m—ﬁ+ﬁ

+ vl (3.13)

2
£e1(To, T+ F By )nLez (To, T+ F B2

Using again the contraction mapping argument as in (3.10), which yields that the solution exists on
[T, T*]. Choosing T sufficiently close to T, then the solution existing on a time larger than 7, which is
a contradiction. This completes the proof of the first assertion of Theorem 1.1.

3.2. The case p =
In this subsection, we study the limit case p = co. The following is the essential bilinear estimate.

Lemma 3.3. Let 1 <5 <2 and 252 <m < 222 There holds
[V A0l g (ppzsameseny S WWleg (pazczm-rimyoey (pozsmen) (3.14)
$Mellag(pp preremyuey (o)

Proof. Using the decomposition (3.4) as in Lemma 3.2, and in order to estimate the three terms Jij (1=
1,2,3), we use Young’s inequality (2.4), Holder’s inequality, Bernstein’s inequality (2.3) and Lemma 2.4,
as follows:

‘ J{ 5 AlUV(—A)fmSlflw
Ly(L>=) 1 <4 LL.(L%)

< S Aw| Y VA Aw
[ Py L (L)

< Z Zl\v‘ Z o(B—1Dkg—(8—1)kok(1—2m-tn) ’Z];U
ll—j|<4 Lp(L=) k<i—2 L2 (L)

(B=1D)lo—(2—2m+n)lo(2—2m+n)l A .

S 3 2 2 HAIU‘U(M el oo (p2-2mevmy -

[l—jl<4 T

S p-sHemts-mi 5 2<73+2m+5—n><w>2<2f2m+n>lHA/I\U’

[l—jl<4

o ooy 1V legs (rzsgeseen)
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Multiplying by 2(3—2m=#+7)7 and taking I'—norm of both sides in the above estimate, we get

Z 2(372m7ﬁ+’ﬂ)j J{ ) S ||U||L’5"(FB<§Q_€"L+") ||w||L%o(FB§Oi?7n75+n) . (315)
jez L (L)
Similarly, when 2 — 2m — 3 < 0, we prove that
3—2m—B+n)j || 74
Z 9(3=2m—p+n)j Jg 1 < ||’LU||L1T(FB(§;%,7;+7L) HU”LL}O(FBEO_E’“_‘“") . (3.16)
JEZ L (L)

For the third term JJ, one has

7 <Y Y |AwvEa)yrmAsw

L) >j—2-1]<1 L (L)
Y
I1>j—2 |1-1I"]<1 Ly (L) L (L)
< —lo—(3—2m—LB+4n)lo(3—2m—pS+n)l HAH o o
SO 2 Br]| oy 10l (pizzzmeny
1>5-2
—34+2m+pB—n)j —3+2m+pB—n)(l—7j 2—2m—LB+n)l U
< o 73 o B=m)(=3) o Btn) HAZUHL%O(LOO) [l ¢y, (rgz-zmesiny

)

Multiplying by 23=2m=8+m)i and taking I'—norm of both sides in the above estimate, when —3 + 2m +
B —n <0, we get

Z 9(8=2m—B+n)j

JEZ

—

Jg 5 ||w||L;(FB§°—?m+n) ||U||L%O(FB§°—€m—/3+n) . (317)

L (L)

Combining the estimates (3.15), (3.16) and (3.17), we obtain the inequality (3.14). This completes the
proof of Lemma 3.3. O

We consider the resolution space £3°(FBZ 2™~ (Rn))n Ltl(FBg;fer" (R™)), in order to demon-

oo,1
strate the second assertion of Theorem 1.1. Returning to the mapping (3.9), and according to Proposition
3.1 with v = 1, Lemma 3.3, we have

—tAP
H\II(U)HLf"(FBi;fm’_B+")ﬁL}(FB;%"’"*’") 5 ||e ¢ UO”LEO(FBEO_EM_[H’I)QL%(FBEO_EM'F")
+ ||’Uv(_A)7mv||L;(FBi;fm7ﬁ+")
I7

S llvoll pgz-2m—pn + [l (3.18)

e (PBZ I PN )NL(FB2 ™)

Due to the standard contraction mapping argument as in Subsection 3.1, if |lvgl| zp2-2m-s+n is small
oo, 1

enough, we can prove that Equation (1.1) has a unique solution v satisfying
v e LP(FBT P (R™) N LHFBL ™ (R™).
The proof of Theorem 1.1 is complete.

4. Well-posedness for § = 1: Proof of Theorem 1.3

In this section, we will establish the global well-posedness for the system (1.1) in the limit cases § = 1,
S1-2m+ )
with initial data in critical Fourier-Besov paces F'B,, T (R™) with 1 < p < c0.
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4.1. The case p < c©

In this case, the crucial estimate is the following:

Lemma 4.1. Let 1 < p < oo and % <m< % (1 + 1%) . There holds

p,1 p,1 p,1

HUV(—A)ime damr S HU” 1—2mt 2\ X ||wH 1—2m4 I . (4.1)
Lf“(FB E ) Lf“(FB Z ) £ (FB P )

Proof. We get the estimates of the terms Jf(z = 1,2,3) by making a slight modification to the proof of
Lemmas 3.2 and 3.3, as follows:

e 3 8ol 32 2 S
Lge(LP) —j|<4 Le@n) S Lge(LP)
< Z 2*(172m+g)l2(172m+g)lHAIUHL ; o] ey
oo P oo 1
li—jl<4 FEn A (FB‘“ )

Thus, we have

DR A P Sl a0l amisy (4.2)
e | ST (o) Wl (gt o)
Similarly, when m > %, there holds
B, & 25 2P A, 207 B
‘ LE(LP)  i—j|<4 k<l—2 LE(En) L@
< Z 2—(1—2m+ﬁ)12(1—2m+ﬁ)lHAle ) o] oy
li—jl<4 L s (FB‘“ )
therefor
S ot g Sl aememy ol aameay (4.3)
s | SN (o) Wl (g2
and for the the last term, one has
= < . V(1-2mt 2 )
(2 IS S ol £ S
L(LP)  >j—2|i—1|<1 t Lo (LP)

< Z o~ (1=2mt27)lo(1=2m+ 2)1 HA”}H

ol ey
12j=2 Lge(Lr) L3 (FBp,l )

then when 1 — 2m + ﬁ > 0, we find

22(172m+F)j ,]g S H’U” _172m+ﬁ ||’LU|| _172777,#»[% . (44)
ez LL(L>) L;’C(FBOOJ ) £ee (FBOOJ )
This completes the proof of Lemma 4.1. O

We are now in a position to demonstrate the first assertion of Theorem 1.3. We consider the resolution
- 1-2m+-5 . . . .
space Li°(F B, " (R™)) and returning to the mapping (3.9). Proposition 3.1 (with § =1, 7 = o)
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and Lemma 4.1 give us

||\I/(U)|| L1—2m+ 2 S ||U()|| 1—2min + ||UV(—A)_mUH L1—2m+ 2
Lf"(FBooyl » ) F ? L?Q(FBOO,I ! )

N ||UO||FBl—2m+ﬁ + ||U||2Lm( ‘1_2m+ﬁ> . (45)

oo, 1 t oco,1

Using the standard contraction mapping argument again as before, wa can show that the system (1.1)

c1-2m+ 2 . .
has a unique solution v in £§°(FB,, T (R™)) if [|vo|| o g2—2m—p+n is small enough.
’ oo, 1
4.2. The case p =0
In the case p = oo, the resolution space £3°(FBL 2™+ (R™)) can’t be adjusted to Equation (1.1),

00,1 . .
and thus, we move on to think about the resolution space £7° (FBL 7™ (R")) N L} (FBZ 1™ (R™)).
And from the mapping (3.9), Proposition 3.1 and Lemma 3.3 with 5 =~ = 1, we have

||\Ij(v)”L;’O(FBi;fm*”)ﬁLtl(FBz;fm*”) S ||U()||FB;—Em+n + ||Uv(_A)_mUHLIT(FB;_EM_/H—")
2
< ||U0||FB;§*"+“ + ||U||L?(F3;j§m+n)mﬁi(FBij§m+n)- (4.6)

And as before, we apply the standard contraction mapping argument, then if ||vgl| z2-2m—s+n is small
oco,1
enough, the system (1.1) has a unique solution v in £3* (FBL 7" (R™)) N L}(FBZ 7™ (R™)). This
completes the proof of Theorem 1.3.
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