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On double-switching ARM A processes

Amel Zerari*, Ahmed Ghezal and Imane Zemmouri

ABSTRACT: In this paper, we introduce a double-switching ARM A model, in which the observed process is
an ARM A model subject to Markov switching and a periodic sequence of period s3. We give conditions for the
existence of periodic stationary solutions of the double-switching ARM A and higher-order moments of such
solutions in the general vector specification. We provide an expression in closed-form of the autocovariance
function of this process and its higher power and therefore admit ARM A representation.
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1. Introduction

There are a large number of modifications to the standard ARM A model for modeling nonlinear
time-series models, but it behaves locally linearly (see., Brockwell & Davis [9]) utilizing time-dependent
ARM A coefficients, the first is the time-varying models, in particular, the models with periodic time-
varying parameters (for more information, see., [1] — [2], [4], [15], [16] and [23]) and the second is
the Markov-switching models (for more information, see., [3], [5]-[7], [11], [17]-[19], [21]-[22], [24] and
[25]). In this paper, we broaden the well-known double-switching ARM A processes with the PARM A
coefficients being a Markov chain with finitely many states. For this, a process (X;),., defined on some
probability space (2,3, P) is said to be a double-switching ARM A or M .S— ARM A process with periodic
time-varying coefficients denoted by DS — ARM A, ,,) (p,q) if it is a solution of the following stochastic
difference equation

P q
Xt =aoy (0:) + Z a; ¢ (0¢) Xy + Z bjt (0¢) €r—j + €4, (1.1)

i=1 j=1

In Eq. (1.1), (6¢),cz is a homogeneous, stationary, irreducible, aperiodic Markov chain with finite state
space E = {1, ..., s1}, which is independent of the independent and identically distributed (i.i.d) sequence
(et) ez With E{e;} = 0 and E {log™ |e;|} < oo where for 2 > 0, log™ 2 = max(log z,0). In addition, we
shall suppose that e; and {(X;_1, ;) ,l < t} are independent. The functions ag ¢ (6¢), a;+(d;) and b;+(0¢),
i€ {1,..,p},j€{l,..,q} depend on a Markov chain (0;),., and a periodic time-varying of period s,.
This process is globally nonstationary when so > 1, but is stationary within each period. Our model can
be viewed as a mixture of dynamics models, which generalizes various classes of models that have been
discussed in the literature, in fact:
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(a) Standard ARM A (p, q) models: these models are acquired by supposing constant the coefficients in
Eq. (1.1) (e.g., Wold [27]).

(b) Periodic ARMA (p,q) (PARM A, (p,q)) models: these models are acquired by supposing that the
state space E = {1} (i.e., s1 =1) (e.g., Francq et al. [14]).

(c¢) Markov-switching ARMA (p,q) (MS — ARM A, (p,q)) models: these models are acquired by sup-
posing that the period s; =1 in Eq. (1.1) (e.g., Francq and Zakoian [13]).

(d) Mixture PARM A, s, (p,q) models: if (0;):cz is i.i.d. across different dates (e.g., Cavicchioli [10]).

(e) Hidden-Markov models (HMM): these models are acquired by setting X; = ag0 (d;) + boo (0:) e,

ie., a;¢(.) = bj.(.) =0 for all 4,5 in Eq. (1.1) with bg (;) = 1 generally except that by (6;) # 0
(e.g., Francq and Roussignol [12]).

An overview of the paper is organized as follows. Section 2 provides a state-space representation that is
used to derive a sufficient condition for the DS — ARM A, ,) process to have a unique stationary (in
some sense), causal and ergodic solution having higher-order moments. The autocovariance structure is
analyzed in section 3, which allows us to derive an ARM A representation. In Section 4, we show that
the power process (X[7),.

2. State-space representation and periodic stationarity of DS — ARMA(,, ,) processes

2.1. Notations and state-space representation

Let the r = (p + q) —vectors H' := (1,0(,_y), a9 ;(0¢) = a0 +(6:)H, E' = (I,sz_l), I,Q’(q_l)> and

X, = (Xt, ey Xt—pt1,€ty ey €t—gt1 ) and the r x r—matrice I'y (6;):

a1 ¢(6¢) ... api(dy) b1e(6) ... bg(Se)
T (5) = Tp-1) Op-1y ’(qi(pm .
Otan Ig-y Oy
_ ( Ai(6) B (6r) )
O(g.p) J .

Then (1.1) can be written in the following state-space representation X, = H'X, and

Xy =T (6) Xy 1 +64(0), t € Z, (2.1)

where ¢,(0;) := ag ,(¢) + Fe;, and so the extended process (Xt = (X4, 5,5)/ ,te Z) is a Markov’s chain
on R” x E. Now, by iterating (2.1) sy—times, we get

Xt =r (t) Xt—82 Jrg(t), teZ, (2'2)
so—1 so—1 | k—1

in which T'(t) := J[[ Ti—;(&—;) and e(t) = > < II Tv—; (6¢—;) p€r_i (04—k). Hence, the
§=0 k=0 | j=0

r—dimensional equation (2.1) (or 1—dimensional equation (1.1)) has a causal, strictly periodically sta-
tionary solution (hereafter SPS), periodically correlated and periodically ergodic (hereafter resp. PC,
PE ) iff equation (2.2) has causal, strictly (resp. second-order, ergodic) stationary solution. Finally,
since (2.1) (resp. (2.2)) is valid for all ¢ by successive substitution we gain a formal solution given by

k—1 k—1
the series Xgl) = > S [I T(t—js2) pe(t—kss) (resp. X?) =5 { 1T (6tj)}et_k (0¢—k)). Some
k>0 | j=0 k>0 | j=0

notations are utilized throughout the paper:

e The r? x s;r?—matrix ]I’(Tg) = (I(Tz)f e EI(TQ)) , where I(,2) is the identity matrix.
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® O(x, is the null matrix, in some special cases, we put Oy := Oxx) and Oy := Ok 1).

e p(A) is the spectral radius of square matrix A. Let ||.| denote any operator norm on the set of
k xn and k x 1 matrices

e ® is the usual Kronecker product of matrices and A®™" = A® ... ® A, n—times.

e For A €]0,1], |A]® = (|aij|)‘), then |[AB|* < |AM|B|Y, |AY|* < |AM [V for any appropriate
vector Y and |Y, A;| <7, |A;i|, moreover, if a;; < b;; for all ¢ and j then the inequality A < B.

J
o If (Ay, k € K) is squared matrices sequence, we note, for any [ and j, [[ Ax = AiAi41... Aj if
k=l

1 <jand I(_) otherwise.

is the n—step transition probabilities matrix, where p(ﬁ) =P (6 = jl0t—p, = 7)

p(n) — ( @) (
¢ Pij (i,5)EEXE K

and P = PN, Moreover, I' = (n(1),...,m(s1)) is the initial distribution, where 7 (i) = P (dy = i),
1=1,...,s1, such that II' = ITI'P.

e For any set of non random matrices A := {A(i),7 € E}, we note

PPAQL) L plhA) 7(1)A(1)
P Ad) L. P Alsy) m(s1)A(s1)

with P(D(A) = P(A).

2.2. The strict periodic stationarity

Since E {log™ ||[T'(¢)||} and E {log" [le(t)||} are finite and the process (0¢, et),ey 18 stationary and
ergodic, thus from Bougerol and Picard [8], the unique, causal, bounded in probability, strictly stationary
and ergodic solution of (2.2) is given by the series X El) if and only if the top-Lyapunov exponent ~y;, (I")
satisfies the following condition

k—1 t—1
. 1 . a.s. . 1 .
vt (T) := inf ?E log H L(t — js2) = tli{noo n log H T'(t—js2)|| <O.

t>1 ; ”
j=0 j=0

So, (2.2) is called has a unique, causal, strictly stationary and ergodic solution given by (ﬂ 'X §”) .
tez

The following theorem presents us with the main result for the stochastic difference equation (2.2) due
to Bougerol and Picard [8].

Theorem 2.1 Let (X,),c, be the stochastic process defined by (2.2). If v (I') < 0 then for allt € 7Z,

the series Xil) converges absolutely a.s. and constitute the unique, strictly stationary, ergodic and causal
solution for (2.2). Conversely, if (2.2) has a strictly stationary solution, then v, (T') < 0.

From the previous theorem, we get the following corollary

Corollary 2.1 Under the condition of Theorem 2.1, we find

e Equation (2.1) has an unique, causal, SPS and PE solution given by the series Xf).

o The series X&z) converges absolutely a.s. with Xﬁl) = Xf).

e The multivariate process (K;zH_l, ...,X;HSQ)/ is strictly stationary.
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Corollary 2.2 Set A = (I'4(6¢)),c5, and let v7* (A) be the top-Lyapunov exponent associated with the
sequence of so—periodic random matrices defined as

. ) 1 Sot—1
’7L2 (A) = igg ;E log H Fsztfj((ssﬁfj)
> ol
If v7% (A) < O then the results of Theorem 2.1 holds true.

Corollary 2.3 Set A = (A¢(d¢)),cq and let yr (A) be the top-Lyapunov exponent associated with the
sequence of random matrices A. Used same arguments as in Francg and Zakoian [15], then we have
~vL (A) = v (T), and hence the results of Theorem 2.1 holds true if v, (A) < 0.

Remark 2.1 The condition governing the strict stationarity is independent of the moving average
part.

Though the condition 7z, (I') < 0 could be used as a sufficient condition for the strict stationarity it

is of little use in practice since this condition involves the limit of products of infinitely many random

matrices. Hence, some simple sufficient conditions ensuring the negativity of v, (I') can be given.

Theorem 2.2 Consider the DS — ARM Ay, s,) (p,q) model (1.1) with state space representation (2.2).
Then v, (I') < 0 if one of the following conditions holds true.

t—1
E
7=0

T [P (¢~ js2)
e logp (|T'|) < 1 where |I'| := E{|T" (¥)|}.

}<1forsomet21.

Proof: Choosing an absolute norm,i.e., ||.|| a norm such that ||.|| < |||.|||, because the top-Lyapunov expo-
nent is independent of the norm. According to Kesten and Spitzer [26] we have
t=1
lim; o0 7 log || [T T (t — js2)|| <logp(|T]) a.s. and we get
3=0
1 t—1
7 (l) < Jlog B [T js2)|| p <logp () a.s.l
7=0

O
Proposition 2.1 Consider the DS — ARM Ay, s, (p,q) model. Let F( ). ( i )( ),1<i< sl) where

FE,)‘)(Z') = |Fv(i)|>‘ forallv e {l,...,s2}. Thenp < 21:[ P (F()‘) )) < 1 implies that v, (T') < 0 and hence

S2—v
v=0

the statements of the first assertion of Theorem 2.1 holds.

Proof: Choose a norm ||.| such that |N|* < H|N|)‘H (e.g.s N[ = X2, Inijl). Therefore, because

so—1 sa—1 1/t
p ( e (F(”\) )) < 1, there exists 0 < k < 1 such that limsup (ng) U) < k. By Jensen
t v=0

Sa—v
v=0

inequality and submultiplicativity of the operator ||>‘ we obtain

1 t—1 so—1 A
o (M)A = gg {E log H H Coyti—iy—i (Osai—j)—i)
= =0 i=0

A
| WP (P |

IN
yE

\

3

=
||::|
||:j‘

sa—1 1/t
< lim sup log H P! (F(si‘) U) <o0.m
t—o0 =0
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Corollary 2.4 If~yy (T') < 0 then thereis a0 < A < 1 such that E {||Xt||/\} < 0o and hence E {\Xt|/\} <
o0, Vt € Z.

Corollary 2.5 For the PARMA,, model, the necessary and sufficient condition reduces to
so—1
p(T ) <1
v=0
Corollary 2.6 For the MS — ARMA,, model, the necessary and sufficient condition reduces to
p(P(A1)) <1 with Ay := (A1(i),i € E).

Corollary 2.7 For the DS — ARM A, ,,) (1,1) model, the necessary and sufficient condition reduces to

5271
p (IP’ (Z log |a1782_v|>> < 1 with Q/L,U = (a1,,(1),7 € E).
v=0

2.3. The second-order periodic stationarity

In this subsection, we have general results on the existence of second-order moments for DS —
ARM A, s,) (p,q) models. The problem of finding conditions ensuring second-order stationarity for
weak MS — ARM A, (p; q) models (resp. PARM A, (p;q)) has been addressed by Francq and Zakolan
[13]. Hence, we offer the sufficient conditions for the existence of causal, SPS and PE solution to
Equation (1.1). The results on the second-order stationarity in the following theorem.

Theorem 2.3 Consider the DS — ARM Ay, ,,) process (1.1) with state space representation (2.2) and
assume that E {e}} = 0 < co. Let r? = (92 (i),i €E) for allv e {1,...,s2}. If

so—1
T(2) =P ( P (ng)v)> <1, (23)
0

v=

then,

e Equation (2.2) has a unique, causal, ergodic and strictly stationary solution given by X il) which
converges absolutely almost surely and in Ls.

e The series X?) is the unique PC solution of (2.1) and X,El) = XEZ).

. . / ’ /. .
e The multivariate process (Xsﬂﬂ, oy Xt +52) is second-order stationary process.

Proof: To verify that the series defined by X ,El) is well-defined in Lo, it is sufficient to show that the
k—1

sequence Xﬁl) (k) = { I1T@—- jsz)}e(t—kSQ) converges to Q(T) in Ly at an exponential rate as k — oo.
j=0

Hence, we get

E{(X§1>(k))®2} - E Iﬁf®2(t—j52) e®2(t — ks»)

- {‘fn_‘olp(rgn)}k (S {T= () ey,

=0 v=0
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Under the Condition (2.3) and by Jordan’s decomposition, we get
(2) — = r
=0 v=0

so, Xil) (k) converges to O In Ly at an exponential rate as k — oo. Hence, the series Kgl) is the
unique solution of (2.2) which converges in Ly and absolutely almost surely. The rest of assertions are
similar as in Theorem 2.1.H |

IN

2
xO (k ‘
| x ®)],.

T (T2 )|

(7’2

IN

Const 7'(2),

Remark 2.2 Using the same arguments used by Francq and Zakoian [13] it is clearly to see that

so—1
T2y = p (H P (Al v)> <1, (2.4)

v=0

with A = (A®2 (i),i € E) for all v € {1,..., s2} . Hence, the second-order stationarity is indepen-
dent of the moving average part.
In the following table, we summarize the sufficient conditions for the existence of E {Xf} in some par-
ticular models

Specification Condition (2.4) Particular case p =1
Standard p (457 (1) <1 aio(1) <1
MS — ARMAY P (IP’ (A(2>)) <1 P (IP’ (a§23)> <1

2—1 S2—

PARMA,, p

Independent-switching p

a 2 . . 7
@af% == (ao (i) i € E)
Tablel: Conditions ensuring E {Xf} < oo for certain specifications.

Example 2.1 For the DS — ARM A, s, (1,1) process. The Condition (2.4) reduces to
n 1
( (al o U)) < 1. Noting here that when s; = s; = 2 with ps; = p12 = @ and a = a1 2 (1),

b = a1 2(2), ¢c=a11(1), m = a1,1(2), then the Condition (2.4) is equivalent to the following con-
dition: o? (a* 4+ %) (¢* + m?) + (1 — 2a) (ac — bm)? < (1 — (1 —2a) abem)® . In the following table, we
summarize the sufficient conditions for the existence of E {X?} in some particular models

Specification Condition (2.4)

Standard a? <1

MS — ARM A (1-a) (a®+b?) — (1 —2a)a®? < 1
PARMA,, a?h? < 1

Independent-switching  a?c?m (1) + b2m? (1 — 7 (1)) < 1

Table2: Conditions ensuring E {Xf} < oo for certain specifications.

2.4. Existence of higher-order moments

This subsection is extended the last subsection. The conditions ensuring the existence of the mth
order moment are obtained in the following result
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Theorem 2.4 Consider the DS — ARM A, s,) (p,q) process (1.1) with state space representation (2.2) .

For any positive integer m, assume that E{el"} = vy, < oo and let i = (T2™ (4),i € E) for all
ve{l,...,s}. If

so—1
Tom) = p (H P (Fi’jl,)) <1 (2.5)
v=0

Then, the process (X;),c, defined by (2.2) has a unique, causal, ergodic, strictly stationary solution given
by 1?) and satisfies E {|X{7™|} < oo.

Proof: It is easily seen that

E { (x (k))®m} — vl {Sﬁlp (rm,) }k {g {H P (T( )}} I (Im))

v=0

Hence,
(1) m
Hit (k:)HL < Const T(km),

so, under the Condition (2.5) and by Jordan’s decomposition, we get Xil) (k) converges to O, in Ly, at
an exponential rate as k — oco. As a result, for any ¢, > Xgl) (k) converges to Xgl) as n — oo both

k=1
in LL,;, and absolutely almost surely. The rest of assertions are immediate.ll O

In the following table, we summarize the sufficient conditions for the existence of E {|X]"|} in some
particular models

Specification Condition (2.5) Particular case p =1

Standard p(AF™ (1) <1 aty (1) <1

MS — ARMA o (P (Agm>)) <1 o (P (ng'gg)) <1
s2—1 50—

PARMA,, P ( T am, (1)> <1 T am, ,)<1
v= v=0
s2—1 sa—1

Independent-switching p ( 2H E{AZ™, (50}) <1 2]_[ E{am, (6,)} <1
v=0 v=0

@V = (a'y (i) ,i € E)’

Table3: Conditions ensuring F {|X{"|} < oo for certain specifications.

3. Computation of the second-order moment and ARM A representation

Once the second-order stationary condition is warranted, it can be useful to compute the expectation
and covariance function of the process (Xt),., generated by a DS — ARM A, ,,) (p,q) model (1.1)

S1

k—1
with state-space representation (2.2). We set u= E{X,} = > 7w (i) u (i), T™ (k) := [[ P (F(") ) and
- - v=0

= S1—v

n = (ﬂ(”)’ (i) ;= (E{e®" (t) |6, =i}) ,ie IE) Starting from Equation (2.2) then we have, IT (1) =
P (T (s2)) IT () +1I (nV), then under condition p (TV (s2)) < 1 (i.e., L5, —T' (s2) is invertible), we
get I1 () = (I(5,y — TV (32))71 I (nM) . Finally, we have p = I, )H( ). Let us compute the variance

function of X, let V = E {vec (X, X, ,)} = Z (1) ¥V (4), then, from Equation (2.2), we get

(V) =P (I (s2)) W) + 11 () +11(D),
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where D' := (D' (i) ,i € E) with D (i) = E {(T" e(t)+e(t)@T (¢) X, ,, |0 =i} for all i € E, then
under Condition (2.3), then we have H (K) = (I(s1r2) -P(r® (52)))_1 (IL (n?) + I (D)).

Now, let ¥ (h) = E{X, X} ,} = 21: 7 (1)@ (R), then, from Equation (2.2), we have for any h > s,,

5271

T () = B (1O (52)) TS (h — 52)) + 3 0O () ECH (50) 11 (@)
k=0

where fi' := (u (i) ,i € E) . The autocovariance function of (X,),c, is Z (h) = I IL(Z (h))-
3.1. ARM A representation

In this subsection, we propose to show that a MS — ARM A process with a time-varying coefficient
admit a ARM A representation. Francq and Zakoian [13] have established an ARM A representation
for multivariate M.S — ARMA,, and others nonlinear processes of interest. Obviously sufficient to
verify that the autocovariance structure of (X,),., is that of an ARM A representation. For arithmetic

simplicity, let us suppose that ag¢(6;) = 0. Then we have IT1(Z (h)) = P (T (s2)) IL(Z (h — 82)), b > so.
Using the Jordan decomposition (see, e.g., Francq and Zakoian [13]), it can be seen that II (X (h)) =

Z Z hi /\’LEU7 h > maxri, where the X;;’s are si7 X syr matrices, the \;’s denote the eigenvalues of
i=1 j=0

P (F(l) (52)) and Z r; = s17. The result follows essentially the same arguments as in Francq and Zakoian

e represen ation sentation can be used to obtain the linear prediction of the observe
13], th ARMA tati tati b d to obtain the li dicti f the ob d
process.

4. Covariance structure of higher power for DS — ARM A, ,,) (p,q)

For the identification purpose it is necessary to look at higher-power of the process in order to dis-
tinguish between different ARM A representation. So, in this section, once m**—order stationarity is
guaranteed, it can be useful to compute the expectation and the autocovariance function of (Xt),., with
state-space representation (2.1). For this purpose, we first establish the following lemma
Lemma 4.1 Consider the DS — ARM Ay, s,) (p,q) model (1.1) with state space representation (2.2).

Let us define the following matrices B( )(z et), 5 =0,..,k=0,...,m and i = 1,...,s1, with appropriate
dimension such that

VkeN: XPF = (Ty (0) Xy q + e, (5)) Z ) (64, e0) X2, (6.1)
=0

where by convention Bj(-f? (,)=0ifj>korj<0, X = Bé?t) () =1. Then Bj(-i) (i,e:) are uniquely
determined by the following recursion
Byl (Br.e) = & <5 ). B (8 et> =T\ (8),
BJ(-iJrl) (6t, et) (615, et) X B (6t, €t) + B ((5t, et) & Bj('li)l,t ((515, et) f07“ k > 1.

Now, set E{™ = (E{XE7, , 653040 =i } ;i €E),
2 (h) = (B{XSh,, @ X307,  |00ie =1 }1i € )
and BJ(-’TZ) = (B(m - E{B(m) (1, €spttv) |Osatin = z} = IE), for all v = 1,...,s9, then it is no

7,v 7,82t+v
difficult to see that

m(=(m) = iIP’ (B (22,) and 11 (257 (h) = zk:P (Bl (0 (h-1), k> 1,

Jj=0 Jj=0
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where Ej(kvm) = (Bj(lzl) ® Iipmysi € E) Moreover, we have

I (207 (n))
I :(mflm)(h))

=

Wi (h) =

v

g (20 w)

P(BS™) P(BIMT) P (B
o) P Efn":};m)) P Egj’;”’w)
= : Wl (h = 1)
p(BL™) P (BL™)
o) o) Ipmy
= Ay (m) W™ (h - 1).
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