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Multiplicity of weak solutions for a class of quasilinear elliptic Neumann problems using
Variational methods

Ahmed AHMED, Mohamed Saad Bouh ELEMINE VALL∗

abstract: The existence of infinitely many weak solutions for the strongly nonlinear elliptic equation of
the form {

−div
(
w1(x)|∇u|p(x)−2∇u

)
+ w0(x)| u |p(x)−2u = f(x, u) + g(x, u) in Ω,

∂u
∂γ

= 0 on ∂Ω,

is proved by applying a critical point variational principle obtained by B. Ricceri in weighted variable exponent
Sobolev space W 1,p(·)(Ω, w0, w1).

Key Words:Neumann problem; Variational principle; Elliptic boundary value problem; Weighted
variable exponent Lebesgue-Sobolev space W 1,p(·)(Ω, w0, w1).
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1. Introduction

Let Ω be a bounded open subset of RN with boundary of class C1, and let γ be the outward unit
normal vector on the boundary ∂Ω.

In recent years there has been an increasing interest in the study of various mathematical problems
with variable exponent. These problems are interesting in applications and raise many difficult math-
ematical problems. The impulse for this, mainly come from their important applications in modeling
real-world problems in electrorheological fluids and image processing, (see for example [6, 7, 10, 25, 27,
28]).

Our aim is to prove the existence of infinitely many weak solutions for the following degenerate
p(x)-Laplacian equation with Neumann boundary value condition, this is a now topic.

(P)

{
−div

(
w1(x)|∇u|p(x)−2∇u

)
+ w0(x)| u |p(x)−2

u = f(x, u) + g(x, u) in Ω,
∂u
∂γ = 0 on ∂Ω.

Where p ∈ L∞(Ω) and satisfies the conditon

1 < p− := ess inf
Ω
p(x) ≤ p+ := ess sup

Ω
p(x) <∞, (1.1)

and w0(x), w1(x) be a weight functions on Ω, i.e. each w0(x) and w1(x) is measurable a.e. strictly positive
on Ω, satisfying some integrability conditions (see section 2). We refer the reader to [18, 19, 26] where
the authors were concerned with Dirichlet problems.
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In the classical Sobolev spaces, Ricceri [24], Anello and Cordaro [5] have proved the existence of
solutions (P) in the case ∆pu and w0(x) = λ(x) is a positive function such that λ(·) ∈ L∞(Ω) with
λ− = ess inf

x∈Ω
λ(x) > 0, and p > N . The existence of solutions of problem (P) is proved by applying

the following critical point theorem recently obtained by B. Ricceri as a consequence of a more general
variational principle (see [23]).

In the Sobolev variable exponent setting, X. Fan and C. Ji in [14] have proved the existence of infinitely
many solutions in the space with variable exponent Sobolev spaceW 1,p(·)(Ω) in the particular case, ∆p(·)u
and w0(x) = λ(x).

Even though the problem (P) has been studied by some other authors in anisotropic variable exponent
Sobolev spaces and weighted Sobolev space (see [1, 2, 3, 8, 9]), the hypotheses we use in this paper are
totally different from those ones and so are our results.

The following theorem plays an important role in this paper.

Theorem 1.1 (See [14], Theorem 2.2.) Let X be a reflexive real Banach space, and let Φ,Ψ : X 7−→ R
be two sequentially weakly lower semicontinuous and Gâteaux differentiable functionals. Assume also that
Ψ is (strongly) continuous and satisfies lim

∥u∥→+∞
Ψ(u) = +∞. For each ρ > inf

X
Ψ, put

φ(ρ) = inf
u∈Ψ−1(]−∞,ρ[)

Φ(u)− inf
v∈(Ψ−1(]−∞,ρ[))

Φ(v)

ρ−Ψ(u)
, (1.2)

where (Ψ−1(]−∞, ρ[)) is the closure of Ψ−1(]−∞, ρ[) in the weak topology. Then, the following conclu-
sions hold:
(a) If there exist ρ0 > inf

X
Ψ and u0 ∈ X such that

Ψ(u0) < ρ0 (1.3)

and
Φ(u0)− inf

v∈(Ψ−1(]−∞,ρ0[))
Φ(v) < ρ0 −Ψ(u0), (1.4)

then the restriction of Ψ+Φ to Ψ−1(]−∞, ρ0[) has a global minimum.
(b) If there exists a sequence {rn} ⊂ (inf

X
Ψ,+∞) with rn → +∞ and a sequence {un} ⊂ X such that for

each n we have
Ψ(un) < rn (1.5)

and
Φ(un)− inf

v∈(Ψ−1(]−∞,rn[))
Φ(v) < rn −Ψ(un), (1.6)

and in addition,
lim inf

∥u∥→+∞
(Ψ(u) + Φ(u)) = −∞, (1.7)

then there exists a sequence {vn} of local minima of Ψ+Φ such that Ψ(vn) → +∞ as n→ ∞.
(c) If there exists a sequence {rn} ⊂ (inf

X
Ψ,+∞) with rn → inf

X
Ψ and a sequence {un} ⊂ X such that

for each n the condition (1.5) and (1.6) are satisfied, and in addition,

every global minimizer ofΨ is not a local minimizer of Φ+Ψ, (1.8)

then there exists a sequence {vn} of pairwise distinct local minimizers of Φ+Ψ such that
lim
n→∞

Ψ(vn) = inf
X

Ψ, and {vn} weakly converges to a global minimizer of Ψ.

This paper is organized as follows: In section 2, we present some preliminary knowledge on the
weighted variable exponent Sobolev spaces W 1,p(·)(Ω, w0, w1). We introduce in section 3 some assump-
tions for which our problem has solutions. In section 4, we prove the existence of infinitely many weak
solutions for our Neumann elliptic problem. Finally, we conclude and provide some perspectives in section
5.
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2. Preliminary

In this section we summarize notation, definitions and properties of our framework. The basic prop-
erties of the variable exponent Lebesgue-Sobolev spaces, that is, when w(x) ≡ 1 can be found from ([11,
13, 15, 16, 17, 20]).

Let Ω be a bounded domain in RN , we define:

C+(Ω) =
{
measurable function p(·) : Ω −→ R such that 1 < p− ≤ p+ <∞

}
,

where
p− = ess inf

{
p(x) / x ∈ Ω

}
and p+ = ess sup

{
p(x) / x ∈ Ω

}
.

Let w,w0, w1 are positive continuous functions defined in RN . For p ∈ C+(Ω), define

Lp(·)(Ω, w) =
{
u(x) : uw

1
p(x) ∈ Lp(·)(Ω)

}
,

with the norm

∥u∥Lp(·)(Ω,w) = ∥u∥p(·),Ω,w = inf

{
σ > 0 :

∫
Ω

w(x)
∣∣∣u(x)
σ

∣∣∣p(x)dx ≤ 1

}
.

When w(x) ≡ 1, we use Lp(·)(Ω) instead Lp(·)(Ω, w) and use ∥u∥p(·),Ω instead of ∥u∥p(·),Ω,w.

The weighted variable exponent Sobolev space W 1,p(·)(Ω, w0, w1) is defined by

W 1,p(·)(Ω, w0, w1) =
{
u ∈ Lp(·)(Ω, w0) : |∇u(x)| ∈ Lp(·)(Ω, w1)

}
,

where the norm is
∥u∥W 1,p(·)(Ω,w0,w1) = ∥u∥p(·),Ω,w0

+ ∥∇u(x)∥p(·),Ω,w1
.

It is easy to see that the norm

|||u|||1,p(·),Ω,w0,w1
= inf

{
µ > 0 :

∫
Ω

(
w0(x)

∣∣∣u(x)
µ

∣∣∣p(x) + w1(x)
∣∣∣∇u(x)

µ

∣∣∣p(x)) dx ≤ 1

}
, (2.1)

is the equivalent norm. The theory of such spaces was developed in [18, 19, 21, 22, 26]. When p(x) is a
constant, some results have been proved in [4, 12]. If w0(x) ≡ w1(x) ≡ 1, we use W 1,p(·)(Ω) instead of
W 1,p(·)(Ω, w0, w1) and use ∥u∥W 1,p(·)(Ω) instead of ∥u∥W 1,p(·)(Ω,w0,w1).

Throughout the paper, we assume that w is a measurable positive and finite almost everywhere
function in Ω satisfying that

(V1) w,w0, w1 ∈ L1
loc(Ω) and w

−1
p(x)−1 , w

−1
p(x)−1

0 , w
−1

p(x)−1

1 ∈ L1
loc(Ω).

(V2) w−ν(x), w
−ν(x)
0 , w

−ν(x)
1 ∈ L1(Ω) with ν(x) ∈

]
N

p(x)−N ,∞
[
∩
[

1
p(x)−1 ,∞

[
and ν− > N

p−−N .

Proposition 2.1 ([19]) The spaces Lp(·)(Ω, w) and W 1,p(·)(Ω, w) are separable and reflexive Banach
spaces.

Lemma 2.1 ([26]) If we denote

ρ(u) =

∫
Ω

w(x) | u |p(x) dx, ∀u ∈ Lp(·)(Ω, w),

we have
(i) ∥u∥Lp(·)(Ω,w) < 1(= 1, > 1) ⇐⇒ ρ(u) < 1(= 1, > 1),

(ii) ∥u∥Lp(·)(Ω,w) < 1 =⇒ ∥u∥p
+

Lp(·)(Ω,w)
≤ ρ(u) ≤ ∥u∥p

−

Lp(·)(Ω,w)
,

(iii) ∥u∥Lp(·)(Ω,w) > 1 =⇒ ∥u∥p
−

Lp(·)(Ω,w)
≤ ρ(u) ≤ ∥u∥p

+

Lp(·)(Ω,w)
.
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Lemma 2.2 ([21, 22]) Set

ζ(u) =

∫
Ω

(
w0(x)

∣∣∣u(x)
µ

∣∣∣p(x) + w1(x)
∣∣∣∇u(x)

µ

∣∣∣p(x)) dx, ∀u ∈W 1,p(·)(Ω, w0, w1),

we obtain
(a) |||u|||1,p(·),Ω,w0,w1

< 1 =⇒ |||u|||p
+

1,p(·),Ω,w0,w1
≤ ζ(u) ≤ |||u|||p

−

1,p(·),Ω,w0,w1
,

(b) |||u|||1,p(·),Ω,w0,w1
> 1 =⇒ |||u|||p

−

1,p(·),Ω,w0,w1
≤ ζ(u) ≤ |||u|||p

+

1,p(·),Ω,w0,w1
.

The following compact embedding result is crucial.

Theorem 2.1 Let (V 1) and (V 2) satisfied. Then we obtain the following result

W 1,p(·)(Ω, w0, w1) ↪→↪→ C0(Ω).

Proof Let u ∈ W 1,p(·)(Ω, w0, w1), we denote by p1(x) = ν(x)p(x)
ν(x)+1 < p(x). By the Hölder inequality

in([18] Proposition 2.1) with parameters q(x) = p(x)
p1(x)

= ν(x)+1
ν(x) and its conjugate q′(x) = ν(x) + 1 we

have ∫
Ω

∣∣∣∇u∣∣∣p1(x)

dx =

∫
Ω

∣∣∣∇u∣∣∣ ν(x)p(x)
ν(x)+1

dx

=

∫
Ω

∣∣∣∇u∣∣∣ p(x)ν(x)
ν(x)+1

w
ν(x)

ν(x)+1

1 w
−ν(x)
ν(x)+1

1 dx

≤ 2
∥∥∥w ν(x)

ν(x)+1

1

∣∣∣∇u∣∣∣ p(x)ν(x)
ν(x)+1

∥∥∥
L

ν(x)+1
ν(x) (Ω)

∥∥∥w− ν(x)
ν(x)+1

1

∥∥∥
Lν(x)+1(Ω)

.

Assumption (V 2) and Lemma 2.1 imply that∥∥∥w− ν(x)
ν(x)+1

1

∥∥∥
Lν(x)+1(Ω)

≤
(∫

Ω

w
−ν(x)
1 (x)dx+ 1

) 1

ν−+1

≤ C.

Thus we get ∫
Ω

∣∣∣∇u∣∣∣p1(x)

dx ≤ C
∥∥∥w ν(x)

ν(x)+1

1

∣∣∣∇u∣∣∣ p(x)ν(x)
ν(x)+1

∥∥∥
L

ν(x)+1
ν(x) (Ω)

. (2.2)

Without loss of generality, we can assume that

∫
Ω

∣∣∣∇u∣∣∣p1(x)

dx > 1. (If not, it is easy to see from Lemma

2.1 that u ∈W 1,p1(·)(Ω).) If

∫
Ω

wi(x)
∣∣∣∇u∣∣∣p(x)dx < 1, then from (2.2) and Lemma 2.1 we have

∥∥∥∇u∥∥∥ p−ν−

ν−+1

Lp1(·)(Ω)
≤
∫
Ω

∣∣∣∇u∣∣∣p1(x)

dx

≤ C

(∫
Ω

w1(x)
∣∣∣∇u∣∣∣p(x)dx) ν−

ν−+1

≤ C
∥∥∥∇u∥∥∥ p−ν−

ν−+1

Lp(·)(Ω,w1)
,

i.e., ∥∥∥∇u∥∥∥
Lp1(·)(Ω)

≤ C
∥∥∥∇u∥∥∥

Lp(·)(Ω,w1)
. (2.3)

On the other hand, if

∫
Ω

w1(x)
∣∣∣∇u∣∣∣p(x)dx > 1, then from (2.2) and Lemma 2.1 we obtain

∥∥∥∇u∥∥∥ p−ν−

ν−+1

Lp1(·)(Ω)
≤
∫
Ω

∣∣∣∇u∣∣∣p1(x)

dx

≤ C

(∫
Ω

w1(x)
∣∣∣∇u∣∣∣p(x)dx) ν+

ν++1

≤ C
∥∥∥∇u∥∥∥ p+ν+

ν++1

Lp(·)(Ω,w1)
,
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i.e., ∥∥∥∇u∥∥∥
Lp1(·)(Ω)

≤ C
∥∥∥∇u∥∥∥β

Lp(·)(Ω,w1)
, (2.4)

where β = p+ν+

ν++1 · 1+ν−

p−ν− . From the inequalities (2.3) and (2.4), we obtain ∇u ∈ Lp(·)(Ω, w1). Therefore,

we conclude that W 1,p(·)(Ω, w0, w1) ↪→ W 1,p1(·)(Ω), by (V 2) we have ν− > N
p−−N then p−1 > N . Since

W 1,p1(·)(Ω) is continuously embedded in W 1,p−
1 (Ω), and W 1,p−

1 (Ω) is compactly embedded in C0(Ω). We
then deduce the result using the classic injections W 1,p(·)(Ω, w0, w1) ↪→↪→ C0(Ω). This finishes the proof.
□

Set

C0 = sup
u∈W 1,p(·)(Ω,w0,w1)\{0}

∥u∥L∞(Ω)

|||u|||1,p(·),Ω,w0,w1

, (2.5)

then C0 is a positive constant.

3. Essential assumptions

Let Ω ⊂ RN be an open bounded set with the boundary ∂Ω of class C1, and let γ be is the outward
unit normal to ∂Ω.

Assume that f, g : Ω× R 7−→ R are Carathéodory functions satisfying,

sup
|t|≤r

| f(x, t) |∈ L1(Ω), and sup
|t|≤r

| g(x, t) |∈ L1(Ω) for each r > 0. (3.1)

We set

F (x, t) =

∫ t

0

f(x, s)ds and G(x, t) =

∫ t

0

g(x, s)ds. (3.2)

We define, for any u ∈W 1,p(·)(Ω, w0, w1), the functionals

J(u) =

∫
Ω

1

p(x)

(
w1(x)

∣∣∣∇u∣∣∣p(x) + w0(x) | u |p(x)
)
dx, (3.3)

Ψ(u) = J(u)−
∫
Ω

G(x, u)dx and Φ(u) = −
∫
Ω

F (x, u)dx. (3.4)

We assume that G satisfies one of the following two conditions:

(G1) There exist M > 0, ϵ ∈ (0, 1) and β, θ ∈ L1(Ω) with ∥β∥L1(Ω) ̸= 0 such that

for any |t| ≥M G(x, t) ≤ (1− ϵ)β(x)

p+Cp−

0 ∥β∥L1(Ω)

| t |p
−
+θ(x) a.e. in Ω,

(G2) There exist M > 0, ϵ ∈ (0, 1) and θ
′ ∈ L1(Ω) such that

for any |t| ≥M G(x, t) ≤ (1− ϵ)w0(x)

p(x)
| t |p(x) +θ

′
(x) a.e. in Ω.

From now on, we always assume that

(V3) w0 ∈ L1(Ω).

Definition 3.1 A measurable function u ∈ W 1,p(·)(Ω, w0, w1) is called a weak solution of the Neumann
elliptic problem (P) if∫

Ω

w1(x)
∣∣∣∇u∣∣∣p(x)−2

∇u∇vdx+

∫
Ω

w0(x) | u |p(x)−2 uvdx =

∫
Ω

f(x, u)vdx+

∫
Ω

g(x, u)vdx,

for all v ∈W 1,p(·)(Ω, w0, w1).
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Definition 3.2 A function F (x, t) satisfies the condition (S) if for each compact subset E of R, there
exists ξ ∈ E such that

F (x, ξ) = sup
t∈E

F (x, t) for a.e. x ∈ Ω. (3.5)

4. Main results

This section contains the statement of the main results.
Taking u0 and un in Theorem 1.1 as the constant value functions ξ0 and ξn, and we assume that

lim inf
|ξ|→+∞

∫
Ω

(
w0(x)

p(x)
| ξ |p(x) −G(x, ξ)− F (x, ξ)

)
dx = −∞, (4.1)

also, we will need the following condition∫
Ω

w0(x)

p(x)
| ξ |p(x) dx−

∫
Ω

G(x, ξ)dx ≤ d1 | ξ |p
+

+d2, ∀ξ ∈ R, (4.2)

where d1 and d2 are two positive constants. It is easy to see that (4.2) holds true under the condition
(G1) or (G2).

The following theorem is our first main result.

Theorem 4.1 Let the conditions (V 1)−V (3), (4.1)− (4.2) be satisfied, and let (G1) or (G2) holds, and
let F satisfy the condition (S). Suppose that {an} and {bn} are two positive sequences such that

lim
n→∞

bn = +∞ and lim
n→∞

ap
+

n

bp
−

n

= 0. (4.3)

If there exists a positive function h ∈ L1(Ω) and ∥h∥L1(Ω) ̸= 0, such that for each n we have

F (x, an) +
h(x)

∥h∥L1(Ω)

(
d0

(
bn
C0

)p−

− d1a
p+

n − d2

)
≥ sup

t∈[an,bn]

F (x, t) a.e. in Ω, (4.4)

F (x,−an) +
h(x)

∥h∥L1(Ω)

(
d0

(
bn
C0

)p−

− d1a
p+

n − d2

)
≥ sup

t∈[−bn,−an]

F (x, t) a.e. in Ω, (4.5)

and the inequalities (4.4) and (4.5) are strict on a subset of Ω with positive measure, then there exists
a sequence {vn} of local minima of Ψ + Φ such that lim

n→∞
Ψ(vn) = +∞. Consequently, the problem (P)

admits an unbounded sequence of weak solutions.

Proof of Theorem 4.1

Step 1 : Some technical lemmas

Lemma 4.1 ([18, 26]) Assume that (V 1), (V 2) and (3.1) are satisfied. Then,

Ψ,Φ ∈ C1(W 1,p(·)(Ω, w0, w1),R)

and its Gâteaux derivatives are given by

⟨Ψ′(u), v⟩ =
∫
Ω

w1(x)
∣∣∣∇u∣∣∣p(x)−2

∇u∇vdx+

∫
Ω

w0(x) | u |p(x)−2 uvdx−
∫
Ω

g(x, u)vdx,

and

⟨Φ′(u), v⟩ = −
∫
Ω

f(x, u)vdx,

for any u, v ∈W 1,p(·)(Ω, w0, w1).
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Lemma 4.2 ([18, 26]) Assume that (V 1), (V 2) and (3.1) hold. Then Ψ,Φ are sequentially weakly lower
semicontinuous.

Step 2 : Coercivity of Ψ

Proposition 4.1 Assuming that G(x, t) satisfies (G1) or (G2), then the functional Ψ is coercive, i.e.

Ψ(u) −→ +∞ as |||u|||1,p(·),Ω,w0,w1
−→ ∞ for u ∈W 1,p(·)(Ω, w0, w1).

Proof
(G1) Assuming that the condition (G1) is satisfied, then

G(x, t) ≤ (1− ϵ)β(x)

p+Cp−

0 ∥β∥L1(Ω)

| t |p
−
+θ1(x), a.e. in Ω for any |t| ≥M.

When |||u|||1,p(·),Ω,w0,w1
> 1, we obtain

Ψ(u) = J(u)−
∫
Ω

G(x, u)dx

=

∫
Ω

1

p(x)

(
w1(x)

∣∣∣∇u∣∣∣p(x) + w0(x) | u |p(x)
)
dx−

∫
Ω

G(x, u)dx

≥ 1

p+
|||u|||p

−

1,p(·),Ω,w0,w1
− (1− ϵ)

p+Cp−

0 ∥β∥L1(Ω)

∫
Ω

β | u |p
−
dx−

∫
Ω

θ1(x)dx (by Lemma 2.2)

≥ 1

p+
|||u|||p

−

1,p(·),Ω,w0,w1
− (1− ϵ)

p+Cp−

0

∥u∥p
−

L∞(Ω) − c1

≥ 1

p+
|||u|||p

−

1,p(·),Ω,w0,w1
− (1− ϵ)

p+
|||u|||p

−

1,p(·),Ω,w0,w1
− c1 (using 2.5 )

≥ ϵ

p+
|||u|||p

−

1,p(·),Ω,w0,w1
− c1.

(G2) Under the condition (G2) we have

G(x, t) ≤ (1− ϵ)w0(x)

p(x)
| t |p(x) +θ

′

1(x), a.e. in Ω for any |t| ≥M,

when |∥u|∥1,p(·),Ω,w0,w1
> 1, we obtain

Ψ(u) = J(u)−
∫
Ω

G(x, u)dx

=

∫
Ω

1

p(x)

(
w0(x) | u |p(x) +w1(x)

∣∣∣∇u∣∣∣p(x)) dx−
∫
Ω

G(x, u)dx

=

∫
Ω

1

p(x)
w1(x)

∣∣∣∇u∣∣∣p(x)dx+

∫
Ω

1

p(x)
w0(x)| u |p(x)dx−

∫
Ω

(
(1− ϵ)w0(x)

p(x)
| u |p(x) +θ

′

1(x)

)
dx

≥
∫
Ω

1

p(x)
w1(x)

∣∣∣∇u∣∣∣p(x)dx+

∫
Ω

ϵw0(x)

p(x)
| u |p(x)dx− c2

≥ ϵ

p+

(∫
Ω

w1(x)
∣∣∣∇u∣∣∣p(x)dx+

∫
Ω

w0(x) | u |p(x) dx
)
− c2

≥ ϵ

p+
|||u|||p

−

1,p(·),Ω,w0,w1
− c2,

(4.6)
Thanks to (4.6)− (4.6), we conclude that Ψ is coercive. Moreover, there exist two positive constants d0
and σ0 such that

Ψ(u) ≥ d0|||u|||p
−

1,p(·),Ω,w0,w1
for |||u|||1,p(·),Ω,w0,w1

≥ σ0. (4.7)

□
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Step 3 : A priori estimates

For r > inf
W 1,p(·)(Ω,w0,w1)

Ψ, we define

K(r) = inf
{
σ > 0 : Ψ−1(]−∞, r[) ⊂ BW 1,p(·)(Ω,w0,w1)(0, σ)

}
, (4.8)

where
BW 1,p(·)(Ω,w0,w1)(0, σ) =

{
u ∈W 1,p(·)(Ω, w0, w1) : |||u|||1,p(·),Ω,w0,w1

< σ
}
,

and BW 1,p(·)(Ω,w0,w1)(0, σ) denotes the closure of BW 1,p(·)(Ω,w0,w1)(0, σ) in W
1,p(·)(Ω, w0, w1) with respect

to the norm topology.
We have Ψ is coercive, then 0 < K(r) < +∞ for each r > inf

W 1,p(·)(Ω,w0,w1)
Ψ. In view of (4.7), we obtain

Ψ(u) < d0|||u|||p
−

1,p(·),Ω,w0,w1
=⇒ |||u|||1,p(·),Ω,w0,w1

< σ0.

Thanks to (4.8), we have
Ψ−1(]−∞, r[) ⊂ BW 1,p(·)(Ω,w0,w1)(0,K(r)) then (Ψ−1(]−∞, r[)) ⊂ BW 1,p(·)(Ω,w0,w1)(0,K(r)),
and using (2.5), we get ∥u∥L∞(Ω) ≤ C0|||u|||1,p(·),Ω,w0,w1

then

BW 1,p(·)(Ω,w0,w1)(0,K(r)) ⊂
{
u ∈ C(Ω) : ∥u∥L∞(Ω) ≤ C0K(r)

}
.

It follows that

inf
v∈(Ψ−1(]−∞,r[))

Φ(v) ≥ inf
|||u|||1,p(·),Ω,w0,w1

≤K(r)
Φ(v) ≥ inf

∥v∥L∞(Ω)≤C0K(r)
Φ(v). (4.9)

By taking u0 and un as constant value functions ξ0 and ξn in Theorem 1.1 and using (4.9), we conclude
the following Theorem 4.2, that relies on Theorem 1.1.

Theorem 4.2 Let the conditions (V 1) and (V 2) be satisfied. Suppose that Ψ and Φ are as in (3.4), Φ
is coercive, and K(r) is as in (4.8).
(a) If there exist ρ0 > inf

W 1,p(·)(Ω,w0,w1)
Ψ and ξ0 ∈ R such that

∫
Ω

w0(x)

p(x)
| ξ0 |p(x) dx−

∫
Ω

G(x, ξ0)dx := e0 < ρ0, (4.10)

and ∫
Ω

F (x, ξ0)dx+ (ξ0 − e0) > sup
v∈C(Ω),∥v∥L∞(Ω)≤C0K(ρ0)

∫
Ω

F (x, v(x))dx, (4.11)

then the restriction of Ψ+Φ to Ψ−1(]−∞, ρ0[) has a global minimum.

(b) If there exist a sequence {rn} ⊂
(

inf
W 1,p(·)(Ω,w0,w1)

Ψ,+∞
)
with lim

n→∞
rn → +∞ and a sequence {ξn} ⊂

R such that for each n we have∫
Ω

w0(x)

p(x)
| ξn |p(x) dx−

∫
Ω

G(x, ξn)dx := en < rn (4.12)

and ∫
Ω

F (x, ξn)dx+ (rn − en) > sup
v∈C(Ω),∥v∥L∞(Ω)≤C0K(rn)

∫
Ω

F (x, v(x))dx, (4.13)

and in addition (4.1) holds, then there exists a sequence {vn} of local minima of Ψ + Φ such that
lim

n→∞
Ψ(vn) → +∞.
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(c) If there exist a sequence {rn} ⊂
(

inf
W 1,p(·)(Ω,w0,w1)

,+∞
)
with lim

n→∞
rn = inf

u∈W 1,p(·)(Ω,w0,w1)
Ψ(u) and a

sequence {ξn} ⊂ R such that for each n, the conditions (4.12) and (4.13) are satisfied, and in addition,
the condition (1.8) is satisfied, then there exists a sequence {vn} of pairwise distinct local minima of
Ψ + Φ such that lim

n→∞
Ψ(vn) = inf

u∈W 1,p(·)(Ω,w0,w1)
Ψ(u), [i.e, the sequence {vn} converges weakly to the

global minimizer of Ψ].

Proof Using (4.10), if there exist ρ0 > inf
u∈W 1,p(·)(Ω,w0,w1)

Ψ(u) and ξ0 ∈ R such that

∫
Ω

w0(x)

p(x)
|ξ0|p(x) dx−

∫
Ω

G(x, ξ0) dx := e0 < ρ0 =⇒ Ψ(ξ0) < ρ0,

therefore (1.3) holds.
Thanks to (4.11), we have∫

Ω

F (x, ξ0) dx+ (ρ0 − e0) > sup
v∈C(Ω),∥v∥L∞(Ω)≤C0K(ρ0)

∫
Ω

F (x, v) dx,

then

ρ0 −Ψ(ξ0) > −
∫
Ω

F (x, ξ0) dx+ sup
v∈C(Ω),∥v∥L∞(Ω)≤C0K(ρ0)

−Φ(v).

Thanks to (4.9), we get

ρ0 −Ψ(ξ0) > Φ(ξ0)− inf
v∈Ψ−1(]−∞,ρ0[)

Φ(v).

Therefore, the hypotheses (1.3) and (1.4) of Theorem 1.1(a) are satisfied. Then the restriction of Ψ + Φ
to Ψ−1(]−∞, ρ0[) has a global minimum. Assuming that the hypotheses of Theorem 1.1(b) and Theorem
1.1(c) are satisfied, using the same approach we can conclude the proof Theorem 4.2. □

For the condition (4.11) in Theorem 4.2(a), we give the following proposition.

Proposition 4.2 Assume that ρ0 > inf
W 1,p(·)(Ω,w0,w1)

Ψ, ξ0 ∈ R and (4.10) holds. If there exists a positive

function α ∈ L1(Ω) with ∥α∥L1(Ω) ̸= 0 such that

F (x, ξ0) +
α(x)

∥α∥L1(Ω)
(ρ0 − e0) > sup

|t|≤C0K(ρ0)

F (x, t) for a.e. x ∈ Ω, (4.14)

and the inequality (4.14) is strict on a subset of Ω with positive measure, then (4.11) holds.

Proof Integrating (4.14) over Ω and noting that∫
Ω

sup
|t|≤C0K(ρ0)

F (x, t)dx ≥ sup
v∈C(Ω),∥v∥L∞(Ω)≤C0K(ρ0)

∫
Ω

F (x, v(x))dx,

we obtain (4.11). □

The following proposition plays a crucial role in obtaining the main result in this section.

Proposition 4.3 Assume that Ψ is coercive and (4.7) holds, for r ≥ d0σ
p−

0 we have

K(r) ≤
(
r

d0

) 1

p−

. (4.15)
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Proof Let r ≥ d0σ
p−

0 and u ∈ W 1,p(·)(Ω, w0, w1) be such that Ψ(u) < r. When |||u|||1,p(·),Ω,w0,w1
≥ σ0,

by (4.7), one has

r > Ψ(u) ≥ d0|||u|||p
−

1,p(·),Ω,w0,w1
,

which implies that |||u|||1,p(·),Ω,w0,w1
≤
(

r
d0

) 1

p−
.

When |||u|||1,p(·),Ω,w0,w1
< σ0, it is clear that |||u|||1,p(·),Ω,w0,w1

≤
(

r
d0

) 1

p−
. Using the definition of K(r),

we conclude (4.15). □

Step 4 : Proof of the statements (4.12) and (4.13)

We set rn = d0

(
bn
C0

)p−

, then lim
n→∞

rn → +∞, and thanks to (4.15) we obtain

C0K(rn) ≤ bn. (4.16)

Since F satisfies the condition (S), for each n, there exists ξn ∈ [−an, an] such that

F (x, ξn) = sup
t∈[−an,an]

F (x, t), for a.e.x ∈ Ω. (4.17)

By (4.2), one has

en =

∫
Ω

w0(x)

p(x)
| ξn |p(x) dx−

∫
Ω

G(x, ξn)dx

≤ d1 | ξn |p+

+d2 ≤ d1 | an |p+

+d2.

It follows from (4.3) that for n sufficiently large,

d1 | an |p
+

+d2 < d0

(
bn
C0

)p−

= rn,

and consequently en < rn, that is (4.12) holds. Without loss of generality, we may assume that for all n,
(4.12) holds. By combining (4.4)-(4.5) and (4.17), we obtain

F (x, ξn) +
h(x)

∥h∥L1(Ω)
(rn − en) ≥ sup

|t|≤bn

F (x, t) for a.e. x ∈ Ω, (4.18)

and the inequality (4.18) is strict on a subset of Ω with positive measure. Using (4.16) and the Proposition
4.2, we obtain (4.13).

Therefore, all hypotheses of Theorem 4.2 (b) are satisfied, then the proof of the Theorem 4.1 is
concluded. □

Our second main result is the following theorem

Theorem 4.3 Assume that (V 1)− V (3) hold. Suppose that

G(x, t) ≤ 0 for t ∈ R and a.e. x ∈ Ω, (4.19)

there exist two positive constants M and ϵ such that

−G(x, t) ≤M | t |p
−

for t ≤ ϵ and a.e. x ∈ Ω, (4.20)

The functional F satisfies the condition (S) and

lim sup
|ξ|→0

∫
Ω

F (x, ξ)dx+

∫
Ω

G(x, ξ)dx

| ξ |p− >

∫
Ω

w0(x)

p(x)
dx. (4.21)
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Suppose that {an} and {bn} be two positive sequences such that

lim
n→∞

bn = 0 and lim
n→∞

ap
−

n

bp
+

n

= 0, (4.22)

and there exists a positive function h ∈ L1(Ω) with ∥h∥L1(Ω) ̸= 0, such that for each n we have

F (x, an) +
h(x)

∥h∥L1(Ω)

(
1

p+

(
bn
C0

)p+

− d3a
p−

n

)
≥ sup

t∈[an,bn]

F (x, t) a.e. in Ω, (4.23)

F (x,−an) +
h(x)

∥h∥L1(Ω)

(
1

p+

(
bn
C0

)p+

− d3a
p−

n

)
≥ sup

t∈[−bn,−an]

F (x, t) a.e. in Ω, (4.24)

and the inequalities (4.23) and (4.24) are strict on a subset of Ω with positive measure, where

d3 =

∫
Ω

w0(x)

p(x)
dx+M | Ω | . Then there exists a sequence {vn} of pairwise distinct local minima of Ψ+Φ

such that vn → 0 in W 1,p(·)(Ω, w0, w1) and consequently, the problem (P) admits a sequence of nonzero
weak solutions which strongly converges to 0 in W 1,p(·)(Ω, w0, w1).

Proof of Theorem 4.3
Let us verify all the hypotheses of Theorem 4.2 (c). Using (4.19), for |||u|||1,p(·),Ω,w0,w1

< 1, we have

Ψ(u) = J(u)−
∫
Ω

G(x, u)dx

=

∫
Ω

1

p(x)

(
w1(x)

∣∣∣∇u∣∣∣p(x) + w0(x) | u |p(x)
)
dx

≥ 1

p+
|||u|||p

+

1,p(·),Ω,w0,w1
.

Then Ψ is coercive, inf
W 1,p(·)(Ω,w0,w1)

Ψ = Ψ(0) = 0 and 0 is the unique global minimizer of Ψ. Thanks to

(4.21), we have

lim sup
|ξ|→0

{
ψ(ξ) + Φ(ξ)

}
= lim sup

|ξ|→0

{∫
Ω

w0(x)

p(x)
|ξ|p(x) dx−

∫
Ω

G(x, ξ) dx−
∫
Ω

F (x, ξ) dx
}

≤ lim sup
|ξ|→0

{∫
Ω

w0(x)

p(x)
|ξ|p

−
dx−

∫
Ω

G(x, ξ) dx−
∫
Ω

F (x, ξ) dx
}
< 0,

then 0 is not a local minimizer of Ψ + Φ, so (1.8) is satisfied.

For r > 0 sufficiently small, the condition Ψ(u) < r implies that |||u|||1,p(·),Ω,w0,w1
< (p+r)

1

p+ , this shows

that K(r) ≤ (p+r)
1

p+ . Now put rn = 1
p+

(
bn
C0

)p+

. Then C0K(rn) ≤ bn. by (4.20), there exists a sequence

{ξn} ⊂ R with ξn ∈ [−an, an] such that for | ξn | sufficiently small,

en =

∫
Ω

w0(x)

p(x)
|ξn|p(x) dx−

∫
Ω

G(x, ξn) dx

≤
(∫

Ω

w0(x)

p(x)
dx+M |Ω|

)
|ξn|p

−

= d3|ξn|p
−

= d3|an|p
−
.

(4.25)

It follows from (4.22) that for n large enough,

d3|an|p
−
<

1

p+

(
bn
C0

)p+

= rn,
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and consequently en < rn, that is (4.12) holds. Noting that F satisfies the condition (S), then thanks to
(4.23) - (4.24) and (4.17) we can obtain that

F (x, ξn) +
h(x)

∥h∥L1(Ω)
(rn − en) ≥ sup

|t|≤bn

F (x, t) a.e. in Ω, (4.26)

and the inequality (4.26) is strict on a subset of Ω with positive measure. By Proposition 4.2 and (4.26)
implies (4.13). Therefore, all hypotheses of Theorem 4.2 (c) are satisfied.
Consequently, there exists a sequence {vn} of pairwise distinct local minima of Ψ+Φ such that Ψ(vn) → 0,
thus |||u|||1,p(·),Ω,w0,w1

−→ 0, which complete our proof. □

5. Conclusion and perspective

Through this paper, we have studied the existence of infinitely many weak solutions of a nonlinear
elliptic partial differential equation of Neumann type in the weighted variable exponent Sobolev space,
and we have shown the embedding W 1,p(·)(Ω, w0, w1) ↪→↪→ C0(Ω), without assuming any condition on
N and without using the log-Hölder continuity and by using the theory of critical points obtained by B.
Ricceri, as a consequence of a more general variational principle.

So we are aware of a lot of open questions about this works for example the question of uniqueness,
with totally different conditions, is very important and remains as an open question, therefore our future
works will be devoted to this question. On the other hand, we will try to show the existence of infinitely
many weak solutions for the problem (P) in weighted Orlicz-Sobolev space and Musielak-Orlicz-Sobolev
space.
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11. L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev spaces with variable exponents, Lecture
Notes in Mathematics, vol. 2017, Springer-Verlag, Heidelberg, 2011.

12. P. Drabek, A.kufner, and F, Nicolosi, Nonlinear elliptic equations, singular and degenerate cases, preprint, 1996,
University of West Bohemia.

13. X. L. Fan, Solutions for p(x)-Laplacian Dirichlet problems with Singular coefficients, J. Math. Anal. Appl. 312 (2005)
464-477.



Multiplicity of weak solutions for a class of quasilinear elliptic Neumann problems 13

14. X.L. Fan, C.Ji, Existence of infinitely many solutions for a Neumann problem involving the p(x)-Laplacian, C. J. Math.
Anal. Appl. 334 (2007) 248-260.

15. X.L. Fan and D. Zhao, On the generalised Orlicz-Sobolev Space Wk,p(x)(Ω), J. Gansu Educ. College 12 (1) (1998) 1-6.

16. X. L. Fan, D. Zhao, On the Spaces Lp(x)(Ω) and Wm,p(x)(Ω), J. Math. Anal. Appl. 263 (2001) 424-446.
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