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abstract: We construct the sequences of Fibonacci and Lucas in any quadratic field Q(
√
d ) with d > 0

square free, noting that the general properties remain valid as those given by the classical sequences of
Fibonacci and Lucas for the case d = 5, under the respective variants. For this construction, we use the
fundamental unit of Q(

√
d ) and then we observe the generalizations for any unit of Q(

√
d ). Under certain

conditions some of these constructions correspond to k-Fibonacci sequence for some k ∈ N. Further, for both
sequences, we obtain the generating function, Golden ratio, Binet’s formula and some identities that they
keep.
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1. Introduction

The Fibonacci sequence was introduced by Leonardo of Pisa in 1202 in his book Liber Abaci (Book of
Calculation) [26]. Many of the properties of the Fibonacci sequence were obtained by F. Édouard Lucas
who appoints such sequence by “Fibonacci” [24, Section 3.1.2]. For more information about the history
of the Fibonacci numbers, one may refer [23]. Lucas is the one who initiated the generalizations and
their variants that have emerged from the Fibonacci sequence (See [2], [3], [4], [5] [7], [10], [16], [19]
and [25]). Vera W. de Spinadel introduced the Metallic Means family whose members of such a family
have many wonderful and amazing properties and applications to almost every areas of sciences and arts,
such as in some areas of the physical, biology, astronomy and music (See [11], [12], [13] and [17]). On
the other hand, Sergio Falcón and Ángel Plaza gave the properties of k–Fibonacci sequence (See [7], [8],
[9] and [10]) and these are particular cases of metallic means families. Also, in [6] M. El-Mikkawy and
T. Sogabe have given a new family of k–Fibonacci numbers. In [18], one can find hundreds of known
identities. In [1], Azarian has presented some known identities as binomial sums for quick numerical
calculations.

In this paper, for a real quadratic field Q(
√
d ), with d > 0 square free, we associate the sequences of

Fibonacci and Lucas (Definition 5), which correspond to certain metallic means families (Theorem 3.2
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and Theorem 3.3). These sequences of Fibonacci and Lucas are determined by their generating functions
(Theorem 4.2) satisfying each Binet’s formula (Theorem 5.2 and Corollary 5.1). This means that every
real quadratic field Q(

√
d ) is also associated with its own Golden ratio (Definition 20), characteristic

equation (5.2) and its Golden ratio will be the fundamental unit (Theorem 4.1). Finally, for each k ∈ N,
we establish that the k-Fibonacci sequence corresponds to Fibonacci sequence of the real quadratic field
Q(

√
d ) for a unique d > 0 square free (Theorem 7.2).

This paper is organized as follows. In Section 2, we collect results of quadratic fields necessary for the
development of the work. In Section 3, we construct the sequences of Fibonacci and Lucas in any real
quadratic field. Also, we prove that the properties remain valid as those given by the classical sequence
of Fibonacci and Lucas for d = 5. In Section 4, we prove that the Fibonacci and Lucas sequences are
determined by the generating functions. In Section 5, we give the Golden ratio associated to Q(

√
d ) and

we obtain Binet’s formula. In Section 6, we extend our construction over rational integers. Finally, in
Section 7, we define the sequences of Fibonacci and Lucas of degree d with respect to an arbitrary unit
η of Q(

√
d ) and we prove that the results of the previous sections are still met.

2. Quadratic number fields

In this section, we collect fundamental results from quadratic fields. Throughout this paper, d denotes
a square free integer, δ denotes the discriminant of the quadratic field Q(

√
d ), O denotes the ring of

integers of Q(
√
d ), and O∗ denotes the multiplicative group of all invertible elements of the ring O. For

d > 0, Q(
√
d ) is a real quadratic field and for d < 0, Q(

√
d ) is an imaginary quadratic field. We recall

the following well known result ( [14], [15], [21], [22]):

Theorem 2.1 (i) If d ≡ 1 mod 4, then the set

{
1 ,

1 +
√
d

2

}
is an integral basis of Q(

√
d ), δ = d,

O = Z

[
1 +

√
d

2

]
= Z+ Z

(
1 +

√
d

2

)
and

O∗ =

{
a+ b

√
d

2

∣∣∣∣ a, b ∈ Z, a2 − db2 = ±4

}
.

(ii) If d ≡ 2 mod 4 or d ≡ 3 mod 4, then the set
{
1,

√
d
}

is an integral basis of Q(
√
d ), δ = 4d,

O = Z[
√
d ] = Z+ Z

√
d and

O∗ =
{

a+ b
√
d
∣∣ a, b ∈ Z, a2 − db2 = ±1

}
.

(iii) If d < 0, then O∗ = { −1, 1 } when d ̸= −1, −3, O∗ = ⟨i⟩ = {−1, 1, i,−i} when d = −1 and
O∗ = ⟨ζ6⟩ if d = −3, where ζ6 is a primitive 6-th root of unity.

(iv) If d > 0, then

(a) There exists a unit ε > 1 in O such that O∗ = ⟨−1⟩ × ⟨ε⟩.
(b) If u > 1 is a unit of O, then u = a+ b

√
d for some a > 0, b > 0 in Q.

(c) If N(ε) = 1, then N(u) = 1 for all u ∈ O∗.

The unit ε of O in the Theorem 2.1 (iv), is called the fundamental unit of O. Hence the unit ε of O
completely determines the group O∗.

On the other hand, we denote by M2×2(Z) the set of all matrices 2 × 2 with integer entries. Let
GL2(Q) be the multiplicative group of invertible 2 × 2 matrices with rational entries, which is called
the general lineal group of degree 2 over Q. The subset of all matrices of GL2(Q) with determinant 1
is a normal subgroup of GL2(Q) called the special lineal group of degree 2 over Q and denoted by SL2(Q).
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For each λ ∈ Q, let

Gλ =

{
A ∈ GL2(Q)

∣∣∣∣A =

[
a bλ
b a

]}
, Lλ = {A ∈ Gλ |,det(A) = ±1}

and

Td =

{
A ∈ M2×2(Z)

∣∣∣∣A =

[
a bd
b a

]}
.

Theorem 2.2 (i) Td is a commutative subring with identity of M2×2(Z).

(ii) If T ∗
d is the multiplicative group of units of Td, then T ∗

d = Ld ∩ M2×2(Z). In particular, T ∗
d is a

subgroup of Ld.

(iii) The rings Td and Z[
√
d ] are isomorphic under the correspondence[

a bd
b a

]
7−→ a+ b

√
d .

In particular, Td is an integral domain.

(iv) The isomorphism in (iii) induces an isomorphism between the multiplicative groups T ∗
d and (Z[

√
d ])∗.

(v) Td/(Td ∩ SL2(Q)) ∼= {−1, 1}.

Theorem 2.3 Let Qd be the set of all matrices of the form A =

[
a bd
b a

]
with a, b ∈ Q.

(i) Qd is a field isomorphic Q(
√
d ) under the correspondence

[
a bd
b a

]
7−→ a + b

√
d. Moreover, Qd is

the field of quotients of Td.

(ii) There exists a monomorphism of the multiplicative group Q(
√
d )∗ in the group GL2(Q).

(iii) The group GL2(Q) contains the chain of subgroups Q∗
d ∩ SL2(Q) < Lm < Gd = Q∗

d < GL2(Q).

Theorem 2.4 Let A =

[
a bd
b a

]
∈ Qd, where a, b are two rational numbers. Then the powers of A,

An =

[
an bnd
bn an

]
with n ∈ N, are given as follows:

an =



∑
0≤t≤n

2

(
n

2t

)
a2tbn−2td

n
2 −t, if n even;

∑
0≤t≤n−1

2

(
n

2t+ 1

)
a2t+1bn−2t−1d

n−1
2 −t, if n odd

(2.1)

and

bn =



∑
0≤t≤n−2

2

(
n

2t+ 1

)
a2t+1bn−2t−1d

n−2
2 −t, if n even;

∑
0≤t≤n−1

2

(
n

2t

)
a2tbn−2td

n−1
2 −t, if n odd.

(2.2)
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3. The sequences of Fibonacci and Lucas in Q(
√
d )

In this section, we construct the sequences of Fibonacci and Lucas in any real quadratic field. We
prove that the properties remain valid as those given by the classical sequence of Fibonacci and Lucas
for d = 5. Being d > 0 a square free integer and ε the fundamental unit of Q(

√
d ), we will write

ε = a + b
√
d where a, b ∈ Q with its corresponding matrix Aε =

[
a bd
b a

]
and the n-th powers of Aε by

An
ε =

[
an bnd
bn an

]
, where an and bn are given as in the equations (2.1) and (2.2) of Theorem 2.4. Also, ∆

will be the determinant of Aε, that is, ∆ = a2 − b2d = N(ε) = ±1, where N is the norm function of the
field Q(

√
d ).

Definition 3.1 The sequence of Fibonacci (resp. Lucas) of degree d with respect to the fundamental unit
ε is the sequence {Fε,n}n∈N (resp. {Lε,n}n∈N) of positive numbers given as follows:

Fε,n :=
bn
b

(
resp. Lε,n :=

an
a

)
(n ∈ N) (3.1)

where the sequence {bn}n∈N (resp. {an}n∈N) is given as in the equation (2.2) (resp. (2.1)) of Theorem 2.4.

According to the equation (3.1) of the Definition 3.1, Fε,n and Lε,n are given by the follows equations:

Fε,n =



∑
0≤t≤n−2

2

(
n

2t+ 1

)
a2t+1bn−2t−2d

n−2
2 −t, if n even;

∑
0≤t≤n−1

2

(
n

2t

)
a2tbn−2t−1d

n−1
2 −t, if n odd

(3.2)

and

Lε,n =



∑
0≤t≤n

2

(
n

2t

)
a2t−1bn−2td

n
2 −t, if n even;

∑
0≤t≤n−1

2

(
n

2t+ 1

)
a2tbn−2t−1d

n−1
2 −t, if n odd.

(3.3)

Observation I. When d = 5, {Fε,n}n∈N and {Lε,n}n∈N are exactly the classical sequences of Fibonacci
and Lucas, respectively.

In the rest of the work, by abuse of notation, we write Fn and Ln instead of Fε,n and Lε,n if there is
no risk of confusion with respect to the classical sequences of Fibonacci and Lucas.

Theorem 3.1 For each m,n ∈ N,

(i) Fn+1 = a(Ln + Fn).

(ii) Ln+1 = aLn +
b2d

a
Fn.

(iii) Fn =
a

∆

(
Fn+1 − Ln+1

)
=

 a(Ln+1 − Fn+1), if ∆ = −1;

a(Fn+1 − Ln+1), if ∆ = 1.
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(iv) Ln =
1

∆

(
aLn+1 −

b2d

a
Fn+1

)
=


b2d

a
Fn+1 − aLn+1, if ∆ = −1;

aLn+1 −
b2d

a
Fn+1, if ∆ = 1.

(v) Fn+1 − anF1 =

n−1∑
t=0

at+1Ln−t .

(vi) Ln+1 − anL1 = b2d

n−1∑
t=0

at−1Fn−t .

(vii) Fm+n = a(FmLn + FnLm).

(viii) Lm+n =
b2d

a
· FmFn + a LmLn.

(ix) b2d F 2
n − a2L2

n = −∆n.

(x) Fn =

⌊n−1
2 ⌋∑

t=0

(
n

2t+ 1

)
an−2t−1b2tdt =

⌊n−1
2 ⌋∑

t=0

(
n

n− 2t− 1

)
an−2t−1b2tdt.

(xi) Ln =

⌊n
2 ⌋∑

t=0

(
n

2t

)
an−2t−1b2tdt =

⌊n
2 ⌋∑

t=0

(
n

n− 2t

)
an−2t−1b2tdt.

Here ⌊x⌋ is the integral part of x ∈ R, i.e., is the greatest integer n such that n ≤ x < n+ 1.

Proof: (i) and (ii) are obtained directly from the equations (3.2) and (3.3). (iii) and (iv) are deducted
from (i) and (ii). By induction, we obtain (v) and (vi). (vii) and (viii) are obtained from the relationship
Am+n

ε = Am
ε ·An

ε . The relation det(An
ε ) = ∆n implies the relation (ix). Finally, (x) and (xi) are obtained

from the following relationship:

an + bn
√
d = (a+ b

√
d )n =

n∑
i=0

(
n

i

)
aibn−i(

√
d )n−i =

n∑
i=0

(
n

i

)
an−ibi(

√
d )i.

2

Theorem 3.2 There exist unique r, s ∈ Q∗ such that Fn+2 = rFn+sFn+1 for all n ∈ N. More precisely,
Fn+2 = (−∆)Fn + 2aFn+1 for all n ∈ N.

Proof: We have for each n ∈ N,

(−∆)Fn + 2aFn+1 = −(a2 − b2d)Fn + 2aFn+1 = a

(
b2d

a

)
Fn − a2Fn + 2aFn+1

= a(Ln+1 − aLn)− a2Fn + 2aFn+1 = a(Ln+1 + Fn+1)

= Fn+2 .

On the other hand, let r, s ∈ Q∗ be such that

Fn+2 = rFn + sFn+1, for all n ∈ N (3.4)

As b2d = a2 −∆, implies that F1 = 1, F2 = 2a, F3 = 4a2 −∆ and F4 = 8a3 − 4a∆. In particular, by the
equation (3.4) for n = 1 and n = 2, we obtain the system of equations

r + 2as = 4a2 −∆

2ar + (4a2 −∆)s = 8a3 − 4a∆

 (3.5)

which has a unique solution, namely r = −∆ and s = 2a. 2
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Corollary 3.1 The Fibonacci sequence {Fn}n∈N is a k-Fibonacci sequence for some k ∈ N (namely,
k = 2a) if and only if ∆ = −1.

Proof: It is immediate by Theorem 3.2. 2

Corollary 3.2 The following conditions are equivalent:

(i) Fn+2 = Fn + Fn+1 for all n ∈ N;

(ii) F3 = F1 + F2;

(iii) d = 5 and ε =
1 +

√
5

2
.

Proof: (i) =⇒ (ii): It is immediate.
(ii) =⇒ (iii): We have that −∆+4a2 = (−∆)F1+2aF2 = F3 = F1+F2 = 1+2a, then 4a2−2a−(∆+1) =
0. If ∆ = 1, then 2a2 − a− 1 = 0; since a ̸= 1, necessarily a = −1/2. But this implies that 4b2d = −3, a
contradiction. Therefore ∆ = −1, a = 1/2 = b and d = 5.
(iii) =⇒ (i): It is clear. 2

Corollary 3.3 For d = 5, {Fn}n∈N is the classical Fibonacci sequence, that is,

Fn+2 = Fn + Fn+1, n ∈ N.

Proof: It is immediate. 2

We recall, if d ≡ 2 or 3 mod 4, then ε = a + b
√
d where a, b ∈ Z. In this case, it is obvious that

Fn ∈ N for all n ∈ N. If d ≡ 1 mod 4, then ε = a+ b
√
d =

a0 + b0
√
d

2
with a0, b0 ∈ N, where either are

both even or both odd. When they are both even, we have that a, b ∈ N and, hence, Fn ∈ N. But, in
any case, 2a ∈ N. Therefore, we obtain the following result.

Corollary 3.4 Fn ∈ N, for all n ∈ N.

Proof: By Theorem 3.2, we have Fn+2 = (−∆)Fn+2aFn+1 for all n ∈ N, where F1 = 1 and F2 = 2a ∈ N.
Then, the proof follows by induction on n. 2

Theorem 3.3 There exist unique r, s ∈ Q∗ such that Ln+2 = rLn+sLn+1 for all n ∈ N. More precisely,
Ln+2 = (−∆)Ln + 2aLn+1 for all n ∈ N.

Proof: We have that for each n ∈ N

(−∆)Ln + 2aLn+1 = −
(
aLn+1 −

b2d

a
Fn+1

)
+ 2aLn+1 = aLn+1 +

b2d

a
Fn+1

= Ln+2 .

Now, we prove the uniqueness. As b2d = a2 −∆, it follows that

L1 = 1

L2 = 2a− ∆

a
L3 = 4a2 − 3∆

L4 = 8a3 − 8a∆+
1

a
...

...
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Let r, s ∈ Q∗ be such that

Ln+2 = rLn + sLn+1, for all n ∈ N. (3.6)

In particular, for n = 1 and n = 2, we have the system of equations

r +

(
2a− ∆

a

)
s = 4a2 − 3∆

(
2a− ∆

a

)
r + (4a2 − 3∆)s = 8a3 − 8a∆+

1

a

 (3.7)

which has a unique solution, namely r = −∆ and s = 2a; so that, this system of equations has the same
solution that of the system of equations (3.5) given in the proof of Theorem 3.2. Hence, the theorem. 2

Similar to the corollaries of Theorem 3.2 for Fibonacci sequence, we obtain corollaries of the Theo-
rem 3.3 for Lucas sequence.

Corollary 3.5 The Lucas sequence {Ln}n∈N is a k-Lucas sequence for some k ∈ N (namely, k = 2a) if
and only if ∆ = −1.

Proof: It immediate by Theorem 3.3. 2

Corollary 3.6 The following conditions are equivalent:

(i) Ln+2 = Ln + Ln+1 for all n ∈ N;

(ii) L3 = L1 + L2;

(iii) d = 5 and ε =
1 +

√
5

2
.

Proof: (i) =⇒ (ii): It is immediate.

(ii) =⇒ (iii): Since L3 = L1+L2, that is, 4a
2−3∆ = 1+2a−∆

a
, we have that 4a3−2a2−a+(1−3a)∆ = 0.

If ∆ = 1, then 4a3− 2a2− 4a+1 = 0 and a can not be a rational number, contradiction. Hence, ∆ = −1
and (2a2 + 1)(2a− 1) = 0. This implies that a = 1/2 and 4b2d = 5. Therefore, d = 5 and a = 1/2 = b.
(iii) =⇒ (i): It is clear. 2

Corollary 3.7 If {Ln}n∈N is the Lucas sequence classical, that is d = 5, then

Ln+2 = Ln + Ln+1,

for each n ∈ N.

Proof: It is immediate. 2

Corollary 3.8 For all k ∈ N,

(i) L2k−1 ∈ N;

(ii) if a ∈ N, then aL2k ∈ N and (a, aL2k) = 1;

(iii) if a =
a0
2
, with a0 odd, then a0L2k ∈ N and (a0, a0L2k) = 1.

Proof: Applying the Theorem 3.3, the proof follows by induction over all the pairs (L2k−1, L2k), k ∈ N.
2
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4. Generating function

The main goal of this section is to show that the Fibonacci and Lucas sequences given in (4) and (5)
are determined by the generating functions.

Theorem 4.1 We obtain

(i) lim
n→∞

Fn+1

Fn
= ε = lim

n→∞

Ln+1

Ln
.

(ii) The series

∞∑
n=1

Fnx
n−1 and

∞∑
n=1

Lnx
n−1 both have the same radius of convergence, namely R = 1/ε.

Proof: (i) By Theorem 3.1, we have

Fn+1

Fn
=

a(Ln + Fn)

Fn
= a+ a · Ln

Fn
= a+ b · an

bn
,

and

Ln+1

Ln
=

aLn +
b2d

a
Fn

Ln
= a+

b2d

a
· Fn

Ln
= a+ b · bnd

an
.

Since lim
n→∞

an
bn

=
√
d = lim

n→∞

bnd

an
(see [20, Theorem 3.1]), It follows that,

lim
n→∞

Fn+1

Fn
= ε = lim

n→∞

Ln+1

Ln
.

(ii) For each x ∈ R, x ̸= 0, we have

lim
n→∞

Fn+1x
n

Fnxn−1
= εx = lim

n→∞

Ln+1x
n

Lnxn−1
.

Therefore, lim
n→∞

Fn+1|x|n

Fn|x|n−1
< 1 if and only if |x| < 1

ε
.

Similarly, we can show that, lim
n→∞

Ln+1|x|n

Ln|x|n−1
< 1 if and only if |x| < 1

ε
. Hence, both series have the

same radius of convergence R = 1/ε. This complete the proof. 2

Theorem 4.2 (Generating function) Let x ∈ R be such that |x| < 1/ε.

(i) If f(x) =

∞∑
n=1

Fnx
n−1, then f(x) =

1

∆x2 − 2ax+ 1
.

(ii) If g(x) =

∞∑
n=1

Lnx
n−1, then g(x) =

(
a−∆x

a

)
f(x) =

a−∆x

a(∆x2 − 2ax+ 1)
.

Proof: (i): For each x ∈ R with |x| < 1/ε, we have that

f(x) =

∞∑
n=1

Fnx
n−1 = 1 + 2ax+

∞∑
n=1

Fn+2x
n+1 = 1 + 2ax+

∞∑
n=1

(−∆Fn + 2aFn+1)x
n+1

= 1 + 2ax−∆x2f(x) + 2ax(f(x)− 1) = 1 + f(x)(2ax−∆x2).

This implies that f(x) =
1

∆x2 − 2ax+ 1
.
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(ii): We observe that, for each x ∈ R with |x| < 1/ε,

f(x) = 1 +

∞∑
n=1

Fn+1x
n = 1 +

∞∑
n=1

a(Ln + Fn)x
n = 1 + axg(x) + axf(x) .

If x ̸= 0, then

g(x) =
(1− ax)f(x)− 1

ax
=

a−∆x

a(∆x2 − 2ax+ 1)
=

(
a−∆x

a

)
f(x) .

2

5. Golden ratio and Binet’s formula in Q(
√
d )

In this section, we give Golden ratio associated with the quadratic field Q(
√
d ). Also, we obtain

Binet’s formula in Q(
√
d ). We start with the following definition:

Definition 5.1 Let x, y ∈ R be such that 0 < y < x. We say that x and y are in Golden ratio with respect
to the quadratic field Q(

√
d ) (or simply that they are in Golden ratio, if there is no risk of confusion with

respect to the quadratic field Q(
√
d )), if

2ax−∆y

x
=

x

y
. (5.1)

If x and y are in Golden ratio and we write φ :=
x

y
, then we have

2a− ∆

φ
= 2a−∆ · y

x
=

2ax−∆y

x
=

x

y
= φ.

Thus, φ satisfies the equation

φ2 − 2aφ+∆ = 0. (5.2)

But x2 − 2ax + ∆ is the irreducible polynomial of ε over Q with ε its other root, where ε is the
conjugate of ε. Therefore, φ = ε or φ = ε. As x > y > 0 and ε = ∆/ε, necessarily φ = ε. In consequence,
we have the equation

ε2 = 2aε−∆. (5.3)

Theorem 5.1 For each n ∈ N, with n ≥ 2,

εn = Fn ε− Fn−1 ∆. (5.4)

Proof: We prove the result by induction on n. It is clear for n = 2, that is, ε2 = 2aε−∆ = F2 ε−F1 ∆.
We assume that that the result holds for n. Now,

εn+1 = ε(Fn ε− Fn−1 ∆)

= Fn(2aε−∆)− Fn−1ε∆

= (−∆Fn−1 + 2aFn)ε− Fn∆

= Fn+1 ε− Fn∆.

2

Since ε also satisfies the equation (5.3), we have the equation

(ε)n = Fn ε− Fn−1 ∆, (5.5)

for each n ≥ 2.
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Theorem 5.2 For each n ∈ N,

Fn =
εn − (ε)n

ε− ε
(5.6)

Proof: It follows from the equations (5.4) and (5.5). 2

The equation (5.6) is known as the Binet’s formula.

Corollary 5.1 For each n ∈ N,

Ln =
εn + (ε)n

ε+ ε
(5.7)

Proof: It is immediate from the following:

εn + (ε)n = 2aFn − 2∆Fn−1 = 2a

(
Fn − ∆

a
· Fn−1

)
= 2aLn = (ε+ ε)Ln.

2

The following two theorems give the other version of the generating functions of the sequences of
Fibonacci and Lucas in Q(

√
d ).

Theorem 5.3 Let f1(x) =

∞∑
n=0

∆nFn+1x
n and g1(x) =

∞∑
n=0

∆nLn+1x
n. Then, the series f1(x) and g1(x)

are convergent for |x| < min{|ε|, |ε|}. Furthermore,

f1(x) =
∆

x2 − 2ax+∆
(5.8)

and

g1(x) =
∆(a− x)

a(x2 − 2ax+∆)
=

(
a− x

a

)
f1(x) (5.9)

Proof: For |x| < min{|ε|, |ε|}, we have

2b
√
d

(x− ε)(x− ε)
=

1

x− ε
− 1

x− ε
=

1

ε
(
1− x

ε

) − 1

ε
(
1− x

ε

)
=

1

ε

∞∑
n=0

(x
ε

)n
− 1

ε

∞∑
n=0

(x
ε

)n
=

∞∑
n=0

(
εn+1 − ε n+1

(εε)n+1

)
xn

= 2b
√
d

( ∞∑
n=0

(a2 − b2d)n+1

(
εn+1 − ε n+1

ε− ε

)
xn

)

= 2b
√
d

( ∞∑
n=0

∆n+1Fn+1x
n

)
.

This implies that

1

x2 − 2ax+∆
=

1

x2 − 2ax+ (a2 − b2d)
=

1

(x− ε)(x− ε)
=

∞∑
n=0

∆n+1Fn+1x
n,



The Sequences of Fibonacci and Lucas for Real Quadratic Number Fields 11

or equivalently,

∆

x2 − 2ax+∆
=

∞∑
n=0

∆n+2Fn+1x
n =

∞∑
n=0

∆nFn+1x
n (5.10)

Therefore

f1(x) =
∆

x2 − 2ax+∆
.

On the other hand, we have

(a− x) f1(x) = (a− x)

( ∞∑
n=0

∆n+2Fn+1x
n

)

= a F1 +

∞∑
n=1

∆n+1
( a

∆
Fn+1 − Fn

)
xn

= a L1 +

∞∑
n=1

∆naLn+1x
n

= a

∞∑
n=0

∆nLn+1x
n.

Therefore

g1(x) =

(
a− x

a

)
f1(x) =

∆(a− x)

a(x2 − 2ax+∆)
.

2

6. Some Other Properties

Using the equations (5.6) and (5.7), we can extend the definition of the sequences of Fibonacci and
Lucas over rational integers. We use the Binet’s formula for n ∈ Z, Theorem 5.2 and Corollary 5.1 and
obtain

F−n =

 0, if n = 0;

−∆nFn, if n ≥ 1.
(6.1)

and

L−n =


1

a
, if n = 0;

∆nLn, if n ≥ 1.

(6.2)

Thus, for all n ∈ Z,

Fn+2 = (−∆)Fn + 2aFn+1 (6.3)

and

Ln+2 = (−∆)Ln + 2aLn+1 (6.4)

Also, we obtain the identities established by Catalan, Cassini, D’ Ocagne and Hosnberger in the the
following theorem:
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Theorem 6.1 For all m,n ∈ Z, the follows identities hold:

(i) F 2
n − Fn+mFn−m = ∆n−mF 2

m,

(ii) F 2
n − Fn−1Fn+1 = ∆n−1,

(iii) L2
n − Ln+rLn−r =

∆n

2a2
−
(
∆n−r

2a

)
L2r,

(iv) FmFn+1 − FnFm+1 = ∆nFm−n,

(v) Fm−1Fn + FmFn+1 =


Fm+n, if ∆ = −1;

a

2b2d
·
(
2aLm+n − Lm−n−1

)
, if ∆ = 1.

(vi) LnLn+r =

(
1

2a

)
L2n+r +

(
∆n

2a

)
Lr.

Proof: All the identities follow from the Binet’s Formula. We establish (iv) as follows:
We have

FmFn+1 − FnFm+1 =

(
εm − (ε̄)m

ε− ε̄

)(
εn+1 − (ε̄)n+1

ε− ε̄

)
−
(
εn − (ε̄)n

ε− ε̄

)(
εm+1 − (ε̄)m+1

ε− ε̄

)
=

εm(ε̄)n − εn(ε̄)m

ε− ε̄
=

εm−n+n(ε̄)n − εn(ε̄)m−n+n

ε− ε̄

= ∆n

(
εm−n − (ε̄)m−n

ε− ε̄

)
= ∆nFm−n.

2

7. The sequence of Fibonacci and of Lucas of degree d with respect to an arbitrary unit

The unit group of Q(
√
d ), with d > 0, is isomorphic to the group ⟨−1⟩×⟨ε⟩ where ε is the fundamental

unit of Q(
√
d ). The cyclic subgroup ⟨ε⟩ is also generated by 1/ε, −ε and −1/ε. Each unit of Q(

√
d )

has the form ±εl for some l ∈ Z. Observing the previous development, we can define the sequence of
Fibonacci and Lucas of degree d with respect to an arbitrary unit η of Q(

√
d ), and the results of the

previous sections are still met. Essentially, this is because N(η) = ±1. This allows us to build an infinite
number of of sequences in Q(

√
d ) meeting similar properties of the sequences of Fibonacci and Lucas.

For example, we consider the unit η =
−1 +

√
5

2
of Q(

√
5). We have that the first terms of the sequence

of Fibonacci of degree 5 with respect to the unit η are:

Fη,1 = 1, Fη,2 = −1, Fη,3 = 2, Fη,4 = −3, . . . ,

where N(η) = −1. Comparing the terms of the sequence of Fibonacci with negative index, F−n with
n ≥ 1, we have that Fη,n = F−n for all n ∈ N. This is the sequence of Fibonacci with negative index of

degree 5 with respect to the unit η =
−1 +

√
5

2
. This is not a coincidence and this fact is generalized in

the following Theorem:

Theorem 7.1 The Fibonacci sequence of degree d with respect to the unit 1/ε and ∆ = −1 is the
Fibonacci sequence with negative index of degree d with respect to the fundamental unit ε.
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Proof: We write η = 1/ε = ∆ε. Hence, η = ∆ε. Using the Binet’s formula, for all n ∈ N, we have

Fη,n =
ηn − (η)n

η − η
=

(∆ε)n − (∆ε)n

∆ε−∆ε
= ∆n−1 εn − (ε)n

ε− ε
= ∆n−1Fn = −∆nFn = F−n .

2

Observation II. If ∆ = 1, then the Fibonacci sequence of degree d with respect to the unit 1/ε coincides
with the Fibonacci sequence of degree d with respect to the unit ε.

Theorem 7.2 For each k ∈ N, there exist unique d, r ∈ N such that d is square free and
k

2
+

r

2

√
d is

a unit of the quadratic field Q(
√
d ) with norm −1. Therefore, the k-Fibonacci sequence is the Fibonacci

sequence of degree d with respect to a unit of Q(
√
d ).

Proof: Let k ∈ N be arbitrary. We have that k2 + 4 is not a perfect square. Hence, there exist d, r ∈ N
such that k2 + 4 = r2d, where d is positive square free. This implies that(

k

2

)2

−
(r
2

)2
d = −1.

Hence,
k

2
+

r

2

√
d is a unit of Q(

√
d ) with norm −1. On the other hand, if d, d1, r, r1 ∈ N such that

k

2
+

r

2

√
d and

k

2
+

r1
2

√
d1 are units of the quadratic field Q(

√
d ) both with norm −1, then

(
k

2

)2

−
(r
2

)2
d = −1 =

(
k

2

)2

−
(r1
2

)2
d1.

Thus,
(r
2

)2
d =

(r1
2

)2
d1, which implies that r2d = r21d1, where d and d1 are square free. Therefore,

d1 = d and r1 = r. Consequently, the k-Fibonacci sequence is the Fibonacci sequence of degree d with
respect to a unit of Q(

√
d ). 2

Corollary 7.1 For each k ∈ N, the k-Fibonacci sequence is a Fibonacci sequence of degree d with respect
to a unit of Q(

√
d ) for some square free d.

Proof: It is immediate from Theorem 7.2 and Corollary 3.1. 2

8. Conclusions

In this paper, we have established that every real quadratic number field Q(
√
d ) has its own Fibonacci

and Lucas sequences, and variants of these through the fundamental unit. Therefore, the real quadratic
field Q(

√
d ) has its own golden ratio. On these lines, further research aimed at obtaining properties,

both algebraic and geometric, related to the intrinsic properties of the real quadratic field Q(
√
d ) will be

reported in the subsequent paper.
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Plantel San Lorenzo Tezonco

CDMX, México.
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