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On double-switching ARMA processes

Amel Zerari∗, Ahmed Ghezal and Imane Zemmouri

abstract: In this paper, we introduce a double-switching ARMA model, in which the observed process is
an ARMA model subject to Markov switching and a periodic sequence of period s2. We give conditions for the
existence of periodic stationary solutions of the double-switching ARMA and higher-order moments of such
solutions in the general vector specification. We provide an expression in closed-form of the autocovariance
function of this process and its higher power and therefore admit ARMA representation.
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1. Introduction

There are a large number of modifications to the standard ARMA model for modeling nonlinear
time-series models, but it behaves locally linearly (see., Brockwell & Davis [9]) utilizing time-dependent
ARMA coefficients, the first is the time-varying models, in particular, the models with periodic time-
varying parameters (for more information, see., [1] − [2], [4], [15], [16] and [23]) and the second is
the Markov-switching models (for more information, see., [3], [5]- [7], [11], [17]- [19], [21]- [22], [24] and
[25]). In this paper, we broaden the well-known double-switching ARMA processes with the PARMA
coefficients being a Markov chain with finitely many states. For this, a process (Xt)t∈Z defined on some
probability space (Ω,ℑ, P ) is said to be a double-switching ARMA or MS−ARMA process with periodic
time-varying coefficients denoted by DS−ARMA(s1,s2) (p, q) if it is a solution of the following stochastic
difference equation

Xt = a0,t (δt) +

p∑
i=1

ai,t (δt)Xt−i +

q∑
j=1

bj,t (δt) et−j + et, (1.1)

In Eq. (1.1), (δt)t∈Z is a homogeneous, stationary, irreducible, aperiodic Markov chain with finite state
space E = {1, ..., s1} , which is independent of the independent and identically distributed (i.i.d) sequence
(et)t∈Z with E {et} = 0 and E

{
log+ |et|

}
< ∞ where for x > 0, log+ x = max(log x, 0). In addition, we

shall suppose that et and {(Xl−1, δt) , l ≤ t} are independent. The functions a0,t (δt), ai,t(δt) and bj,t(δt),
i ∈ {1, ..., p} , j ∈ {1, ..., q} depend on a Markov chain (δt)t∈Z and a periodic time-varying of period s2.
This process is globally nonstationary when s2 > 1, but is stationary within each period. Our model can
be viewed as a mixture of dynamics models, which generalizes various classes of models that have been
discussed in the literature, in fact:
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(a) Standard ARMA (p, q) models: these models are acquired by supposing constant the coefficients in
Eq. (1.1) (e.g., Wold [27]).

(b) Periodic ARMA (p, q) (PARMAs2 (p, q)) models: these models are acquired by supposing that the
state space E = {1} (i.e., s1 = 1) (e.g., Francq et al. [14]).

(c) Markov-switching ARMA (p, q) (MS −ARMAs1 (p, q)) models: these models are acquired by sup-
posing that the period s2 = 1 in Eq. (1.1) (e.g., Francq and Zaköıan [13]).

(d) Mixture PARMA(s1,s2) (p, q) models: if (δt)t∈Z is i.i.d. across different dates (e.g., Cavicchioli [10]).

(e) Hidden-Markov models (HMM): these models are acquired by setting Xt = a0,0 (δt) + b0,0 (δt) et,
i.e., ai,t(.) = bj,t(.) = 0 for all i,j in Eq. (1.1) with b0,0 (δt) = 1 generally except that b0,0 (δt) ̸= 0
(e.g., Francq and Roussignol [12]).

An overview of the paper is organized as follows. Section 2 provides a state-space representation that is
used to derive a sufficient condition for the DS − ARMA(s1,s2) process to have a unique stationary (in
some sense), causal and ergodic solution having higher-order moments. The autocovariance structure is
analyzed in section 3, which allows us to derive an ARMA representation. In Section 4, we show that
the power process (Xm

t )t.

2. State-space representation and periodic stationarity of DS −ARMA(s1,s2) processes

2.1. Notations and state-space representation

Let the r = (p+ q)−vectors H ′ := (1, O′
(r−1)), a0,t(δt) = a0,t(δt)H, F ′ =

(
1, O′

(p−1), 1, O
′
(q−1)

)
and

X ′
t := (Xt, ..., Xt−p+1, et, ..., et−q+1 ) and the r × r−matrice Γt (δt):

Γt (δt) =


a1,t(δt) . . . ap,t(δt)
I(p−1) O(p−1)

b1,t(δt) . . . bq,t(δt)
O(p−1,q)

O(q,p)
O′

(q−1) 0

I(q−1) O(q−1)


: =

(
At(δt) Bt (δt)
O(q,p) J

)
.

Then (1.1) can be written in the following state-space representation Xt = H ′Xt and

Xt = Γt (δt)Xt−1 + et(δt), t ∈ Z, (2.1)

where et(δt) := a0,t(δt) + Fet, and so the extended process
(
X̃t :=

(
X ′

t, δt
)′
, t ∈ Z

)
is a Markov’s chain

on Rr × E. Now, by iterating (2.1) s2−times, we get

Xt = Γ (t)Xt−s2
+ e(t), t ∈ Z, (2.2)

in which Γ (t) :=
s2−1∏
j=0

Γt−j (δt−j) and e(t) :=
s2−1∑
k=0

{
k−1∏
j=0

Γt−j (δt−j)

}
et−k (δt−k) . Hence, the

r−dimensional equation (2.1) (or 1−dimensional equation (1.1)) has a causal, strictly periodically sta-
tionary solution (hereafter SPS), periodically correlated and periodically ergodic (hereafter resp. PC,
PE ) iff equation (2.2) has causal, strictly (resp. second-order, ergodic) stationary solution. Finally,
since (2.1) (resp. (2.2)) is valid for all t by successive substitution we gain a formal solution given by

the series X
(1)
t =

∑
k≥0

{
k−1∏
j=0

Γ(t− js2)

}
e(t− ks2) (resp. X

(2)
t =

∑
k≥0

{
k−1∏
j=0

Γt−j (δt−j)

}
et−k (δt−k)). Some

notations are utilized throughout the paper:

• The r2 × s1r
2−matrix I′(r2) :=

(
I(r2)

... . . .
...I(r2)

)
, where I(r2) is the identity matrix.
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• O(k,l) is the null matrix, in some special cases, we put O(k) := O(k,k) and O(k) := O(k,1).

• ρ (A) is the spectral radius of square matrix A. Let ∥.∥ denote any operator norm on the set of
k × n and k × 1 matrices

• ⊗ is the usual Kronecker product of matrices and A⊗n = A⊗ ...⊗A, n−times.

• For λ ∈ ]0, 1], |A|λ := (|aij |λ), then |AB|λ ≤ |A|λ |B|λ, |AY |λ ≤ |A|λ |Y |λ for any appropriate
vector Y and |

∑
i Ai| ≤

∑
i |Ai| , moreover, if aij ≤ bij for all i and j then the inequality A ≤ B.

• If (Ak, k ∈ K) is squared matrices sequence, we note, for any l and j,
j∏

k=l

Ak = AlAl+1 . . . Aj if

l ≤ j and I(.) otherwise.

• P(n) =
(
p
(n)
ij

)
(i,j)∈E×E

is the n−step transition probabilities matrix, where p
(n)
ij = P (δt = j|δt−n = i)

and P = P(1). Moreover, Π′ = (π(1), ..., π(s1)) is the initial distribution, where π(i) = P (δ0 = i),
i = 1, ..., s1, such that Π′ = Π′P.

• For any set of non random matrices A := {A(i), i ∈ E}, we note

P(n)(A) =


p
(n)
11 A(1) . . . p

(n)
s11

A(1)
... . . .

...

p
(n)
1s1

A(d) . . . p
(n)
s1s1A(s1)

 , Π(A) =

 π(1)A(1)
...

π(s1)A(s1)

 ,

with P(1)(A) = P(A).

2.2. The strict periodic stationarity

Since E
{
log+ ∥Γ (t)∥

}
and E

{
log+ ∥e(t)∥

}
are finite and the process (δt, et)t∈Z is stationary and

ergodic, thus from Bougerol and Picard [8], the unique, causal, bounded in probability, strictly stationary

and ergodic solution of (2.2) is given by the series X
(1)
t if and only if the top-Lyapunov exponent γL (Γ)

satisfies the following condition

γL (Γ) := inf
t≥1

1

t
E

log

∥∥∥∥∥∥
k−1∏
j=0

Γ(t− js2)

∥∥∥∥∥∥

 a.s.

= lim
t−→∞

1

t
log

∥∥∥∥∥∥
t−1∏
j=0

Γ (t− js2)

∥∥∥∥∥∥ < 0.

So, (2.2) is called has a unique, causal, strictly stationary and ergodic solution given by
(
H ′X

(1)
t

)
t∈Z

.

The following theorem presents us with the main result for the stochastic difference equation (2.2) due
to Bougerol and Picard [8].

Theorem 2.1 Let (Xt)t∈Z be the stochastic process defined by (2.2) . If γL (Γ) < 0 then for all t ∈ Z,
the series X

(1)
t converges absolutely a.s. and constitute the unique, strictly stationary, ergodic and causal

solution for (2.2). Conversely, if (2.2) has a strictly stationary solution, then γL (Γ) < 0.

From the previous theorem, we get the following corollary

Corollary 2.1 Under the condition of Theorem 2.1, we find

• Equation (2.1) has an unique, causal, SPS and PE solution given by the series X
(2)
t .

• The series X
(2)
t converges absolutely a.s. with X

(1)
t

a.s.
= X

(2)
t .

• The multivariate process
(
X ′

s2t+1, ..., X
′
s2t+s2

)′
is strictly stationary.
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Corollary 2.2 Set Λ = (Γt(δt))t∈Z and let γs2
L (Λ) be the top-Lyapunov exponent associated with the

sequence of s2−periodic random matrices defined as

γs2
L (Λ) := inf

t≥1

1

t
E

log

∥∥∥∥∥∥
s2t−1∏
j=0

Γs2t−j(δs2t−j)

∥∥∥∥∥∥

 .

If γs2
L (Λ) < 0 then the results of Theorem 2.1 holds true.

Corollary 2.3 Set A = (At(δt))t∈Z and let γL (A) be the top-Lyapunov exponent associated with the
sequence of random matrices A. Used same arguments as in Francq and Zaköıan [13], then we have
γL (A) = γL (Γ), and hence the results of Theorem 2.1 holds true if γL (A) < 0.

Remark 2.1 The condition governing the strict stationarity is independent of the moving average
part.

Though the condition γL (Γ) < 0 could be used as a sufficient condition for the strict stationarity it
is of little use in practice since this condition involves the limit of products of infinitely many random
matrices. Hence, some simple sufficient conditions ensuring the negativity of γL (Γ) can be given.

Theorem 2.2 Consider the DS − ARMA(s1,s2) (p, q) model (1.1) with state space representation (2.2).
Then γL (Γ) < 0 if one of the following conditions holds true.

• E

{∥∥∥∥∥t−1∏
j=0

|Γ (t− js2)|

∥∥∥∥∥
}

< 1 for some t ≥ 1.

• log ρ (|Γ|) < 1 where |Γ| := E {|Γ (t)|} .

Proof: Choosing an absolute norm,i.e., ∥.∥ a norm such that ∥.∥ ≤ ∥|.|∥, because the top-Lyapunov expo-
nent is independent of the norm. According to Kesten and Spitzer [26] we have

limt−→∞
1
t log

∥∥∥∥∥t−1∏
j=0

Γ (t− js2)

∥∥∥∥∥ ≤ log ρ (|Γ|) a.s. and we get

γL (Γ) ≤ 1

t
logE


∥∥∥∥∥∥
t−1∏
j=0

Γ (t− js2)

∥∥∥∥∥∥
 ≤ log ρ (|Γ|) a.s.■

2

Proposition 2.1 Consider the DS −ARMA(s1,s2) (p, q) model. Let Γ
(λ)
v :=

(
Γ
(λ)
v (i), 1 ≤ i ≤ s1

)
where

Γ
(λ)
v (i) := |Γv(i)|λ for all v ∈ {1, ..., s2}. Then ρ

(
s2−1∏
v=0

P
(
Γ
(λ)
s2−v

))
< 1 implies that γL (Γ) < 0 and hence

the statements of the first assertion of Theorem 2.1 holds.

Proof: Choose a norm ∥.∥ such that ∥N∥λ ≤
∥∥∥|N |λ

∥∥∥ (e.g., ∥N∥ =
∑

i,j |nij |). Therefore, because

ρ

(
s2−1∏
v=0

P
(
Γ
(λ)
s2−v

))
< 1, there exists 0 < κ < 1 such that lim sup

t

∥∥∥∥s2−1∏
v=0

Pt
(
Γ
(λ)
s2−v

)∥∥∥∥1/t < κ. By Jensen

inequality and submultiplicativity of the operator |.|λ we obtain

γL (Γ)λ = inf
t≥1

1

t
E

log

∥∥∥∥∥∥
t−1∏
j=0

s2−1∏
i=0

Γs2(t−j)−i

(
δs2(t−j)−i

)∥∥∥∥∥∥
λ



≤ lim
t→∞

1

t
log

∥∥∥∥∥∥E


t−1∏
j=0

s2−1∏
i=0

∣∣Γs2(t−j)−i

(
δs2(t−j)−i

)∣∣λ
∥∥∥∥∥∥

≤ lim sup
t→∞

log

∥∥∥∥∥
s2−1∏
v=0

Pt
(
Γ
(λ)
s2−v

)∥∥∥∥∥
1/t

< 0.■



On double-switching ARMA processes 5

2

Corollary 2.4 If γL (Γ) < 0 then there is a 0 < λ ≤ 1 such that E
{
∥Xt∥

λ
}
< ∞ and hence E

{
|Xt|λ

}
<

∞, ∀t ∈ Z.

Corollary 2.5 For the PARMAs2 model, the necessary and sufficient condition reduces to

ρ

(
s2−1∏
v=0

As2−v (1)

)
< 1.

Corollary 2.6 For the MS − ARMAs1 model, the necessary and sufficient condition reduces to
ρ (P (A1)) < 1 with A1 := (A1(i), i ∈ E) .

Corollary 2.7 For the DS−ARMA(s1,s2) (1, 1) model, the necessary and sufficient condition reduces to

ρ

(
P

(
s2−1∑
v=0

log
∣∣a1,s2−v

∣∣)) < 1 with a′1,v := (a1,v(i), i ∈ E) .

2.3. The second-order periodic stationarity

In this subsection, we have general results on the existence of second-order moments for DS −
ARMA(s1,s2) (p, q) models. The problem of finding conditions ensuring second-order stationarity for
weak MS − ARMAd (p; q) models (resp. PARMAs (p; q)) has been addressed by Francq and Zaköıan
[13]. Hence, we offer the sufficient conditions for the existence of causal, SPS and PE solution to
Equation (1.1) . The results on the second-order stationarity in the following theorem.

Theorem 2.3 Consider the DS − ARMA(s1,s2) process (1.1) with state space representation (2.2) and

assume that E
{
e2t
}
= σ2 < ∞. Let Γ

(2)
v :=

(
Γ⊗2
v (i) , i ∈ E

)
for all v ∈ {1, ..., s2} . If

τ(2) := ρ

(
s2−1∏
v=0

P
(
Γ
(2)
s2−v

))
< 1, (2.3)

then,

• Equation (2.2) has a unique, causal, ergodic and strictly stationary solution given by X
(1)
t which

converges absolutely almost surely and in L2.

• The series X
(2)
t is the unique PC solution of (2.1) and X

(1)
t

a.s.
= X

(2)
t .

• The multivariate process
(
X ′

s2t+1, ..., X
′
s2t+s2

)′
is second-order stationary process.

Proof: To verify that the series defined by X
(1)
t is well-defined in L2, it is sufficient to show that the

sequenceX
(1)
t (k) =

{
k−1∏
j=0

Γ(t− js2)

}
e(t−ks2) converges to O(r) in L2 at an exponential rate as k −→ ∞.

Hence, we get

E

{(
X

(1)
t (k)

)⊗2
}

= E




k−1∏
j=0

Γ⊗2(t− js2)

 e⊗2(t− ks2)


= σ2I′(r2)

{
s2−1∏
v=0

P
(
Γ
(2)
s2−v

)}k{s2−1∑
l=0

{
l−1∏
v=0

P
(
Γ
(2)
s2−v

)}}
Π
(
I(r2)

)
.
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Under the Condition (2.3) and by Jordan’s decomposition, we get

∥∥∥X(1)
t (k)

∥∥∥2
L2

≤ σ2
∥∥∥I′(r2)∥∥∥

∥∥∥∥∥∥
{

s2−1∏
v=0

P
(
Γ
(2)
s2−v

)}k
∥∥∥∥∥∥
∥∥∥∥∥
{

s2−1∑
l=0

{
l−1∏
v=0

P
(
Γ
(2)
s2−v

)}}∥∥∥∥∥∥∥Π (I(r2))∥∥
≤ Const τk(2),

so, X
(1)
t (k) converges to O(r) in L2 at an exponential rate as k −→ ∞. Hence, the series X

(1)
t is the

unique solution of (2.2) which converges in L2 and absolutely almost surely. The rest of assertions are
similar as in Theorem 2.1.■ 2

Remark 2.2 Using the same arguments used by Francq and Zaköıan [13] it is clearly to see that

τ(2) := ρ

(
s2−1∏
v=0

P
(
A

(2)
s2−v

))
< 1, (2.4)

with A
(2)
v :=

(
A⊗2

v (i) , i ∈ E
)
for all v ∈ {1, ..., s2} . Hence, the second-order stationarity is indepen-

dent of the moving average part.
In the following table, we summarize the sufficient conditions for the existence of E

{
X2

t

}
in some par-

ticular models

Specification Condition (2.4) Particular case p = 1

Standard ρ
(
A⊗2

0 (1)
)
< 1 a21,0 (1) < 1

MS −ARMA
(a)
s1 ρ

(
P
(
A

(2)
0

))
< 1 ρ

(
P
(
a
(2)
1,0

))
< 1

PARMAs2 ρ

(
s2−1∏
v=0

A⊗2
s2−v (1)

)
< 1

s2−1∏
v=0

a21,s2−v (1) < 1

Independent-switching ρ

(
s2−1∏
v=0

E
{
A⊗2

s2−v (δt)
})

< 1
s2−1∏
v=0

E
{
a21,v (δt)

}
< 1

(a)a
(2)
1,0 :=

(
a21,0 (i) , i ∈ E

)′
Table1: Conditions ensuring E

{
X2

t

}
< ∞ for certain specifications.

Example 2.1 For the DS −ARMA(s1,s2) (1, 1) process. The Condition (2.4) reduces to

ρ

(
s2−1∏
v=0

P
(
a
(2)
1,s2−v

))
< 1. Noting here that when s1 = s2 = 2 with p21 = p12 = α and a = a1,2 (1) ,

b = a1,2 (2) , c = a1,1 (1) , m = a1,1 (2) , then the Condition (2.4) is equivalent to the following con-

dition: α2
(
a2 + b2

) (
c2 +m2

)
+ (1− 2α) (ac− bm)

2
< (1− (1− 2α) abcm)

2
. In the following table, we

summarize the sufficient conditions for the existence of E
{
X2

t

}
in some particular models

Specification Condition (2.4)

Standard a2 < 1

MS −ARMA
(a)
s1 (1− α)

(
a2 + b2

)
− (1− 2α) a2b2 < 1

PARMAs2 a2b2 < 1
Independent-switching a2c2π (1) + b2m2 (1− π (1)) < 1

Table2: Conditions ensuring E
{
X2

t

}
< ∞ for certain specifications.

2.4. Existence of higher-order moments

This subsection is extended the last subsection. The conditions ensuring the existence of the mth
order moment are obtained in the following result



On double-switching ARMA processes 7

Theorem 2.4 Consider the DS−ARMA(s1,s2) (p, q) process (1.1) with state space representation (2.2) .

For any positive integer m, assume that E {emt } = νm < ∞ and let Γ
(m)
v := (Γ⊗m

v (i) , i ∈ E) for all
v ∈ {1, ..., s2} . If

τ(m) := ρ

(
s2−1∏
v=0

P
(
Γ
(m)
s2−v

))
< 1. (2.5)

Then, the process (Xt)t∈Z defined by (2.2) has a unique, causal, ergodic, strictly stationary solution given

by X
(1)
t and satisfies E

{∣∣X⊗m
t

∣∣} < ∞.

Proof: It is easily seen that

E

{(
X

(1)
t (k)

)⊗m
}

= νmI′(rm)

{
s2−1∏
v=0

P
(
Γ
(m)
s2−v

)}k{s2−1∑
l=0

{
l−1∏
v=0

P
(
Γ
(m)
s2−v

)}}
Π
(
I(rm)

)
.

Hence, ∥∥∥X(1)
t (k)

∥∥∥m
Lm

≤ Const τk(m),

so, under the Condition (2.5) and by Jordan’s decomposition, we get X
(1)
t (k) converges to O(r) in Lm at

an exponential rate as k −→ ∞. As a result, for any t,
n∑

k=1

X
(1)
t (k) converges to X

(1)
t as n −→ ∞ both

in Lm and absolutely almost surely. The rest of assertions are immediate.■ 2

In the following table, we summarize the sufficient conditions for the existence of E {|Xm
t |} in some

particular models

Specification Condition (2.5) Particular case p = 1

Standard ρ
(
A⊗m

0 (1)
)
< 1 am1,0 (1) < 1

MS −ARMA
(a)
s1 ρ

(
P
(
A

(m)
0

))
< 1 ρ

(
P
(
a
(m)
1,0

))
< 1

PARMAs2 ρ

(
s2−1∏
v=0

A⊗m
s2−v (1)

)
< 1

s2−1∏
v=0

am1,s2−v (1) < 1

Independent-switching ρ

(
s2−1∏
v=0

E
{
A⊗m

s2−v (δt)
})

< 1
s2−1∏
v=0

E
{
am1,v (δt)

}
< 1

(a)a
(m)
1,0 :=

(
am1,0 (i) , i ∈ E

)′
Table3: Conditions ensuring E {|Xm

t |} < ∞ for certain specifications.

3. Computation of the second-order moment and ARMA representation

Once the second-order stationary condition is warranted, it can be useful to compute the expectation
and covariance function of the process (Xt)t∈Z generated by a DS − ARMA(s1,s2) (p, q) model (1.1)

with state-space representation (2.2) . We set µ = E {Xt} =
s1∑
i=1

π (i)µ (i), Γ(n) (k) :=
k−1∏
v=0

P
(
Γ
(n)
s1−v

)
and

η(n)′ :=
(
η(n)′ (i) := (E {e⊗n (t) |δt = i})′ , i ∈ E

)
. Starting from Equation (2.2) then we have, Π

(
µ
)
=

P
(
Γ(1) (s2)

)
Π
(
µ
)
+Π

(
η(1)

)
, then under condition ρ

(
Γ(1) (s2)

)
< 1 (i.e., I(s1r)−Γ(1) (s2) is invertible), we

get Π
(
µ
)
=
(
I(s1r) − Γ(1) (s2)

)−1
Π
(
η(1)

)
. Finally, we have µ = I′(r)Π

(
µ
)
. Let us compute the variance

function of Xt, let V = E
{
vec

(
XtXt−h

)}
=

s1∑
i=1

π (i)V (i) , then, from Equation (2.2) , we get

Π (V ) = P
(
Γ(2) (s2)

)
Π(V ) + Π

(
η(2)

)
+Π(D) ,
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where D′ :=
(
D′ (i) , i ∈ E

)
with D (i) = E

{
(Γ (t)⊗ e (t) + e (t)⊗ Γ (t))Xt−s2

|δt = i
}
for all i ∈ E, then

under Condition (2.3) , then we have Π (V ) =
(
I(s1r2) − P

(
Γ(2) (s2)

))−1 (
Π
(
η(2)

)
+Π(D)

)
.

Now, let Σ (h) = E
{
XtX

′
t−h

}
=

s1∑
i=1

π (i) Σ(i) (h) , then, from Equation (2.2) , we have for any h > s2,

Π(Σ (h)) = P
(
Γ(1) (s2)

)
Π(Σ (h− s2)) +

s2−1∑
k=0

Γ(1) (k)P(h−k)
(
η(1)

)
Π
(
µ̃
)
,

where µ̃′ :=
(
µ (i) , i ∈ E

)
. The autocovariance function of (Xt)t∈Z is Σ (h) = I′(r)Π(Σ (h)) .

3.1. ARMA representation

In this subsection, we propose to show that a MS − ARMA process with a time-varying coefficient
admit a ARMA representation. Francq and Zaköıan [13] have established an ARMA representation
for multivariate MS − ARMAs1 and others nonlinear processes of interest. Obviously sufficient to
verify that the autocovariance structure of (Xt)t∈Z is that of an ARMA representation. For arithmetic

simplicity, let us suppose that a0,t(δt) = 0. Then we have Π (Σ (h)) = P
(
Γ(1) (s2)

)
Π(Σ (h− s2)), h > s2.

Using the Jordan decomposition (see, e.g., Francq and Zaköıan [13]), it can be seen that Π (Σ (h)) =
l∑

i=1

ri−1∑
j=0

hjλh
i Σij , h > max

i
ri, where the Σij ’s are s1r × s1r matrices, the λi’s denote the eigenvalues of

P
(
Γ(1) (s2)

)
and

l∑
i=1

ri = s1r. The result follows essentially the same arguments as in Francq and Zaköıan

[13], the ARMA representation sentation can be used to obtain the linear prediction of the observed
process.

4. Covariance structure of higher power for DS −ARMA(s1,s2) (p, q)

For the identification purpose it is necessary to look at higher-power of the process in order to dis-
tinguish between different ARMA representation. So, in this section, once mth−order stationarity is
guaranteed, it can be useful to compute the expectation and the autocovariance function of (Xt)t∈Z with
state-space representation (2.1) . For this purpose, we first establish the following lemma

Lemma 4.1 Consider the DS − ARMA(s1,s2) (p, q) model (1.1) with state space representation (2.2).

Let us define the following matrices B
(k)
j,t (i, et), j = 0, ..., k = 0, ...,m and i = 1, ..., s1, with appropriate

dimension such that

∀k ∈ N : X⊗k
t =

(
Γt (δt)Xt−1 + et (δt)

)⊗k
=

k∑
j=0

B
(k)
j,t (δt, et)X

⊗j
t−1, (6.1)

where by convention B
(k)
j,t (., .) = O if j > k or j < 0, X⊗0

t = B
(0)
0,t (., .) = 1. Then B

(k)
j,t (i, et) are uniquely

determined by the following recursion

B
(1)
0,t (δt, et) = et (δt) , B

(1)
1,t (δt, et) = Γt (δt) ,

B
(k+1)
j,t (δt, et) = B

(1)
0,t (δt, et)⊗B

(k)
j,t (δt, et) +B

(1)
1,t (δt, et)⊗B

(k)
j−1,t (δt, et) for k > 1.

Now, set Ξ(m)
v =

(
E
{
X⊗m

s2t+v |δs2t+v = i
}
; i ∈ E

)
,

Ξ(k,m)
v (h) =

(
E
{
X⊗k

s2t+v ⊗X⊗m
s2t+v−h |δs2t+v = i

}
; i ∈ E

)
and B

(m)
j,v =

(
B

(m,i)
j,v := E

{
B

(m)
j,s2t+v (i, es2t+v) |δs2t+v = i

}
; i ∈ E

)
, for all v = 1, ..., s2, then it is no

difficult to see that

Π
(
Ξ(m)
v

)
=

m∑
j=0

P
(
B

(m)
j,v

)
Π
(
Ξ
(j)
v−1

)
and Π

(
Ξ(k,m)
v (h)

)
=

k∑
j=0

P
(
B̃

(k,m)
j,v

)
Π
(
Ξ
(j,m)
v−1 (h− 1)

)
, k > 1,
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where B̃
(k,m)
j,v =

(
B

(k,i)
j,v ⊗ I(rm); i ∈ E

)
. Moreover, we have

W (m)
v (h) :=



Π
(
Ξ(m,m)
v (h)

)
Π
(
Ξ(m−1,m)
v (h)

)
...
...

Π
(
Ξ(0,m)
v (h)

)



=



P
(
B̃

(m,m)
m,v

)
P
(
B̃

(m,m)
m−1,v

)
. . . P

(
B̃

(m,m)
0,v

)
O P

(
B̃

(m−1,m)
m−1,v

)
. . . P

(
B̃

(m−1,m)
0,v

)
...

. . . . . .
...

...
. . . P

(
B̃

(1,m)
1,v

)
P
(
B̃

(1,m)
0,v

)
O . . . O I(rm)


W

(m)
v−1(h− 1)

= Λv (m)W
(m)
v−1(h− 1).
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