(3s.) v. 2025 (43) : 1–11. ISSN-0037-8712 doi:10.5269/bspm.67878

S-r-ideals in commutative rings

Essebti Massaoud and Ahmed Hamed*

ABSTRACT: The rings considered in this article are commutative with identity. This article is motivated by the results proved by Visweswaran ([10]) on S-primary ideals. In this paper, we introduce the concept of S-r-ideal (resp., S-pr-ideal) of a commutative ring and study its properties. Let R be a commutative ring with $1 \neq 0$ and S be a multiplicatively closed subset of R. Let I be an ideal of R disjoint with S. We say that I is an S-r-ideal (resp., S-pr-ideal) of R if there exists an $s \in S$ such that for all $a, b \in R$ if $ab \in I$ with Ann(a) = (0) implies that $sb \in I$ (resp., $sb \in \sqrt{I}$). We investigate many properties and characterizations of S-r-ideals (resp., S-pr-ideals). We discuss the form of S-r-ideals (resp., S-pr-ideals) in a finite direct product of rings. Furthermore, we study S-r-ideals (resp., S-pr-ideals) in Nagata's idealization ring. Our results allow us to construct original examples of S-r-ideals (resp., S-pr-ideals).

Key Words: S-r-ideal, S-pr-ideal, strongly S-pr-ideal.

Contents

2	Uniformly and strongly S-pr-ideals	Q
2	Basic results	2
1	Introduction	1

1. Introduction

Throughout this paper, all considered rings are assumed to be commutative with identity $1 \neq 0$ and all ring homomorphisms are assumed to be unital. If A is a subring of B, we suppose that they have the same identity element. As usual, if R is a commutative ring, then zd(R) denotes the set of zero divisors of R and Reg(R) = $R \setminus zd(R)$ is the set of its regular elements. Recall that a subset S of a ring R is called multiplicative if $1 \in S$, $0 \notin S$ and S is closed under multiplication. Note that any multiplicative subset of R satisfies the inclusion relations $\{1\} \subseteq S \subseteq R$. Recall also that an ideal I of R is said to be prime if $I \neq R$ and whenever a and b are elements of R such that $ab \in I$, then $a \in I$ or $b \in I$. Note that I is a prime ideal of R if and only if $R \setminus I$ is a multiplicative subset of R. In [1], D. D. Anderson and E. Smith have defined a proper ideal I of R to be weakly prime if $0 \neq ab \in I$ implies $a \in I$ or $b \in I$. Some properties of weakly prime ideals have been settled. On the other hand, A. Hamed and A. Malek have introduced and investigated the concept of S-prime ideals which constitute a generalization of prime ideals (see [4]). More precisely, let R be a commutative ring, S a multiplicative subset of R and I an ideal of R disjoint from S. Then, I is called an S-prime ideal of R if there exists an $s \in S$ such that for all $a, b \in R$ if $ab \in I$, then $ab \in I$ or $ab \in I$. Note that if S consists of units of R, then the notions of S-prime and prime ideals coincide. Recall that an ideal I of R is said to be primary if for all $a, b \in R$, $ab \in I$ implies $a \in I$ or $b \in \sqrt{I}$. In [10] the author introduced and investigated the concept of S-primary ideals which constitute a generalization of primary ideals (the same notion can be found in [7]). More precisely, let R be a commutative ring, S a multiplicative subset of R and I an ideal of R disjoint from S. Then, I is called an S-primary ideal of R if there exists an $s \in S$ such that for all $a, b \in R$ if $ab \in I$, then $sa \in I$ or $sb \in \sqrt{I}$. In commutative algebra, r-ideal and its generalizations have an important role. There have been lots of studies on this issue (See [8, 9]). Recall that a proper ideal I is called an r-ideal (resp., pr-ideal) if $ab \in I$ with Ann(a) = 0 then $b \in I$ (resp., $b \in \sqrt{I}$). In [9], Uregen also studies a special class of pr-ideals fixing the power of element $b \in R$ in the above definition. A proper ideal I is called uniformly pr-ideal if there exists $N \in \mathbb{N}$ and whenever $ab \in I$ with Ann(a) = (0) we have $b^N \in I$ in that case N is called order of I and denoted by ord(I) = N. Also I is called a strongly pr-ideal if I

^{*} Corresponding author. 2010 Mathematics Subject Classification: 13A15, 13B02, 13B30. Submitted April 14, 2023. Published September 17, 2025

is a pr-ideal and $\sqrt{I}^N \subseteq I$ for some $N \in \mathbb{N}$, where \sqrt{I} is the radical of I. In this case N is called the exponent of I and denoted by exp(I) = N.

The main goal of the present paper is to complete this circle of ideas by introducing and studying the concept of S-r-ideals and S-pr-ideals of a commutative ring in a way that generalizes essentially all the results concerning r-ideals and pr-ideals. Let R be a commutative ring, S a multiplicative subset of R and I a proper ideal of R disjoint from S. Then we say that I is an S-r-ideal (resp., an S-pr-ideal) of R if there exists an $s \in S$ such that for all $a, b \in R$ if $ab \in I$ with Ann(a) = 0, we have $sb \in I$ (resp., $sb \in \sqrt{I}$). In Section 2, we study the basic properties of S-r ideals. Proposition 2.1 states that if (I:s)is an r-ideal of R for some $s \in S$, then I is an S-r-ideal of R. In the case where the multiplicative set S consists only of nonzero divisors (that is, $S \subseteq \text{Reg}(R)$), an ideal P is S-r-ideal of R if and only if $S^{-1}P$ is an r-ideal of $S^{-1}R$ and $(S^{-1}P) \cap R = (P:s)$ for some $s \in S$. Theorem 2.3 is a counterpart of the celebrated Prime Avoidance Lemma for S-r-ideals. We show that if $I, P_1, ..., P_n$ are ideals of R such that $I \subseteq \bigcup_{i=1}^n P_i$, P_1 is an S-r-ideal, and the others have regular elements, then there exists $s \in S$ such that $sI \subseteq P_1$. We give in Theorem 2.15, a characterization of S-r-ideals of R in terms of the (S(+)M)-r-ideal of R(+)M. Section 3 is devoted to study the notion of uniformly S-pr-ideals and strongly S-pr-ideals. An ideal I of R disjoint from S is called a uniformly S-pr-ideal if there exist $N \in \mathbb{N}$ and $s \in S$ such that whenever $ab \in I$ with Ann(a) = (0), then $(sb)^N \in I$. An ideal I is called a strongly S-pr-ideal if I is an S-pr-ideal and there exist $s' \in S$ and $N \in \mathbb{N}$ such that $s'\sqrt{I}^N \subseteq I$. We show that if Q is an S-pr-ideal of R, then $P=\sqrt{Q}$ is an S-r-ideal of R. We also show that the class of S-pr-ideals contains the class of uniformly S-pr-ideals and the class of uniformly S-pr-ideals contains strongly S-pr-ideals (see Proposition 3.1). Finally, we give respectively in Corollaries 3.1 and 3.2, a characterization of uniformly S-pr-ideals and strongly S-pr-ideals in a finite direct product of rings.

2. Basic results

Let R be a commutative ring, S a multiplicative subset of R and I an ideal of R disjoint from S. In this section, we study basic results of an S-r-ideal (resp., S-pr-ideal) of R.

Definition 2.1 Let R be a commutative ring, S a multiplicative subset of R and I an ideal of R disjoint from S. We say that I is an S-r-ideal (resp., S-pr-ideal) of R if there exists an $s \in S$ such that $ab \in I$ with Ann(a) = (0) implies that $sb \in I$ (resp., $sb \in \sqrt{I}$) for each $a, b \in R$.

- **Remark 2.1** (1) Every r-ideal (resp., pr-ideal) of R disjoint from S is an S-r-ideal(resp., S-pr-ideal) of R.
 - (2) If S consists of units of R, then the notions of r-ideal (resp., pr-ideal) and S-r-ideals (resp., S-pr-ideals) coincide.

Our next example shows that the reverse of (1) in the previous Remark is not true in general.

Example 2.1 Let T be a reduced ring such that $\mathbb{Z} \subseteq T$ and I be a prime ideal of T with $I \cap \mathbb{Z} = (0)$. Put $J := X^2I[X]$ and $S := \{X^n \mid n \in \mathbb{N}\}$. Then J is an ideal of $R = \mathbb{Z} + XT[X]$ with $J \cap S = \emptyset$. Now, let $P, Q \in R$ such that $PQ \in J$ and Ann(P) = (0). By [8, Example 2.17], J is a pr-ideal of R which is not an r-ideal. Then $Q \in \sqrt{J} = XI[X]$, since J is a pr-ideal of R; so $Q \in XI[X]$, and hence $XQ \in J$. This implies that J is an S-r-ideal of R.

In the following, we give an example of an S-prime ideal which is neither an S-r-ideal nor an S-pr-ideal.

Example 2.2 Let $R = \mathbb{Z}[X]$, I = 4XR, and $S = \{2^n \mid n \in \mathbb{N}\}$. By [4, Example 1(3)], I is an S-prime ideal of R which is not prime. Note that for all $s = 2^n \in S$, we have $(2X)(2) \in I$ and ann(2X) = 0 but $s(2) \notin \sqrt{I}$. This shows that I is neither an S-r-ideal of R nor an S-pr-ideal of R.

In the following, we give an example of an S-r-ideal which is not S-prime.

Example 2.3 Let $R = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$, $I = \{\overline{0}\} \times \{\overline{0}\} \times \mathbb{Z}_2$ and $S = \{(\overline{1}, \overline{1}, \overline{1}), (\overline{1}, \overline{1}, \overline{0})\}$. We show that I is an r-ideal of R. Let $a, b \in R$ such that $ab \in I$ with Ann(a) = (0). Since R is a Boolean ring, $a^2 = a$, which implies that $1 - a \in Ann(a) = (0)$; so a = 1, and thus $b \in I$. This shows that I is an S-r-ideal of R, since I is disjoint from S. Now, we show that I is not an S-prime ideal of R. Let $\alpha = (\overline{1}, \overline{0}, \overline{1})$ and $\beta = (\overline{0}, \overline{1}, \overline{1})$. Then $\alpha, \beta \in R$ and $\alpha\beta = (\overline{0}, \overline{0}, \overline{1}) \in I$. Note that for each $s \in S$, $s\alpha \notin I$ and $s\beta \notin I$. Thus I is not S-prime.

The next proposition characterizes the S-r-ideals (resp., S-pr-ideals) of a commutative ring R in the case where $S \subseteq Reg(R)$. First, recall that if I is an ideal of R and $s \in R$, then $(I:s) := \{x \in R \mid sx \in I\}$ is an ideal of R containing I.

Proposition 2.1 Let R be a commutative ring, $S \subseteq \text{Reg}(R)$ a multiplicative subset of R and I an ideal of R disjoint from S. Then the following assertions are equivalent:

- (1) I is an S-r-ideal of R.
- (2) (I:s) is an r-ideal of R for some $s \in S$.
- (3) $S^{-1}I$ is an r-ideal of $S^{-1}R$ and $(S^{-1}I) \cap R = (I:s)$ for some $s \in S$.

Proof:

- $(1)\Rightarrow(2)$. Since I is an S-r-ideal of R, there exists $s\in S$ such that if $ab\in I$ with Ann(a)=(0), then $sb\in I$. We show that (I:s) is an r-ideal of R. Let $x,y\in R$ such that $xy\in (I:s)$ with Ann(x)=(0). Then $sxy\in I$. It follows that $s^2y\in I$, then $y\in (I:s)$, since $Ann(s^2)=0$. This implies that (I:s) is an r-ideal of R.
- $(2) \Rightarrow (1)$. Assume that (I:s) is an r-ideal of R for some $s \in S$. Let $a, b \in R$ such that $ab \in I$ with Ann(a) = (0). Then $ab \in (I:s)$, which implies that $b \in (I:s)$; so $sb \in I$. Therefore, I is an S-r-ideal of R.
- $(1)\Rightarrow (3). \text{ First, we prove that } S^{-1}I \text{ is an } r\text{-ideal of } S^{-1}R. \text{ Let } x,y\in S^{-1}R \text{ such that } xy\in S^{-1}I \text{ with } Ann(x)=(0). \text{ Write } x=\frac{a}{s_1} \text{ and } y=\frac{b}{s_2} \text{ for some elements } a,b\in R \text{ and } s_1,s_2\in S. \text{ Thus, } xy=\frac{p}{s_3} \text{ where } p\in I \text{ and } s_3\in S. \text{ It follows that } abs_3=s_1s_2p\in I. \text{ As } I \text{ is an } S\text{-}r\text{-ideal of } R \text{ and } Ann(a)=(0), ss_3b\in I \text{ for some } s\in S. \text{ This implies that } y=\frac{b}{s_2}=\frac{ss_3b}{ss_3s_2}\in S^{-1}I. \text{ Now we show that } (S^{-1}I)\cap R=(I:s). \text{ Let } \alpha\in (I:s). \text{ Then } \alpha\in R \text{ and } s\alpha\in I. \text{ As } S\subseteq \operatorname{Reg}(R), \text{ the mapping } \varphi:R\longrightarrow S^{-1}R \text{ defined by } \varphi(r)=\frac{r}{1} \text{ is an injective ring homomorphism.} \text{ Thus } \alpha=\frac{\alpha}{1}=\frac{s\alpha}{s}\in S^{-1}P. \text{ This implies that } \alpha\in (S^{-1}I)\cap R. \text{ Conversely, let } \alpha\in (S^{-1}I)\cap R. \text{ Then } \alpha\in R \text{ and } \alpha=\frac{p}{t} \text{ for some elements } p\in I \text{ and } t\in S. \text{ Since } \alpha t=p\in I \text{ with } Ann(t)=(0), \text{ it follows that } s\alpha\in I, \text{ and hence } \alpha\in (I:s).$
- (3) \Rightarrow (1). Assume (3), and let $a, b \in R$ such that $ab \in I$ with Ann(a) = (0). Since $\frac{a}{1} \frac{b}{1} \in S^{-1}I$ and $Ann(\frac{a}{1}) = (0)$, it follows that $\frac{b}{1} \in S^{-1}I$, which implies that $b = \frac{b}{1} \in S^{-1}I \cap R = (I:s)$. Thus $sb \in I$ and hence I is an S-r-ideal of R.

Corollary 2.1 Let R be a commutative ring, $S \subseteq \operatorname{Reg}(R)$ a multiplicative subset of R and I an ideal of R disjoint from S. Set $\overline{S} := \{s + I \mid s \in S\}$. If $Z(R/I) \cap \overline{S} = \emptyset$, then I is an S-r-ideal if and only if I is an r-ideal.

Proof: The "if" part is immediate, since any r-ideal of R disjoint from S is an S-r- ideal (see Remark 2.1). For the "only if" part, we first claim that (I:s)=I for all $s\in S$ and we conclude by Proposition 2.1. The inclusion relation $I\subseteq (I:s)$ is straightforward. Conversely, let $s\in S$ and let $x\in (I:s)$. Then $sx\in I$. Hence, (s+I)(x+I)=I. Notice that $s+I\neq I$ (because $I\cap S=\emptyset$) and $s+I\notin Z(R/I)$, since $Z(R/I)\cap \overline{S}=\emptyset$. Therefore, we get x+I=I. Thus $x\in I$. This shows that $(I:s)\subseteq I$, and hence I=(I:s) for any $s\in S$.

Example 2.4 Let R be a commutative ring, S a multiplicative subset of R such that $S \cap \operatorname{Reg}(R) \neq \emptyset$ and I an r-ideal of R. Then for each $s \in S \cap \operatorname{Reg}(R)$, sI is an S-r-ideal of R. If moreover $I \neq (0)$ and $\bigcap_{n=1}^{\infty} Rs^n = (0)$, then sI is not an r-ideal of R.

Proof: Let $s \in S \cap \operatorname{Reg}(R)$. It is convenient to denote sI by J. As $J \subseteq I$, we have $J \cap S = \emptyset$. Since Ann(s) = (0), we get that (sI:s) = I. Thus (J:s) = I is an r-ideal of R, and hence J = sI is an S-r-ideal of R. Assume that $I \neq (0)$ and $\bigcap_{n=1}^{\infty} Rs^n = (0)$. We verify that P = sI is not an r-ideal of R. Observe that $I \neq sI$. For if I = sI, then $I = s^nI$ for each $n \geqslant 1$. From $\bigcap_{n=1}^{\infty} Rs^n = (0)$, it follows that I = (0) and this is a contradiction to the assumption that $I \neq (0)$. Hence $I \neq sI$. Let $a \in I \setminus sI$. Note that $sa \in sI = P$. As $a \notin P$ and Ann(s) = (0), we obtain that sI is not an r-ideal of R.

Proposition 2.2 Let R be a commutative ring, $S \subseteq \text{Reg}(R)$ a multiplicative subset of R and I an ideal of R disjoint from S. Then the following assertions are equivalent:

- (1) I is an S-pr-ideal of R.
- (2) (I:s) is a pr-ideal of R for some $s \in S$.

Proof: (1) \Rightarrow (2). Assume that I is an S-pr-ideal of R. There exists $s \in S$ such that if $ab \in I$ with Ann(a) = (0), we have $bs \in \sqrt{I}$. We claim that (I:s) is a pr-ideal of R. Since $s \notin I$, we get that $(I:s) \neq R$. Let $x, y \in R$ such that $xy \in (I:s)$ with Ann(x) = (0). Then $sxy \in I$. It follows that $sy \in \sqrt{I}$, then $s^my^m = (sy)^m \in I$ for some integer $m \geq 1$. Since s is a regular element, $Ann(s^m) = (0)$. It follows that $y^m \in (I:s)$ which is equivalent to $y \in \sqrt{(I:s)}$. Hence (I:s) is a pr-ideal of R.

 $(2)\Rightarrow (1)$. Assume (2), and let $a,b\in R$ such that $ab\in I$ with Ann(a)=(0). Note that $ab\in (I:s)$ and Ann(a)=(0). Since (I:s) is a pr-ideal of $R,\ b\in \sqrt{(I:s)}$, which implies that $sb^k\in I$ for some integer $k\geq 1$. Thus $(sb)^k=s^kb^k\in I$. This implies that $sb\in \sqrt{I}$. Therefore, I is an S-pr-ideal of R. This completes the proof.

Let $R \subseteq T$ be an extension of commutative rings. Let a be an element of R. We denote by $Ann_T(a) = \{\alpha \in T \mid \alpha a = 0\}$. Then $Ann_T(a)$ is an ideal of T.

Proposition 2.3 Let R be a commutative ring and S a multiplicative subset of R. Then the following hold:

- 1. Let J be an ideal of R such that $J \cap S \neq \emptyset$. If I is an S-r-ideal of R, then so is JI.
- 2. Let $R \subseteq T$ be an extension of commutative rings. If J is an S-r-ideal of T, then $I = J \cap R$ is an S-r-ideal of R.
- 3. Let $f: R \longrightarrow T$ be an isomorphism of commutative rings. Then f(I) is an f(S)-r-ideal of T, whenever I is an S-r-ideal of R, and $f^{-1}(J)$ is an S-r-ideal of T, whenever J is an f(S)-r-ideal of T.
- 4. Every S-r-ideal is included in zd(R).
- 5. Let I be an S-prime ideal of R. If $S \subseteq \text{Reg}(R)$, then I is an S-r-ideal of R if and only if $(I:t) \subseteq zd(R)$ for some $t \in S$.

Proof: (1). Let $a, b \in R$ such that $ab \in JI$ with Ann(a) = (0). As I is an S-r-ideal of R, there exists $s \in S$ such that $sb \in I$. Pick $t \in J \cap S$ (such t exists since $J \cap S \neq \emptyset$). Then $(ts)b = t(sb) \in JI$. Therefore, JI is an S-r-ideal of R.

- (2). Case 1. I = (0), in this case I is an r-ideal of R and $S \cap I = \emptyset$, implies that I is an S-r-ideal of R.
- Case 2. $I \neq (0)$. Let $a, b \in R$ such that $ab \in I$ with $Ann_R(a) = (0)$.

We show that $sb \in I$ for some $s \in S$. Clearly $ab \in J$. It is shown in [8, Proposition 3.17], that $Ann_T(a) = (0)$. As J is an S-r-ideal of T, there exists $s \in S$ such that $sb \in J$, then clearly $sb \in J \cap R$. It follows that $I = J \cap R$ is an S-r-ideal of R.

- (3). It is not difficult to check that $f^{-1}(J) \cap S = \emptyset$. Now, let $a,b \in R$ such that $ab \in f^{-1}(J)$ with Ann(a) = (0). Since f is bijective, we get Ann(f(a)) = (0). Then there exists an $s \in S$ such that $f(s)f(b) \in J$, since J is an f(S)-r-ideal of T. This implies that $sb \in f^{-1}(J)$. Hence $f^{-1}(J)$ is an S-r-ideal of R. Now, let $f(a)f(b) \in f(I)$ with Ann(f(a)) = (0). Then Ann(a) = (0), there exists $x \in I$ such that f(ab) = f(x), then $ab = x \in I$, thus $sb \in I$. Since I is an S-r-ideal, $f(s)f(b) \in f(I)$, hence f(I) is f(S)-r-ideal. This completes the proof.
- (4). Suppose that $I \nsubseteq zd(R)$. Then there exists $a \in I$ with Ann(a) = (0). Since I is an S-r-ideal, there exists $s \in S$ such that $s = s \cdot 1 \in I$, a contradiction, since $S \cap I = \emptyset$. Hence $I \subseteq zd(R)$.
- (5). Suppose that I is an S-prime ideal with respective to t. If I is an S-r-ideal, then (I:t) is an r-ideal, by Proposition 2.1. Then by (4), $(I:t) \subseteq zd(R)$. Conversely, assume that $(I:t) \subseteq zd(R)$. Let $ab \in I$ with Ann(a) = (0). Then we have $ta \in I$ or $tb \in I$. It is easy to see that $ta \notin I$. This implies that $tb \in I$, and so I is an S-r-ideal.

Proposition 2.4 Let R be a commutative ring and S a multiplicative subset of R. Let I be an r-ideal of R disjoint from S, and P be an ideal of R such that $I \subseteq P$. Then P is an S-r-ideal of R if and only if P/I is an \overline{S} -r-ideal of R/I.

Proof: Note that $P \cap S = \emptyset$ if and only if $(P/I) \cap \overline{S} = \emptyset$.

For the "if" part, let $a+I, b+I \in R/I$ such that $(a+I)(b+I) \in P/I$ with $Ann(a+I) = (\overline{0})$. Then $(ab+I) \in P/I$, and so $ab \in P$. As I is an S-r-ideal of R and Ann(a) = (0), there exists $s \in S$ such that $sb \in P$. Therefore, $(s+I)(b+I) \in P/I$.

For the "only if" part, since P/I is an \overline{S} -r-ideal of R/I, there exists $t \in S$ such that for all $a+I, b+I \in R/I$ if $(a+I)(b+I) \in P/I$ with $Ann(a+I) = \overline{0}$, then $(t+I)(b+I) \in P/I$. We need to show that P is an S-r-ideal of R. For, let $x,y \in R$ such that $xy \in P$ with Ann(x) = (0). Then $(x+I)(y+I) \in P/I$. Since I is an r-ideal, it follows that $Ann(x+I) = \overline{0}$, so $(ty+I) = (t+I)(y+I) \in P/I$. This implies that $ty \in P$, completing the proof.

Theorem 2.1 Let R be a commutative ring, S a multiplicative subset of R and I an ideal of R disjoint from S. Then I is an S-r-ideal if and only if there exists $s \in S$ such that for every two ideals J, K of R, with K regular and $JK \subseteq I$, we have $sJ \subseteq I$.

Proof: For the "only if" part, let $a, b \in R$ such that $ab \in I$ with Ann(a) = 0. Then aR is regular. As $(aR)(bR) \subseteq I$ by assumption, $s(bR) \subseteq I$. Hence $sb \in I$.

For the "if" part, as I is an S-r-ideal, there exists $s \in S$ such that for all $a, b \in R$, if $ab \in I$ with Ann(a) = 0, then $sa \in I$. We suppose that for all $t \in S$, there exist J_t , K_t two ideals of R with K_t regular and $J_tK_t \subseteq I$ but $tJ_t \nsubseteq I$. Since $s \in S$, there exist two ideals of R J_s , K_s with K_s regular and $J_sK_s \subseteq I$ but $sJ_s \nsubseteq I$. Therefore, there exist $a_s \in K_s \cap Reg(R)$ and $b_s \in J_s$ such that $sb_s \notin I$ with $a_sb_s \in J_sK_s \subseteq I$, which is absurd because I is an S-r-ideal. This completes the proof.

Recall from [4] that a multiplicative set S of a commutative ring R is called a strongly multiplicative set if for each family $(s_{\alpha})_{\alpha \in \Lambda}$ of element of S we have

$$(\bigcap_{\alpha\in\Lambda}s_{\alpha}R)\cap S\neq\emptyset.$$

Theorem 2.2 Let R be a commutative ring and $S \subseteq R$ a strongly multiplicative set. Let $(P_{\alpha})_{\alpha \in \Lambda}$ be a chain of S-r-ideals of R. Then $P = \bigcap_{\alpha \in \Lambda} P_{\alpha}$ is an S-r-ideal of R.

Proof: For each $\alpha \in \Lambda$, there exists $s_{\alpha} \in S$ such that for all $a, b \in R$, $ab \in P_{\alpha}$ with Ann(a) = 0, implies $s_{\alpha}b \in P_{\alpha}$.

Since S is a strongly multiplicative set, $(\bigcap_{\alpha \in \Lambda} s_{\alpha}R) \cap S \neq \emptyset$. Let $t \in (\bigcap_{\alpha \in \Lambda} s_{\alpha}R) \cap S$. We will show that for all $a, b \in R$ such that $ab \in P$ with Ann(a) = 0 implies $b \in P$. Suppose that $b \notin P$. Then $b \notin P_{\beta}$ for some $\beta \in \Lambda$. Let $\alpha \in \Lambda$. We have $P_{\alpha} \subseteq P_{\beta}$ or $P_{\beta} \subseteq P_{\alpha}$.

First case. $P_{\alpha} \subseteq P_{\beta}$. Since $tb \notin P_{\beta}$, it follows that $tb \notin P_{\alpha}$, so $s_{\alpha}b \notin P_{\alpha}$ absurd since $ab \in P_{\alpha}$ and Ann(a) = 0.

Second case. $P_{\beta} \subseteq P_{\alpha}$. As $ab \in P_{\beta}$, Ann(a) = 0 and $tb \notin P_{\beta}$, it follows that $s_{\beta}b \notin P_{\beta}$ which is absurd. In each case we have $tb \in P$.

Proposition 2.5 Let R be a commutative ring and S a multiplicative subset of R. Suppose that $P_1, ..., P_n$ are prime ideals of R, which are not comparable. If $\bigcap_{i=1}^n P_i$ is an S-r-ideal of R, then for each $1 \le i \le n$, P_i is an S-r-ideal of R.

Proof: Let $rx \in P_i$ with Ann(r) = 0 and take $y \in (\bigcap_{j \neq i} P_j) \setminus P_i$. Hence, $rxy \in \bigcap_{i=1}^n P_i$. Since $\bigcap_{i=1}^n P_i$ is an S-r-ideal, we infer that $sxy \in \bigcap_{i=1}^n P_i$ for some $s \in S$, and therefore $sxy \in P_i$. This implies that $sx \in P_i$, then P_i is an S-r-ideal.

The following result is a counterpart of the celebrated Prime Avoidance Lemma for S-r-ideals.

Theorem 2.3 Let R be a commutative ring, S a multiplicative subset of R and I an ideal of R. Let $P_1, ..., P_n$ be n ideals of R such that $I \subseteq \bigcup_{i=1}^n P_i$. If P_1 is an S-r-ideal and the others are regular, there exists $s \in S$ such that $sI \subseteq P_1$.

Proof: As P_1 is an S-r-ideal, there exists $s \in S$ such that $(P_1 : s)$ is an r-ideal. We have $I \subseteq \bigcup_{i=1}^n P_i \subseteq \bigcup_{i=1}^n (P_i : s)$ and for $i \neq 1$ $(P_i : s)$ contains a regular element. By the r-ideal Avoidance Lemma [8, Theorem 3.8], $I \subseteq (P_1 : s)$. This implies that $sI \subseteq P_1$.

Proposition 2.6 Let R be a commutative ring and S be a multiplicative subset of R. Assume that I is an S-r-ideal of R and let T be a multiplicative subset of R with $S_T \cap I_T = \emptyset$. Then the following statements hold:

- (1) I_T is an S_T -r-ideal of R_T .
- (2) If morover, $T \subseteq \text{Reg}(R)$, then I_T is an S-r-ideal of R_T .

Proof: (1) Let $x, y \in R_T$ such that $xy \in I_T$ with Ann(x) = 0. Write $x = \frac{a}{t_1}$ and $y = \frac{b}{t_2}$ for some elements $a, b \in R$ and $t_1, t_2 \in T$. So $\frac{ab}{t_1t_2} = \frac{p}{t}$, where $p \in I$ and $t \in T$. There exists $t' \in T$ with $t'tab = t't_1t_2p \in I$. By hypothesis, I is an S-r-ideal of R, $s_1tt'b \in I$ for some $s_1 \in S$, since Ann(a) = 0. Then $s_1tt' = p_1 \in P$ for some $s_1 \in S$. Let $\alpha = \frac{s_1}{1}$. Then we have $\alpha.y = \frac{s_1}{1}.\frac{btt'}{tt't_2} = \frac{s_1tt'b}{tt't_2} = \frac{p_1}{tt't_2} \in I_T$, hence I_T is an S_T -r-ideal of R_T .

(2). As $T \subseteq \text{Reg}(R)$, the mapping $\varphi : R \longrightarrow R_T$ defined by $\varphi(r) = \frac{r}{1}$ is an injective ring homomorphism. Thus we have $S \cap I_T = \emptyset$ since $S_T \cap I_T = \emptyset$.

Let R be a commutative ring with identity and M a unitary R— module. The idealization of M in R (or trivial extension of R by M) is a commutative ring $R(+)M = \{(r,m) \mid r \in R \text{ and } m \in M\}$ under the usual addition and the multiplication defined as $(r_1, m_1)(r_2, m_2) = (r_1r_2, r_1m_2 + r_2m_1)$ for all $(r_1, m_1), (r_2, m_2) \in R(+)M$ [2]. If I is an ideal of R and R is a submodule of R, then I(+)R is an ideal of R and only if I if and only if I if and only if I is an ideal of R and R is called a homogeneous ideal

of R(+)M. Note that $zd(R(+)M) = \{(a,m) \mid a \in zd(R) \bigcup Z(M)\}$, where $Z(M) = \{a \in R \mid am = 0 \text{ for some } 0 \neq m \in M\}$ (see [2]). It is easy to show that if S is a multiplicative subset of R, then S(+)M is a multiplicative subset of R(+)M.

Theorem 2.4 Let R be a commutative ring, M a unitary R-module, I an ideal of R and S a multiplicative subset of R with $S \cap I = \emptyset$. Then

- 1. If I is an S-r-ideal (resp., S-pr-ideal) of R, then I(+)M is an (S(+)M)-r-ideal (resp., (S(+)M)-pr-ideal) of R(+)M.
- 2. If Z(M) = zd(R) and I(+)M is an (S(+)M)-r-ideal (resp., (S(+)M)-pr-ideal) of R(+)M, then I is an S-r-ideal (resp., S-pr-ideal) of R.

Proof: Notice that $(S(+)M) \cap (I(+)M) = \emptyset$ if and only if $S \cap I = \emptyset$.

- (1). Since I is an S-r-ideal (resp., S-pr-ideal) of R, there exists an $s \in S$ such that for all $x, y \in R$, if $xy \in I$ with Ann(x) = (0), then $sy \in I$ (resp., $sy \in \sqrt{I}$). Let $(a, m), (b, n) \in R(+)M$ such that $(a, m)(b, n) = (ab, an + bm) \in I(+)M$ with Ann((a, m)) = ((0, 0)). Since I is an S-r-ideal (resp., S-pr-ideal) and Ann(a) = (0), we get $sb \in I$ (resp., $sb \in \sqrt{I}$). This implies that $(s, 0)(b, n) = (sb, sn) \in I(+)M$ (resp., $(s, 0)(b, n) = (sb, sn) \in \sqrt{I}(+)M = \sqrt{I(+)M}$). Hence I(+)M is an (S(+)M)-r-ideal (resp., (S(+)M)-pr-ideal) of R(+)M.
- (2). Suppose that I(+)M is an (S(+)M)-r-ideal (resp., (S(+)M)-pr-ideal). Let $a,b \in R$ such that $ab \in I$ with Ann(a) = (0). Then $(a,0)(b,0) = (ab,0) \in I(+)M$. Since Z(M) = zd(R), Ann((a,0)) = ((0,0)). This implies that $(s,m)(b,0) \in I(+)M$ (resp., $(s,m)(b,0) \in \sqrt{I}(+)M$) for some $(s,m) \in S(+)M$,. Therefore, $sb \in I$ (resp., $sb \in \sqrt{I}$), and hence I is an S-r-ideal (resp., S-pr-ideal) of R.

In the particular case when S consists of units of R we recover the following well-known result.

Corollary 2.2 Let R be a commutative ring, M a unitary R-module such that Z(M) = zd(R) and I an ideal of R. Then I(+)M is an r-ideal of R(+)M if and only if I is an r-ideal of R.

In what follows, we establish a relationship between S-pr-ideals and S-r-ideals of R.

Proposition 2.7 Let R be a commutative ring, S a multiplicative subset of R and Q an ideal of R. Then Q is an S-pr-ideal of R if and only if $I = \sqrt{Q}$ is an S-r-ideal R. In this case Q is called an I-S-r-ideal of R.

Proof: One can easily check that $\sqrt{Q} \cap S = \emptyset$ if and only if $Q \cap S = \emptyset$. Assume that Q is an S-pr-ideal of R, and let $a,b \in R$ such that $ab \in I$ with Ann(a) = (0). There exists a positive integer $n \geq 1$ such that $a^nb^n = (ab)^n \in Q$. Clearly $Ann(a^n) = (0)$. By hypothesis, there exists an integer $m \geq 1$ such that $sb^{nm} \in Q$; so $sb \in I = \sqrt{Q}$. Hence I is an S-r-ideal of R. Conversely, assume that $I = \sqrt{Q}$ is an S-r-ideal R. Since I is an S-r-ideal of R, there exists $s \in S$ such that for all $a, b \in R$, if $ab \in I$ with Ann(a) = (0), then $sb \in I$. Now, let $x, y \in R$ such that $xy \in Q$ and Ann(x) = (0). As $xy \in \sqrt{Q}$, $xy \in \sqrt{Q}$. This shows that Q is an S-pr-ideal of R, and hence the proof is completed.

Proposition 2.8 Let R be a commutative ring and $S \subseteq Reg(R)$ a multiplicative subset of R. An S-primary ideal Q is an S-pr-ideal if and only if $(Q:t) \subseteq zd(R)$ for some $t \in S$.

Proof: Let Q be an S-primary ideal of R. Then there exists $t \in S$ such that for all $a, b \in R$ with $ab \in Q$, we have either $ta \in Q$ or $tb \in \sqrt{Q}$. Assume that Q is an S-pr-ideal. Then by Proposition 2.7, \sqrt{Q} is an S-r-ideal with respective to t; so $(\sqrt{Q}:t)$ is an r-ideal (by Proposition 2.1). Now, by [8, Remark 2.3(d)], $(\sqrt{Q}:t) \subseteq zd(R)$, and hence $(Q:t) \subseteq zd(R)$. Conversely, assume that $(Q:t) \subseteq zd(R)$. Let $ab \in Q$ with Ann(a) = (0). Then $ta \in Q$ or $tb \in \sqrt{Q}$. If $ta \in Q$, then $a \in (Q:t) \subseteq zd(R)$, absurd since Ann(a) = (0). Hence $tb \in \sqrt{Q}$; so Q is an S-pr-ideal.

In the following example we justify that the condition " $S \subseteq \text{Reg}(R)$ " is essential in the previous proposition.

Example 2.5 Let $R = \mathbb{Z}/12\mathbb{Z}$, $I = 2\mathbb{Z}/12\mathbb{Z}$ and $S = \{\overline{1}, \overline{3}, \overline{9}\}$. Then S is a multiplicative subset of R with $S \cap I = \emptyset$ and $S \nsubseteq Reg(R)$. It is easy to show that I is an S-r-ideal (resp., S-pr-ideal) of R with respective to $s = \overline{3}$. Note that for each $t \in S$, $(I : t) = I \nsubseteq zd(R) = \{\overline{0}\}$. This shows that the condition " $S \subseteq Reg(R)$ " is essential in the previous Proposition.

Theorem 2.5 Let R_1 and R_2 be commutative rings and let S_1 and S_2 be multiplicative subsets of R_1 and R_2 , respectively. Set $R = R_1 \times R_2$ and $S = S_1 \times S_2$. Then the following assertions are equivalent:

- (1) $I = I_1 \times I_2$ is an S-pr-ideal of R.
- (2) $I_1 = R_1$ and P_2 is an S_2 -pr-ideal of R_2 or $I_2 = R_2$ and I_1 is an S_1 -pr-ideal of R_1 or I_1 is an S_1 -pr-ideal of R_1 and I_2 is an S_2 -pr-ideal of R_2 .

Proof: (1) \Rightarrow (2). Suppose that I is an S-pr-ideal and $I_2 = R_2$. Let $ab \in I_1$ with Ann(a) = (0). Then note that Ann((a,1)) = ((0,0)) and also $(a,1)(b,0) = (ab,0) \in I$. Since I is an S-pr-ideal, there exists $(s_1,s_2) \in S$ such that $(s_1,s_2)(b,0) = (s_1b,0) \in \sqrt{I_1 \times I_2} = \sqrt{I_1} \times \sqrt{I_2}$ and so $s_1b \in \sqrt{I_1}$. Hence, I_1 is an S_1 -pr-ideal. Similarly, one can easily show that I_2 is an S_2 -pr-ideal of R_2 when $I_1 = R_1$. Assume that I_1 , I_2 are proper ideals. Similarly we can show that each I_i i = 1, 2) is an S_i -pr-ideal of R_i . (2) \Rightarrow (1). Let I_i be an S_i -pr-ideal, for every i = 1, 2.

Let $(a_1, a_2)(b_1, b_2) = (a_1b_1, a_2b_2) \in I_1 \times I_2$ with $Ann((a_1, a_2)) = ((0, 0))$. This implies that $Ann(a_1) = Ann(a_2) = (0)$. Note that $a_ib_i \in I_i$ with $Ann(a_i) = (0)$. Since I_i is an S_i -pr-ideal, we conclude that there exists $(s_1, s_2) \in S$ such that $s_ib_i \in \sqrt{I_i}$. Then $(s_1, s_2)(b_1, b_2) = (s_1b_1, s_2b_2) \in \sqrt{I_1 \times I_2}$. Thus I is an S-pr-ideal. In other cases, one can similarly prove that I is an S-pr-ideal.

Theorem 2.6 Let $R_1, R_2, ..., R_n$ be commutative rings and S_i be a multiplicative subset of R_i for i = 1, ..., n, respectively. Set $R = R_1 \times R_2 \times \cdots \times R_n$, and $S = S_1 \times S_2 \times \cdots \times S_n$. Let $I = I_1 \times I_2 \times \cdots \times I_n$, where I_i 's are ideals of R_i 's, respectively. Then the following assertions are equivalent:

- (1) I is an S-pr-ideal of R.
- (2) There exist $k_1, k_2, ..., k_t \in \{1, 2, ..., n\}$ such that $I_k = R_k$ for each $k \in \{k_1, ..., k_t\}$ and I_k is an S_k -pr-ideal for each $k \in \{1, 2, ..., n\} \setminus \{k_1, ..., k_t\}$.

Proof: We use the mathematical induction on n. If n = 1, the claim is true. If n = 2, the claim follows from the previous theorem.

Assume that the claim is true for all k < n. Let $I = I_1 \times I_2 \times \cdots \times I_n$. Now put $L = I_1 \times I_2 \times \cdots \times I_{n-1}$ and $S' = S_1 \times S_2 \times \cdots \times S_{n-1}$. Then by the previous theorem, $I = L \times I_n$ is an $(S' \times S_n)$ -pr-ideal if and only if $L = R_1 \times R_2 \times \cdots \times R_{n-1}$ and I_n is an S_n -pr-ideal or $I_n = R_n$ and I_n is an I_n -pr-ideal or I_n are I_n -pr-ideal and I_n -pr-ideal respectively. By induction hypothesis the claim is true.

3. Uniformly and strongly S-pr-ideals

Definition 3.1 Let R be a commutative ring, S a multiplicative subset of R and I an ideal of R disjoint from S. I is called a uniformly S-pr-ideal if there exist $s \in S$ and $N \in \mathbb{N}$ such that for all $a, b \in R$ if $ab \in I$ with Ann(a) = (0), then $(sb)^N \in I$.

It is easily obtained by the definition that every uniforly S-pr-ideal is an S-pr-ideal.

Definition 3.2 Let R be a commutative ring and S a multiplicative subset of R and I an ideal of R disjoint from S. An S-pr-ideal I of R is said to be strongly S-pr-ideal if there exist an $s' \in S$ and $n \in \mathbb{N}$ such that $s'(\sqrt{I})^n \subseteq I$.

Proposition 3.1 Every strongly S-pr-ideal is a uniformly S-pr-ideal.

Proof: Let I be a strongly S-pr-ideal. Thus I is an S-pr-ideal. Since I is a strongly S-pr-ideal, there exists $N \in \mathbb{N}$ such that $s'\sqrt{I}^N \subseteq I$ for some $s' \in S$. Let $ab \in I$ with Ann(a) = (0) for some $a, b \in R$. Since I is an S-pr-ideal, $sb \in \sqrt{I}$. As $s'\sqrt{I}^N \subseteq I$, we have $s'(sb)^N \in s'\sqrt{I}^N \subseteq I$, then $(s'sb)^N \in I$. Hence I is a uniformly S-pr-ideal.

Theorem 3.1 Let R_1 and R_2 be commutative rings and let S_1 and S_2 be multiplicative subsets of R_1 and R_2 , respectively. Put $R = R_1 \times R_2$, and $S = S_1 \times S_2$. Let $I = I_1 \times I_2$, where I_i 's are ideals of R_i 's, respectively. Then the following assertions are equivalent:

- (1) I is a uniformly S-pr-ideal of R.
- (2) $I_1 = R_1$ and P_2 is a uniformly S_2 -pr-ideal of R_2 or $I_2 = R_2$ and I_1 is a uniformly S_1 -pr-ideal of R_1 or I_1 is a uniformly S_1 -pr-ideal of R_1 and I_2 is a uniformly S_2 -pr-ideal of R_2 .
- **Proof:** (1) \Rightarrow (2). Suppose that I is a uniformly S-pr-ideal and $I_2 = R_2$. Let $ab \in I_1$ with Ann(a) = (0). Then note that Ann((a,1)) = ((0,0)) and also $(a,1)(b,0) = (ab,0) \in I$. Since I is a uniformly S-pr-ideal, we conclude that $(s_1,s_2)^N(b,0)^N = ((s_1b)^N,0) \in I_1 \times I_2$, then $(s_1b)^N \in I_1$. Hence I_1 is a uniformly S_1 -pr-ideal. Similarly, one can easily show that I_2 is a uniformly S_2 -pr-ideal of R_2 when $I_1 = R_1$. Assume that I_1 , I_2 are proper ideals. Similarly we can show that each I_i , (i = 1, 2) is a uniformly S_i -pr-ideal of R_i .
- $(2) \Rightarrow (1)$. Let I_i be a uniformly S_i -pr-ideal with $ord(I_i) = N_i$ for every i = 1, 2. Put $N = max\{N_1, N_2\}$. Let $(a_1, a_2)(b_1, b_2) = (a_1b_1, a_2b_2) \in I_1 \times I_2$ with $Ann((a_1, a_2)) = ((0, 0))$. This implies that $Ann(a_1) = Ann(a_2) = (0)$. Note that $a_ib_i \in I_i$ with $Ann(a_i) = (0)$. Since I_i is a uniformly S_i -pr-ideal with $ord(I_i) = N_i$, we conclude that there exists $(s_1, s_2) \in S$ such that $(s_ib_i)^{N_i} \in I_i$. Then $(s_ib_i)^N \in I_i$ and so $((s_1, s_2)(b_1, b_2))^N = ((s_1b_1)^N, (s_2b_2)^N) \in I_1 \times I_2$. Thus I is a uniformly S-pr-ideal. Also note that $ord(I_1 \times I_2) \leq N$. In other cases, one can similarly prove that I is a uniformly S-pr-ideal.

Corollary 3.1 Let $R_1, R_2, ..., R_n$ be commutative rings. For each $1 \le i \le n$, let S_i be a multiplicative subsets of R_i . Put $R = R_1 \times R_2 \times \cdots \times R_n$ and $S = S_1 \times S_2 \times \cdots \times S_n$. Let $I = I_1 \times I_2 \times \cdots \times I_n$, where I_i 's are ideals of R_i 's, respectively. Then the following assertions are equivalent:

- 1. I is a uniformly S-pr-ideal of R.
- 2. There exist $k_1, k_2, ..., k_t \in \{1, 2, ..., n\}$ such that $I_k = R_k$ for each $k \in \{k_1, ..., k_t\}$ and I_k is a uniformly S_k -pr-ideal for each $k \in \{1, 2, ..., n\} \setminus \{k_1, ..., k_t\}$.

Proof: We use the mathematical induction on n. Assume that the claim is true for all k < n. Suppose that $I = I_1 \times I_2 \times \cdots \times I_n$. Now put $L = I_1 \times I_2 \times \cdots \times I_{n-1}$ and $S' = S_1 \times S_2 \times \cdots \times S_{n-1}$. Then by the previous case, $I = L \times I_n$ is a uniformly $(S' \times S_n)$ -pr-ideal if and only if $L = R_1 \times R_2 \times \cdots \times R_{n-1}$ and I_n is a uniformly S_n -pr-ideal or $I_n = R_n$ and L is a uniformly S'-pr-ideal or L, L are uniformly L and uniformly L are uniformly L and L is a uniformly L are uniformly L are uniformly L and L is a uniformly L are uniformly L are uniformly L and L is a uniformly L are uniformly L and L is a uniformly L and L is a uniformly L are uniformly L and L is a uniformly L and L and L is a uniformly L and L are uniformly L and L and L are uniformly L and L and L are uniformly L and L are uniformly L and L and L are uniformly L and

Theorem 3.2 Let R_1 and R_2 be commutative rings and let S_1 and S_2 be multiplicative subsets of R_1 and R_2 respectively. Put $R = R_1 \times R_2$, and $S = S_1 \times S_2$. Let $I = I_1 \times I_2$, where I_i 's are ideals of R_i 's, respectively. Then the following assertions are equivalent:

- 1. I is a strongly S-pr-ideal of R.
- 2. $I_1 = R_1$ and I_2 is a strongly S_2 -pr-ideal of R_2 or $I_2 = R_2$ and I_1 is a strongly S_1 -pr-ideal of R_1 or I_1 is a strongly S_1 -pr-ideal of R_1 and I_2 is a strongly S_2 -pr-ideal of R_2 .

Proof:

 $(1) \Rightarrow (2)$. Suppose that I is a strongly S-pr-ideal and $I_2 = R_2$. Hence I_1 is an S_1 -pr-ideal by Theorem 2.6. Moreover, there exist $s' = (s'_1, s'_2) \in S$ and $n \in \mathbb{N}$ such that $s'(\sqrt{I})^n \subseteq I$, then $(s'_1, s'_2)(\sqrt{I_1})^n \times (R_2)^n = s'_1(\sqrt{I_1})^n \times s'_2(R_2)^n \subseteq I_1 \times R_2$. And so $s'_1(\sqrt{I_1})^n \subseteq I_1$, hence I_1 is a strongly S_1 -pr-ideal of R_1 . Similarly, we can easily show that each I_2 is a strongly S_2 -pr-ideal of R_2 when $I_1 = R_1$. Assume that I_1 , I_2 are proper ideals. Similarly we can show that each I_i (i = 1, 2) is a strongly S_i -pr-ideal of R_i .

 $(2) \Rightarrow (1)$. Let I_i be a strongly S_i -pr-ideal with $ord(I_i) = N_i$ for every i = 1, 2. Put $N = max\{N_1, N_2\}$. Let $(a_1, a_2)(b_1, b_2) = (a_1b_1, a_2b_2) \in I_1 \times I_2$ with $Ann((a_1, a_2)) = ((0, 0))$. This implies that $Ann(a_1) = Ann(a_2) = (0)$. Note that $a_ib_i \in I_i$ with $Ann(a_i) = (0)$. Since I_i is a strongly S_i -pr-ideal with $ord(I_i) = N_i$, we conclude that there exists $(s_1, s_2) \in S$ such that $(s_ib_i)^{N_i} \in I_i$. Then $(s_ib_i)^N \in I_i$, and so $((s_1, s_2)(b_1, b_2))^N = ((s_1b_1)^N, (s_2b_2)^N) \in I_1 \times I_2$. Thus I is a strongly S-pr-ideal. Also note that $ord(I_1 \times I_2) \leq N$. In other cases, one can similarly prove that I is a strongly S-pr-ideal.

We proceed exactly as the proof of Corollary 3.1, we can prove the following result.

Corollary 3.2 Let $R_1, R_2, ..., R_n$ be commutative rings. For each i = 1, ..., n, let S_i be a multiplicative subset of R_i . Put $R = R_1 \times R_2 \times \cdots \times R_n$, and $S = S_1 \times S_2 \times \cdots \times S_n$. Let $I = I_1 \times I_2 \times \cdots \times I_n$, where I_i 's are ideals of R_i 's, respectively. Then the following assertions are equivalent:

- (1) I is a strongly S-pr-ideal of R.
- (2) There exist $k_1, k_2, ..., k_t \in \{1, 2, ..., n\}$ such that $I_k = R_k$ for each $k \in \{k_1, ..., k_t\}$ and I_k is a strongly S_k -pr-ideal for each $k \in \{1, 2, ..., n\} \setminus \{k_1, ..., k_t\}$.

Now, we characterize the uniformly S-pr-ideal (resp., strongly S-pr-ideal) notion in terms of the uniformly (S(+)M)-pr-ideal (resp., strongly (S(+)M)-pr-ideal) of R(+)M.

Proposition 3.2 Let R be a ring and M be an R-module. Then

- (1) If I is a uniformly S-pr-ideal, then I(+)M is a uniformly (S(+)M)-pr-ideal of R(+)M.
- (2) If Z(M) = zd(R) and I(+)M is a uniformly (S(+)M)-pr-ideal of R(+)M, then I is a uniformly S-pr-ideal of R.

Proof: (1) Let $(a, m)(b, n) = (ab, an+bm) \in I(+)M$ with Ann(a, m) = ((0, 0)). Then we have Ann(a) = 0 and $ab \in I$. Since I is a uniformly S-pr-ideal, there exist $N \in \mathbb{N}$ and $s \in S$ such that $(sb)^N \in I$, which implies that $((s, 0)(b, n))^N = (s^N, 0)(b^N, Nb^{N-1}n) = ((sb)^N, Ns^Nb^{N-1}n) \in I(+)M$. Hence I(+)M is a uniformly S-pr-ideal of R(+)M.

(2) Let $ab \in I$ with Ann(a) = (0). Then $(a,0)(b,0) = (ab,0) \in I(+)M$. Since Z(M) = zd(R), note that Ann((a,0)) = ((0,0)). As I(+)M is uniformly (S(+)M)-pr-ideal, we conclude that $((s,m)(b,0))^N = ((sb)^N, Ns^{N-1}b^Nm) \in I(+)M$ for some $(s,m) \in S(+)M$. This implies that $(sb)^N \in I$, and so I is a uniformly S-pr-ideal.

Corollary 3.3 Let R be a ring and M be an R-module such that Z(M) = zd(R). Then I(+)M is a uniformly (S(+)M)-pr-ideal of R(+)M if and only if I is a uniformly S-pr-ideal of R.

Proposition 3.3 Let R be a ring and M be an R-module. If I is a strongly S-pr-ideal, then I(+)M is a strongly (S(+)M)-pr-ideal of R(+)M.

Proof: Let I be a strongly S-pr-ideal. Then I is uniformly S-pr-ideal by Proposition 3.1. By Proposition 3.8 (1), I(+)M is a uniformly (S(+)M)-pr-ideal, and so I(+)M is an S-pr-ideal. Since I is a strongly S-pr-ideal, we have $s'(\sqrt{I})^N \subseteq I$ for some $N \in \mathbb{N}$ and some $s' \in S$. By [1,Theorem 3.2], $\sqrt{I(+)M} = \sqrt{I(+)M}$, and so $(s',0)\sqrt{I(+)M}^N = (s',0)(\sqrt{I(+)M})^N \subseteq (s'\sqrt{I}^N)(+)M \subseteq I(+)M$.

Acknowledgments

The authors thank the referees for useful comments and suggestions which helped to improve the final version of this paper.

References

- 1. Anderson, D.D, Smith, E., Weakly prime ideals. Houston.J. Math. 29 (4),831-840,(2003).
- 2. Anderson, D.D., Winders, M., Idealization of a module. J. Commut. Algebra. 1 (1), 3-56,(2009).
- 3. Atani, S.E, Farzalipour, F., On weakly primary ideals. GMJ. 12 (3): 423-429, (2005).
- 4. Hamed, A., Malek, A., S-prime ideals of a commutative ring. Beitr. Algebra Geom. 61 (3), 533-542,(2020).
- 5. Gilmer, R., Multiplicative Ideal Theory. Dekker, New York,(1972).
- 6. Kaplansky, I., Commutative Rings. rev. ed., Univ. Chicago Press, Chicago, (1974).
- 7. Massaoud, E., S-primary ideals of a commutative ring. Commun. Algebra. 50(3),988-997,(2022).
- 8. Mohamadian, R., r-ideals in commutative rings. Turk. J. Math. 39,733-749,(2015).
- 9. Uregen, R. N., On uniformly pr-ideals in commutative rings. Turk. J. Math. 43,1878-1886, (2019).
- 10. Visweswaran, S., Some results on S-primary ideals of a commutative ring. Beitr Algebra Geom. 63(2), 247-266, (2021).

Essebti. Massaoud,

Department of Mathematics,

Preparatory Institute for Engineering Studies, University of Gafsa,

Tunisia.

E-mail address: sebtimassaoud123@gmail.com

and

Ahmed. Hamed,

Department of Mathematics,

Faculty of Sciences of Monastir, University of Monastir,

Tunisia.

E-mail address: hamed.ahmed@hotmail.fr