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A new bound for the zeros of Quaternionic Polynomial

Bilal Dar∗ and Abdul Liman

abstract: This paper investigates the position of zeros of quaternionic polynomials. Recently, it was
demonstrated that a quaternionic polynomial with real and positive coefficients obeying monotonicity contains
all of its zeros in a four-dimensional closed unit ball. In this work, we identify new regions for the zeros of
lacunary-type quaternionic polynomials and establish closed balls, centered at one, that encompass all the
zeros of such polynomials.
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1. Introduction

Regarding the location of zeros of a polynomial Cauchy [3] proved the following famous result, known
as Cauchy’s classic result:
Theorem A. If p(z) =

∑n
v=0 avz

v is a polynomial of degree n, then all the zeros of p lie in

|z| < 1 + max
1≤v≤n−1

∣∣∣av
an

∣∣∣.
Cauchy’s bound for a polynomial’s zeros is beneficial, but it can offer a very broad region when the
coefficients are huge in absolute value. As a result, better constraints for a polynomial’s zeros are re-
quired. Because there is a continuous relationship between the zeros and coefficients of a polynomial, it
is preferable to constrain the coefficients of a polynomial to obtain better bounds. In this regard, the
Eneström-Kakeya Theorem (see [4], [12], [13]) is an elegant result on the position of zeros of a polynomial
with restricted coefficients. G. Eneström appears to have been the first to obtain this phenomenon while
exploring a problem in pension fund theory. In 1912, S. Kakeya [11] published a paper in the Tôhoku
Mathematical Journal that included the following more detailed result:
Theorem B. If p(z) =

∑n
v=0 avz

v is a polynomial of degree n such that 0 < a0 ≤ a1 ≤ ... ≤ an, then all
the zeros of p lie in |z| ≤ 1.
In the literature, for example see ( [1], [9], [10], [12], [13]), there exist various extensions and generaliza-
tions of Eneström-Kakeya Theorem. In 1967, Joyal, Labelle, and Rahman [10] published a result which
might be considered the foundation of the studies which we are currently studying. The Eneström-Kakeya
Theorem, as stated in Theorem B, deals with polynomials with non-negative coefficients which form a
monotone sequence. Joyal, Labelle, and Rahman generalized Theorem B by dropping the condition of
non-negativity and maintaining the condition of monotonicity. Namely, they proved:
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Theorem C. If p(z) =
∑n

v=0 avz
v is a polynomial of degree n such that a0 ≤ a1 ≤ ... ≤ an, then all the

zeros of p lie in |z| ≤ 1
|an| (|a0|+ an − a0).

Of course, when a0 ≥ 0, then Theorem C reduces to Theorem B.

2. Preliminary

Preliminaries on a quaternionic variable’s regular functions are provided in this part and will be
helpful in the follow-up. A novel theory of regularity for functions, specifically for polynomials of a
quaternionic variable, was created in a recent study (for example, see [2], [5], and [6]) and is very
helpful in replicating many significant characteristics of holomorphic functions. The discreteness of the
zero sets of holomorphic functions of a complex variable is one of their fundamental characteristics
(except when the function vanishes identically). All limitations to complex lines of a regular function of a
quaternionic variable have discrete zero sets or disappear indistinguishably since they are all holomorphic.
The structure of a quaternionic regular function’s zero sets and the factorization property of zeros were
detailed in the preliminary steps. Gentili and Stoppato [5] gave a necessary and sufficient condition for
a quaternionic regular function to have a zero at a point in terms of the coefficients of the function’s
power series expansion. Before we go to our results, we need to go over some basics about quaternions
and quaternionic polynomials.
William Rowan Hamilton introduced quaternions in 1843 as an extension of complex numbers to four
dimensions. The set of all quaternions is denoted by H in honour of Sir Hamilton and is generally
represented in the form q = α + iβ + jγ + kδ ∈ H, where α, β, γ, δ ∈ R and i, j, k are the fundamental
quaternion units, such that i2 = j2 = k2 = ijk = −1. There is a conjugate for each quaternion q denoted
by q∗ and is defined as q∗ = α− iβ − jγ − kδ. Furthermore, the norm (or length) of a quaternion q can
be calculated using

||q|| =
√
qq∗ =

√
α2 + β2 + γ2 + δ2.

The closed ball of radius r > 0 with center q0 ∈ H is defined as B(q0, r) = {q ∈ H | |q − q0| ≤ r}.
The quaternions are the standard example of a non-commutative division ring and also forms a four
dimensional vector space over R with

{
1, i, j, k

}
as a basis.

Quaternions have found a permanent place in engineering and computer description of moving
objects. In physics, their use has been controversial. Although they appear natural to the description of
4-dimensional space and entities therein, they have not been widely used in the 20th century. However,
in quantum field theory, quaternions have always been present in the guise of “spinors”. The application
of quaternions is mentioned below.
Computer Graphics: Given two orientations in the 3-dimensions, programmers traditionally used
linear interpolation between the corresponding Euler angles to model a rotation. Such an algorithm can
cause singularities, and problems such as gimbal License: CC-BY-NC REFERENCES lock (rotation in
one axis is momentarily forbidden) may be encountered, which would severely affect the smoothness of
the animation. The quaternions on the other hand generate a more realistic animation. A technique
which is currently gaining favour is called spherical linear interpolation (SLERP) and uses the fact that
the set of all unit quaternions form a unit sphere. By representing the quaternions of key frames as points
on the unit sphere, a SLERP defines the intermediate sequence of rotations as a path along the great
circle between the two points on the sphere [16].
Physics: The quaternions have found use in to express the Lorentz Transform making them useful
for work on Special and General Relativity [8]. Their properties as generators of rotation make them
incredibly useful for Newtonian Mechanics, scattering experiments such as crystallography, and quantum
mechanics (Particle spin is an emerge property of the mathematics) [8].

The indeterminate for a quaternionic polynomial is defined as q. Without commutativity, we are left
with the polynomial aqn and the polynomial a0qa1q · · · qan, a = a0a1 · · · an. To address this issue, we use
the standard that polynomials have indeterminate on the left and coefficients on the right, resulting in

the quaternionic polynomial p1(q) =
m∑
s=0

qsas. For such a p1 and p2(q) =
n∑

s=0
qsbs, the regular product of
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p1 and p2 is defined as
(
p1 ∗ p2

)
(q) =

n,m∑
i,j=0

qi+jaibj . This is consistent with the definition of the regular

product for a quaternionic variable’s power series (see definition 3.1 of [5]). If p1 has real coefficients, then
∗ multiplication is equivalent to point-wise multiplication. In general, the product rule ∗ is associative
rather than commutative. Polynomials behave differently in the lack of commutativity than they do in
the real or complex situation. A real or complex polynomial of degree n, for example, can have no more
than n zeros, according to the Factor theorem, which asserts that a being a zero of p(z) is equal to z− a
being a divisor of p(z). The Factor Theorem, on the other hand, only holds in a commutative ring (see
Theorem III. 6.6 of [7]). The second degree polynomial q2 + 1 in the Quaternion case has an unlimited
number of zeros, notably q0 = i orj ork and all those given by w0 = h−1q0h ∀h ∈ H.
We define the set of quaternionic polynomials with quaternion coefficients by

Pn :=

{
p ; p(q) =

n∑
s=0

qsas , q ∈ H
}

where as ∈ H, 0 ≤ s ≤ n. As we know an nth degree quaternion polynomial has infinite number of zeros
and to locate all those zeros will be interesting. In this direction, Carney et al. [2] recently proved the
following extension of Theorem B for the quaternionic polynomial p ∈ Pn. More precisely, they proved
the following result:
Theorem D. If p ∈ Pn is a quaternionic polynomial of degree n with real coefficients satisfying 0 < a0 ≤
a1 ≤ ... ≤ an, then all the zeros of p lie in |q| ≤ 1.

In the same paper, they proved the following result which replaces the condition of monotonicity on
the real coefficients by monotonicity in the real and imaginary parts of the quaternion coefficients:
Theorem E. If p ∈ Pn is a quaternionic polynomial of degree n where as = αs + βsi + γsj + δsk ∈
H ; 0 ≤ s ≤ n and

α0 ≤ α1 ≤ · · · ≤ αn ; β0 ≤ β1 ≤ · · · ≤ βn

γ0 ≤ γ1 ≤ · · · ≤ γn ; δ0 ≤ δ1 ≤ · · · ≤ δn ;

then all the zeros of p lie in

|q| ≤
(
|α0| − α0 + an

)
+
(
|β0| − β0 + βn

)
+
(
|γ0| − γ0 + γn

)
+
(
|δ0| − δ0 + δn

)
|an|

.

For 0 ≤ µ ≤ n− 1, we denote by Pn,µ the class of quaternionic polynomials.
p(q) = qnan + qµaµ + qµ−1aµ−1 + · · · + qa1 + a0 where as ∈ H, 0 ≤ s ≤ n are quaternion coefficients,
having some missing terms, and we call these polynomials the lacunary type of quaternionic polynomials.
For µ = n− 1, the class Pn,µ reduces to the class Pn.

Recently, various authors have obtained a number of results on the location of zeros of quaternionic
polynomials (see [14], [15], [17]) and various results have been extended for the location of zeros of
complex polynomials to quaternions. In this paper, we obtain new regions for the location of zeros of
lacunary-type polynomials with quaternionic variable and quaternionic coefficients. The regions obtained
are closed balls in H with nearly identical radii, as determined by various authors, but with different
centers, and they encompass all the zeros of quaternionic polynomials. More precisely, we prove the
following result:

3. Main Results

Theorem 1. All zeros of the polynomial p ∈ Pn,µ lie in

|q − 1| ≤ max
(
2,

|α0|+ |β0|+ |γ0|+ |δ0|+Mµ

|an|

)
,

where

Mµ =

µ∑
s=0

[
|αs+1 − αs|+ |βs+1 − βs|+ |γs+1 − γs|+ |δs+1 − δs|

]
and aµ+1 = 0.
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Taking µ = n− 1 in Theorem 1, we get the following result.

Corollary 1. All zeros of the polynomial p ∈ Pn lie in

|q − 1| ≤ max
(
2,

|α0|+ |β0|+ |γ0|+ |δ0|+M

|an|

)
,

where

M =

n−1∑
s=0

[
|αs+1 − αs|+ |βs+1 − βs|+ |γs+1 − γs|+ |δs+1 − δs|

]
.

If the real and imaginary parts of the coefficients are non-negative and satisfy monotonicity, then we
obtain from Corollary 1
Corollary 2. If p ∈ Pn is a quaternionic polynomial of degree n where as = αs + βsi + γsj + δsk ∈
H ; 0 ≤ s ≤ n satisfy

α0 ≤ α1 ≤ · · · ≤ αn ; β0 ≤ β1 ≤ · · · ≤ βn

γ0 ≤ γ1 ≤ · · · ≤ γn ; δ0 ≤ δ1 ≤ · · · ≤ δn ;

then all the zeros of p lie in

|q − 1| ≤ max

(
2,

(
|α0| − α0 + an

)
+
(
|β0| − β0 + βn

)
+
(
|γ0| − γ0 + γn

)
+
(
|δ0| − δ0 + δn

)
|an|

)
.

Taking as = αs ∈ R , ∀ 0 ≤ s ≤ n and an ≥ an−1 ≥ · · · ≥ a0 so that βs = γs = δs = 0 for 0 ≤ s ≤ n in
Corollary 1, we get the following Enström type result for polynomials over quaternion settings.

Corollary 3. If p ∈ Pn is of degree n with real coefficients satisfying an ≥ an−1 ≥ · · · ≥ a0, then all
zeros of p lie in

|q − 1| ≤ max
(
2,

|a0|+ an − a0
|an|

)
.

4. Lemmas

For the proof of our main result, we need the following lemmas:

Lemma 1. If f(q) =
∞∑
v=0

qvav and g(q) =
∞∑
v=0

qvbv be two given quaternionic power series with radii

of convergence greater than R. The regular product of f(q) and g(q) is defined as (f ∗ g)(q) =
∞∑
v=0

qvcv,

where cv =
∞∑
s=0

avbv−l. Let |q0| < R, then (f ∗ g)(q0) = 0 if and only if either f(q0) = 0 or f(q0) ̸= 0

implies g(f(q0)
−1q0f(q0)) = 0.

Above lemma for the zeros of regular product of power series is due to G. Gentili and C. Stoppato [6].
The following lemma is introduced by Gentili and Struppa for regular functions [5].
Lemma 2. Maximum Modulus Theorem: Let B = B(0, r) be a ball in H with center 0 and radius r and
let f : B → H be a regular function. If |f | has a relative maximum at a point a ∈ B, then f is constant
on B.

5. Proof of Theorem

Proof of Theorem 1. Since 1− q is a quaternionic polynomial of degree one with real coefficients,
we have by the definition of ∗ multiplication

p(q) ∗ (1− q) =
(
qnan + qµaµ + qµ−1aµ−1 + · · ·+ qa1 + a0

)
∗ (1− q)

= −qn+1an + qnan − qµ+1aµ + qµaµ − qµaµ−1 + · · ·+ qa1 − q0 + a0

= f(q)− qn+1an + qnan, (5.1)
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where f(q) = a0 +
µ∑

s=0
qs+1(as+1 − as) and aµ+1 = 0. Note that∣∣as+1 − as
∣∣ = ∣∣(αs+1 − αs) + (βs+1 − βs)i+ (γs+1 − γs)j + (δs+1 − δs)k

∣∣
≤
∣∣αs+1 − αs

∣∣+ ∣∣βs+1 − βs

∣∣+ ∣∣γs+1 − γs
∣∣+ ∣∣δs+1 − δs

∣∣,
therefore for |q| = 1, we have

|f(q)| ≤
∣∣∣∣a0 + µ∑

s=0

qs+1(as+1 − as)

∣∣∣∣
≤ |a0|+

µ∑
s=0

∣∣q∣∣s+1∣∣as+1 − as
∣∣

= |a0|+
µ∑

s=0

∣∣as+1 − as
∣∣

≤ |α0|+ |β0|+ |γ0|+ |δ0|+
µ∑

s=0

{∣∣αs+1 − αs

∣∣+ ∣∣βs+1 − βs

∣∣+ ∣∣γs+1 − γs
∣∣+ ∣∣δs+1 − δs

∣∣}
= |α0|+ |β0|+ |γ0|+ |δ0|+Mµ, (5.2)

where

Mµ =

µ∑
s=0

{∣∣αs+1 − αs

∣∣+ ∣∣βs+1 − βs

∣∣+ ∣∣γs+1 − γs
∣∣+ ∣∣δs+1 − δs

∣∣}.
Since

max
|q|=1

∣∣∣qn ∗ f(1
q
)
∣∣∣ = max

|q|=1

∣∣∣qnf(1
q
)
∣∣∣ = max

|q|=1

∣∣∣f(1
q
)
∣∣∣ = max

|q|=1

∣∣∣f(q)∣∣∣
it follows that |qn ∗ f( 1q )| has same bound on |q| = 1 as of |f(q)|, hence we obtain from inequality (5.2)
that ∣∣∣qn ∗ f(1

q
)
∣∣∣ = ∣∣∣qnf(1

q
)
∣∣∣ ≤ |α0|+ |β0|+ |γ0|+ |δ0|+Mµ for |q| = 1.

This implies, by Maximum Modulus Theorem (Lemma 2),∣∣∣qnf(1
q
)
∣∣∣ ≤ |α0|+ |β0|+ |γ0|+ |δ0|+Mµ for |q| ≤ 1.

Replacing q by 1
q , we obtain

1

|qn|
|f(q)| ≤ |α0|+ |β0|+ |γ0|+ |δ0|+Mµ for |q| ≥ 1.

That is, for |q| ≥ 1

|f(q)| ≤
{
|α0|+ |β0|+ |γ0|+ |δ0|+Mµ

}
|q|n. (5.3)

With the help of inequality (5.3), we obtain from equation (5.1) that for |q| ≥ 1∣∣p(q) ∗ (1− q)
∣∣ = ∣∣f(q)− qn+1an + qnan

∣∣ = ∣∣f(q)− qn(q − 1)an
∣∣

≥ |q|n|an||q − 1| −
∣∣f(q)∣∣

≥ |q|n|an||q − 1| −
(
|α0|+ |β0|+ |γ0|+ |δ0|+Mµ

)
|q|n

= |q|n
{
|an||q − 1| −

(
|α0|+ |β0|+ |γ0|+ |δ0|+Mµ

)}
.
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This implies that for |q| ≥ 1, |p(q) ∗ (1− q)| > 0, i.e, p(q) ∗ (1− q) ̸= 0 if

|q − 1| > |α0|+ |β0|+ |γ0|+ |δ0|+Mµ

|an|
.

Therefore all the zeros of p(q) ∗ (1− q) whose modulus is greater than or equal to 1 lie in

|q − 1| ≤ |α0|+ |β0|+ |γ0|+ |δ0|+Mµ

|an|
.

Those zeros of p(q) ∗ (1− q) whose modulus is less than 1 already lie in |q− 1| ≤ 2, it follows that all the
zeros of p(q) ∗ (1− q) lie in

|q − 1| ≤ max
(
2,

|α0|+ |β0|+ |γ0|+ |δ0|+Mµ

|an|

)
.

By Lemma 1, p(q) ∗ (1 − q) = 0 if and only if either p(q) = 0 or p(q) ̸= 0 implies 1 − p(q)−1qp(q) = 0.
Notice that 1− p(q)−1qp(q) = 0 is equivalent to p(q)−1qp(q) = 1 and if p(q) ̸= 0, this implies that q = 1.
So the only zeros of p(q) ∗ (1 − q) = 0 are zeros of p(q) and q = 1. Consequently, we conclude that all
zeros of p(q) lie in

|q − 1| ≤ max
(
2,

|α0|+ |β0|+ |γ0|+ |δ0|+Mµ

|an|

)
.

This completes the proof of Theorem 1.

6. Conclusions

A new bound for the zeros of lacunary-type quaternionic polynomials has been established without
any restrictions on the coefficients of the polynomials. This is significant, as many prior results might
have relied on certain conditions or constraints on the coefficients. Furthermore, an Eneström-Kakeya
type result has been derived and a new region has been obtained for the location of zeros of quaternionic
polynomials, which further enhances our understanding of the behavior of zeros of quaternionic polyno-
mials.

Acknowledgment: The authors sincerely appreciate the referees for their valuable and insightful sug-
gestions, as well as for their kind and constructive comments, which have greatly contributed in improving
the quality of this work.
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