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On Omega Topological Groups
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abstract: In this paper by using ω-open sets and ω-continuity, we introduce and investigate the notions of
ω-topological groups and obtain several properties of ω-topological groups.
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1. Introduction

Throughout this paper, (G, τ) and (H,σ) stand for topological spaces with no separation axioms
assumed unless otherwise stated. For a subset A of G, the closure of A and the interior of A will be
denoted by Cl(A) and Int(A), respectively. A point x ∈ G is called a condensation point of A if for each
U ∈ τ with x ∈ U , the set U ∩ A is uncountable. A set A is said to be ω-closed [10] if it contains all
its condensation points. The complement of an ω-closed set is said to be ω-open. It is well known that a
subset W of G is ω-open if and only if for each x ∈ W , there exists U ∈ τ such that x ∈ U and U −W is
countable. The family of all ω-open sets of G, denoted by τω, forms a topology on G finer than τ . The
ω-closure and ω-interior, that can be defined in the same way as Cl(A) and Int(A), respectively, will be
denoted by Clω(A) and Intω(A), respectively.

Recently, Hussain et. al. [13,14] introduced and studied some new notions in topological groups. In
this paper, we introduce and study the class of ω-topological groups by using ω-open sets and ω-continuity.
Also papers [3-7] have introduced some property related to ω-open sets.

Definition 1.1 [8] A subset A of a G is called an ω-neighbourhood of a point x ∈ G if there exists
an ω-open set B such that x ∈ B ⊆ A.

Definition 1.2 [11] A function f : (G, τ) → (H,σ) is said to be:

1. ω-continuous if f−1(V ) ∈ τω for every V ∈ σ.

2. ω∗-continuous if f−1(V ) ∈ τω for every V ∈ σω.

3. ω-open if f(U) ∈ σω for every U ∈ τ .

4. ω-closed if f(U) ∈ (σω)
c for every U ∈ (τ)c.

Definition 1.3 A function f : (G×G, τ ×τ) → (H,σ) is said to be: ω-continuous if f−1(V ) ∈ τω×τω
for every V ∈ σ.

Lemma 1.1 [9] Let (G, τ) and (H,σ) be two topological spaces. Then (τ × σ)ω ⊆ τω × σω.

Lemma 1.2 Let (G, τ) and (H,σ) be a topological spaces. A Map f : G × G → H is ω-continuous if
and only if for each open neighbourhood C in H there exists A, B ∈ τω such that f(A×B) ⊆ C.

Proof: Suppose f is ω-continuous then f−1(C) = S ∈ τω × τω for every an open set C ∈ H. And,
S = A × B where A,B ∈ τω. Thus f(S) = f(A × B) ⊆ C. Conversely, suppose for each open
neighbourhood C in H there exists A,B ∈ τω such that f(A × B) ⊆ C and, A × B ∈ τω × τω, we have
the inverse image of an open set is in τω × τω. Hence f is ω-continuous. 2

Submitted May 10, 2023. Published February 21, 2025
2010 Mathematics Subject Classification: 54C05, 54C10. 54C15.

1
Typeset by BSPMstyle.
© Soc. Paran. de Mat.

www.spm.uem.br/bspm
http://dx.doi.org/10.5269/bspm.68189
https://orcid.org/0000-0002-6696-1301


2 Ahmad Al-Omari

2. ω-Topological Groups

In this section, we introduce and study a new class of topological groups by using ω-open sets and
ω-continuity, which is called ω-topological groups.

Definition 2.1 [12] A topological group (G,⊙, τ) consists of a group (G,⊙) and a topology τ on G
for which the multiplication map γ : G × G → G such that γ(x, y) = x ⊙ y and the inversion map
i : G → G such that i(x) = x−1 are continuous.
Now let i : G → G such that i(x) = x−1 be the inverse map which is continuous in a topological group

(G,⊙, τ), and let U be an open neighborhood of h. Then i−1(U) = U−1 is open and contains h−1.

Definition 2.2 A 3-tuple (G,⊙, τ) is called an ω-topological group if

1. for each open neighbourhood W of x⊙ y in G there exist an ω-open neighborhoods U of x and
V of y such that U ⊙ V ⊆ W .

2. for each open neighbourhood N of x−1 there exist an ω-open neighborhoods M of x such that
M−1 ⊆ N .

For a subsets A,B ⊆ G, A−1 = {a−1 : a ∈ A} and A⊙B = {a⊙ b : a ∈ A, b ∈ B}.
By Lemma 1.2 and by definition of ω-continues, it is equivalently saying that in an ω-topological

group, multiplication and inversion are ω-continuous.

Theorem 2.1 Let (G,⊙, τ) be an ω-topological group. Then the functions i : G → G, where i(x) = x−1

and g : G×G → G, where g(x, y) = x⊙ y are ω-continuous.

Proof: (1): Let x ∈ G and N be the open neighbourhood of x−1, let e be the identity element of G.
Then there exist an ω-open neighbourhoods Me of e and Mx of x such that Me ⊙ M−1

x ⊆ N . Thus
i(Mx) = M−1

x = e⊙M−1
x ⊆ Me ⊙M−1

x ⊆ N implies that i is ω-continuous on G.
(2): Let (x, y) ∈ G×G, let N be open neighbourhood of x⊙y. Then there exist an ω-open neighbourhoods
Mx of x and My of y−1 such that Mx ⊙ M−1

y ⊆ N and M−1
y is an ω-open neighbourhood of y. Since

Mx ×M−1
y ∈ τω × τω is neighbourhood of (x, y). Thus g(Mx ×M−1

y ) = Mx ⊙M−1
y ⊆ N implies that g

is ω-continuous function. 2

It follows from the above definition that every topological group is an ω-topological group and if U is
open in τ , then U−1 is also ω-open.

The following lemma will be used in the sequel.

Lemma 2.1 If (G,⊙, τ) is an ω-topological group, then

1. If A ∈ τ , then A−1 ∈ τω.

2. If A ∈ τ and B ⊆ G, then A⊙B and B ⊙A are both in τω.

Proof: (1): It follows by Theorem 2.1.
(2): Let x ∈ B and z ∈ A⊙x, z = y⊙x for some y ∈ A = (A⊙x)⊙x−1. Now, y = z⊙x−1 and by Definition
2.2, there exists ω-open neighbourhoods Mz of z and Mx−1 of x−1 such that Mz⊙x−1 ⊆ Mz⊙M−1

x−1 ⊆ A,
we have z ∈ Mz ⊆ A ⊙ x, thus A ⊙ x ∈ τω. Since arbitrary union of ω-open sets is ω-open, we have
∪{A⊙ x : x ∈ B} = A⊙B ∈ τω. Also B ⊙A in τω. 2

Theorem 2.2 Let (G,⊙, τ) be an ω-topological group. Then the function f : G×G → G, where f(x, y) =
x⊙ y−1 is ω-continuous relative to the product topology for G×G.

Proof: For any (x, y) ∈ G × G, let N be open neighbourhood of x ⊙ y−1. Then there exist an ω-open
neighbourhoods Mx of x and My of y such that Mx⊙M−1

y ⊆ N and Mx×My ∈ τω×τω is neighbourhood
of (x, y). Thus f(Mx ×My) = Mx ⊙M−1

y ⊆ N implies that f is ω-continuous on G×G. 2
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Theorem 2.3 Let H be any closed subset of an ω-topological group (G,⊙, τ). Then g ⊙H and H ⊙ g
are ω-closed for all g ∈ G.

Proof: Let x ∈ Clω(g⊙H). Let b = g−1 ⊙ x and D be an open neighbourhood of b. Then by Definition
of 2.2, there exists A,B ∈ τω of g−1 and x in G, respectively such that A⊙B ⊆ D. Since x ∈ Clω(g⊙H)
we have B ∩ (g ⊙ H) ̸= ∅. Let c ∈ B ∩ (g ⊙ H), then g−1 ⊙ c ∈ H ∩ (A ⊙ B) ⊆ H ∩ D which implies
that H ∩D ̸= ∅. Thus b is a limit point of H. Since H is closed we have b ∈ H. Now x = g ⊙ b and so
x ∈ (g ⊙H). Hence Clω(g ⊙H) ⊆ g ⊙H and since g ⊙H ⊆ Clω(g ⊙H) we have g ⊙H = Clω(g ⊙H)
and g ⊙H is ω-closed for all g ∈ G.

2

Definition 2.3 A bijective function f : (G, τ) → (H,σ) is said to be ω-homeomorphism if it is ω-
continuous and ω-open.
The following simple result is of fundamental importance in what follows.

Theorem 2.4 Let (G,⊙, τ) be an ω-topological group. Then each left (right) translation lg : G → G,
lg(x) = g ⊙ x (rg : G → G) and inversion i : G → G, where i(x) = x−1 are an ω-homeomorphism

Proof: Let a, b ∈ G be arbitrary and D1 be an open set containing a⊙ b. By Definition 2.2, there exists
ω-open set E1 containing a and ω-open set F1 containing b such that E1 ⊙ F1 ⊆ D1 which implies that
a⊙F1 ⊆ D1 and so left translation is ω-continuous. Let A be an open set in G. Then by Lemma 2.1 (2)
and Theorem 2.3, the set lx(A) = x ⊙ A = {x} ⊙ A is ω-open in G, which means that lx is an ω-open
mapping. Hence each left translation is ω-homeomorphism.

Let H be an open set containing a−1. Since G is ω-topological group, for each an open set H
containing a−1, there exists ω-open set K containing a such that K−1 ⊆ H. Thus, inversion mapping
is ω-continuous. Let A be an open set containing a. Since inversion is ω-continuous there exists ω-open
set B containing a−1 such that B−1 ⊆ A, which means that the inversion is an ω-open mapping. Hence
each inversion is ω-homeomorphism.

2

Recall that a family β of subsets of a topological space G is said to be a neighbourhood base of x ∈ G
if for each open subset U of G containing x there exists B ∈ β such that x ∈ B ⊆ U .

Theorem 2.5 Let (G,⊙, τ) be an ω-topological group and let βe be the base at identity element e of G.
Then

1. for every U ∈ βe, there exists V ∈ τω(e) such that V 2 ⊆ U .

2. for every U ∈ βe, there exists V ∈ τω(e) such that V −1 ⊆ U .

3. for every U ∈ βe and x ∈ U , there exists V ∈ τω(e) such that V ⊙ x ⊆ U .

Proof: (1). Let U ∈ βe. Then U is an open set containing e. We know that e = e⊙ e and by Definition
2.2, there exists two ω-open sets A and B containing e such that A ⊙ B ⊆ U . Let V be the smallest
among A and B and so there exists ω-open set V containing e such that V 2 ⊆ U .

(2). Let U ∈ βe. Then U is an open set containing e. We know that the inverse of e is itself. Since in-
version mapping a → a−1 is ω-continuous, then there exists ω-open set V containing e such that V −1 ⊆ U .

(3). Let U ∈ βe and x ∈ U . We know that x = e⊙x. Since G is an ω-topological group, by Definition
2.2, there exists ω-open set A containing x and ω-open set V containing e such that A⊙ V ⊆ U . So for
all x ∈ U , there is ω-open set V containing e such that V ⊙ x ⊆ U .

2
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Corollary 2.1 Let (G,⊙, τ) be an ω-topological group and x be any element of G. Then for any local
base βe at e ∈ G, then each of the families βx = {x⊙ U : U ∈ βe} and {x⊙ U−1 : U ∈ βe} is an ω-open
neighbourhood system at x.

Definition 2.4 An ω-topological space (G,⊙, τ) is said to be ω- homogeneous if for all x, y ∈ X there
is an ω-homeomorphism f of the space X onto itself such that f(x) = y.

Corollary 2.2 Every ω-topological group (G,⊙, τ) is an ω-homogeneous space.

Proof: Take any elements x and y in G and put z = x−1⊙ y. Then lz is an ω-homeomorphism of G and
lz(x) = x⊙ z = x⊙ (x−1 ⊙ y) = y. 2

Theorem 2.6 Let (G,⊙, τ) be an ω-topological group and H a subgroup of G. If H contains a nonempty
open set, then H is ω-open in G.

Proof: Let U be a nonempty open subset of G with U ⊆ H. By Theorem 2.4, each translation is
ω-homeomorphism, so any h ∈ H the set lh(U) = h⊙U is ω-open in G and it is a subset of H. Therefore,
the subgroup H = ∪h∈H(h⊙ U) is ω-open in G as the union of ω-open sets. 2

Theorem 2.7 Every open subgroup H of an ω-topological group (G,⊙, τ) is also an ω-topological group
(called ω-topological subgroup of G).

Proof: We have to show that for each x, y ∈ H and each open set W ⊆ H containing x⊙y−1 there exist
ω-open set U ⊆ H of x and V ⊆ H of y such that U ⊙ V −1 ⊆ W . Since H is open in G, W is an open
subset of an ω-topological group G there are an ω-open sets A of x and B of y, respectively such that
A ⊙ B−1 ⊆ W The sets U = A ∩H and V = B ∩H are ω-open subsets of H because H is open (also
ω-open). Thus, U ⊙ V −1 ⊆ A⊙B−1 ⊆ W , which means that H is an ω-topological group. 2

Theorem 2.8 Let (G,⊙, τ) be an ω-topological group. Then every open subgroup of G is ω-closed in G.

Proof: Let H be an open subgroup of G. Then by Theorem 2.3 every left coset x⊙H of H is ω-open.
Thus Y = ∪x∈G\Hx⊙H is also ω-open as a union of ω-open sets. Hence H = G \ Y is ω-closed. 2

A mapping f : G → H is called a homomorphism if it satisfies h(x⊙ y) = h(x)⊙h(y) for all x, y ∈ G.
It is easy to see that if e is the identity of G, then h(e) is the identity of H for every homomorphism h
of G to H.

Theorem 2.9 Let f : G → H be a homomorphism of ω-topological groups. If f is ω∗-continuous at the
neutral element eG of G, then f is ω-continuous on G.

Proof: Let x ∈ G. Suppose that W is an open set containing y = f(x) in H. Since the left translations
in H are ω-continuous mappings, there is an ω-open set V containing of the element eH of H such that
ly(V ) = y⊙ V ⊆ W . Since f is ω∗-continuous of f at eG it follows the existence of an ω-open set U ⊆ G
containing eG such that f(U) ⊆ V . Since lx : G → G is an ω-open mapping, the set x⊙ U is an ω-open
set containing x, and we have f(x⊙U) = f(x)⊙f(U) = y⊙f(U) ⊆ y⊙V ⊆ W . Hence f is ω-continuous
at the point x of G, hence on G, because x was an arbitrary element in G.

2

Definition 2.5 [2] An topological space (G, τ) is said to be ω-regular if for each closed set F ⊆ X
and each x /∈ F , there exists two disjoint sets H,W ∈ τω such that F ⊆ H and x ∈ W .
A subset A of a group G is symmetric if A = A−1.
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Theorem 2.10 Let (G,⊙, τ) be an ω-topological group with base Be at the identity element e such that
for each U ∈ Be there is a symmetric open neighbourhood V of e such that V ⊙ V ⊆ U . Then G satisfies
the axiom of ω-regularity at e.

Proof: Let U be an open set containing the identity e. Then, by assumption, there is a symmetric open
neighbourhood V of e satisfying V ⊙ V ⊆ U . We have to show that Clω(V ) ⊆ U . Let x ∈ Clω(V ). The
set x ⊙ V is an ω-open neighbourhood of x, which implies x ⊙ V ∩ V ̸= ∅. Therefore, there are points
a, b ∈ V such that b = x⊙ a, that is, x = b⊙ a−1 ∈ V ⊙ V −1 = V ⊙ V ⊆ U . Hence Clω(V ) ⊆ U . 2

Theorem 2.11 Let A and B be subsets of an ω-topological group (G,⊙, τ). Then:

1. Clω(A)⊙ Clω(B) ⊆ Cl(A⊙B);

2. [Clω(A)]−1 ⊆ Cl(A−1).

Proof: (1): Suppose that x ∈ Clω(A), y ∈ Clω(B). Let W be an open neighbourhood of x ⊙ y. Then
there are ω-open neighbourhoods U and V of x and y, respectively such that U ⊙ V ⊆ W . Since x ∈
Clω(A), y ∈ Clω(B), there exists a ∈ A∩U and b ∈ B∩V . Then a⊙b ∈ (A⊙B)∩(U⊙V ) ⊆ (A⊙B)∩W .
This means x⊙ y ∈ Cl(A⊙B), i.e. we have Clω(A)⊙ Clω(B) ⊆ Cl(A⊙B).

(2): Let x ∈ [Clω(A)]−1 and let U be an open neighbourhood of x. Since the inverse mapping is
ω-continuous, the set U−1 is ω-open neighbourhood of x−1. Since x−1 ∈ Clω(A), and U−1 ∩ A ̸= ∅.
Therefore, U ∩A−1 ̸= ∅, that is x ∈ Cl(A−1), and so [Clω(A)]−1 ⊆ Cl(A−1). 2

The inclusions in the previous theorem are not true for ω-topological groups as shown by the following
example.

Example 2.1 The set G = {1, 3, 5, 7} is an abelian group under multiplication m = ⊙8 the usual multi-
plication modulo 8. Endow G with the topology τ = {G, ∅, {1}, {1, 3, 5}}. We have τω = P (G). Take a sets
A = {1, 3} and B = {5, 7}. Then Clω(A) = A and Clω(B) = B. Therefore, Clω(A)⊙Clω(B) = A⊙B =
{5, 7}, and Clω(A⊙B) = A⊙B = {5, 7} and Cl(A⊙B) = {3, 5, 7}. Hence Clω(A)⊙Clω(B) ̸= Cl(A⊙B).

Also B−1 = {5, 7}, Cl(B−1) = {3, 5, 7}, [Clω(B)]−1 = B−1 = {5, 7}, A−1 = {1, 3}, Cl(A−1) = G
and [Clω(A)]−1 = A. Hence [Clω(A)]−1 ̸= Cl(A−1).

Remark 2.1 The set G = {1, 3, 5, 7} is an abelian group under multiplication m = ⊙8 the usual
multiplication modulo 8. Endow G with the topology τ = {G, ∅, {1}, {1, 3, 5}}. We have (G,⊙8, τ)
is an ω-topological group since τω is the power set of G and not a topological group since the
multiplication map γ : G×G → G such that γ(x, y) = x⊙ y is not continuous.

Theorem 2.12 If V is an open neighbourhood of e in ω-topological group (G,⊙, τ), then V ⊆ Clω(V ) ⊆
V 2.

Proof: Since g ⊙ V is an ω-open neighbourhood of g, it must intersects V . Thus there is t ∈ V of the
form g ⊙ v−1, where v ∈ V . But g = t⊙ v ∈ V ⊙ V = V 2 and Clω(V ) ⊆ V 2.

2

The previous theorem is not true if V is not an open neighbourhood of e as shown by the following
example.

Example 2.2 The set G = {1, 3, 5, 7} is an abelian group under multiplication m = ⊙8 the usual mul-
tiplication modulo 8. Endow G with the topology τ = {G, ∅, {1}, {1, 3, 5}}. Take a set V = {5, 7} with
e /∈ V . Then Clω(V ) = V and V 2 = {1, 3}. Therefore, V ⊆ Clω(V ) ⊈ V 2.

Theorem 2.13 If (G,⊙, τ) is an ω-topological group, let A ⊆ G, then Clω(A) ⊆ A ⊙ U every open
neighbourhood U of e.
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Proof: Since (G,⊙, τ) is an ω-topological group, for every open neighbourhood U of e, there exists
V ∈ τω(e) such that V −1 ⊆ U . Let x ∈ Clω(A) and V is an ω-open neighbourhood of x. Then
there exists a ∈ A ∩ (x ⊙ V ), that is a ∈ x ⊙ V . This implies that a = x ⊙ b for some b ∈ V and
x = a⊙ b−1 ∈ a⊙ V −1 ⊆ A⊙ U . Hence Clω(A) ⊆ A⊙ U .

2

The previous theorem is not true if U is not an open neighbourhood of e as shown by the following
example.

Example 2.3 The set G = Z3 = {0, 1, 2} and ⊕3-the usual addition modulo 3, where τ = {Z3, ∅, {0},
{0, 1}}. τ c = {Z3, ∅, {1, 2}, {2}}. Then (G,⊕, τ) is an ω-topological group. Take a sets A = {2} and
U = {1, 2}. Then Clω(A) = A and A⊕ U = {0, 1}. Therefore, Clω(A) ⊈ A⊕ U .

The previous theorem is not true if A ⊆ G, Cl(A) ⊈ A⊙ U for every open neighbourhood U of e as
shown by the following example.

Example 2.4 The set G = Z3 = {0, 1, 2} and ⊕3-the usual addition modulo 3, where τ = {Z3, ∅, {0},
{0, 1}}. τ c = {Z3, ∅, {1, 2}, {2}}. Then (G,⊕, τ) is an ω-topological group. Take a sets A = {0, 2} and
U = {0} be open neighbourhood of e. Then Cl(A) = Z3 and A⊕ U = {0, 2}. Therefore, Cl(A) ⊈ A⊕ U .

Theorem 2.14 If (G,⊙, τ) is an ω-topological group and Be be a base of the space (G, τ) at the neutral
element e, then for every subset A of G, we have Clω(A) = {A⊙ U : U ∈ Be}.

Proof: We only have to verify that if x /∈ Clω(A), then there exists U ∈ Be such that x /∈ A⊙ U . Since
x /∈ Clω(A), then there exists an ω-open neighbourhood W of e such that x⊙W ∩A = ∅. Take U in Be

satisfying the condition U−1 ⊆ W . Then x ⊙ U−1 ∩ A = ∅, that is {x} ∩ A ⊙ U = ∅. This implies that
x /∈ A⊙ U . 2

Definition 2.6 [1] A topological space (G, τ) is called ω-T2-space if for every two different points
x, y of G, there exist two disjoint ω-open sets U , V of G such that x ∈ U and y ∈ V .

Theorem 2.15 Let (G,⊙, τ) be an ω-topological group, then (G, τ) is ω-regular and ω-T2-space.

Proof: Suppose that F ⊆ G is closed and s /∈ F . Multiplication by s−1 allows us to assume that s = e.
Since F is closed, W = G \ F is an open neighbourhood of e. Then there exists V ∈ τω(e) such that
V 2 ⊆ W . Hence Clω(V ) ⊆ V ⊙W ⊆ W . Then U = G\Clω(V ) is an ω-neighbourhood containing F which
is disjoint from V . This proves that (G,⊙, τ) is ω-regular. That is, e ∈ V ∈ τω and e ̸= y ∈ F ⊆ U ∈ τω
such that V ∩ U = ∅. Hence G is ω-T2-space. 2

Theorem 2.16 A nonempty subgroup H of an ω-topological group G is ω-open if its interior is nonempty.

Proof: Assume that x ∈ Int(H). Then by definition, there is an open set V such that x ∈ V ⊆ H. For
every y ∈ H, we have y ⊙ V ⊆ y ⊙ H = H. Since V is open, so is y ⊙ V is ω-open, we conclude that
H = ∪{y ⊙ V : y ∈ H} is an ω-open set. 2

Theorem 2.17 Let (G,⊙, τ) is an ω-topological group. If U is an open set, then H = ∪∞
n=1U

n is an
ω-open set. Also if U be any symmetric open neighbourhood of e. Then the set H is subgroup of G.

Proof: Since U is open in an ω-topological group (G,⊙, τ), then by Lemma 2.1, U ⊙ U = U2 ∈ τω,
U2 ⊙ U = U3 ∈ τω and similarly U4, U5, · · · all are ω-open sets in G. Thus the set H = ∪∞

n=1U
n being

the union of ω-open sets is an ω-open set.
We prove that H = ∪∞

n=1U
n is a subgroup of G. Let x, y ∈ H. If x = uk , y = ul, x⊙ y = uk ⊙ ul =

uk+l ∈ H, x−1 = (uk)−1 = (u−1)k = uk ∈ H. This implies that H is a subgroup of G. 2
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Theorem 2.18 If A be a subset of an ω-topological group (G,⊙, τ), then [Intω(A)]−1 = Intω(A
−1).

Proof: Since the inverse mapping i : G → G is an ω-homeomorphism, Intω(i(A)) = Intω(A
−1) =

i(Intω(A)) = [Intω(A)]−1. 2

Definition 2.7 Let U be an ω-open neighbourhood of the neutral element e of an ω-topological group
(G,⊙, τ). A subset A of G is called ω-disjoint of U if b /∈ a⊙ U for any disjoint a, b ∈ A.

Example 2.5 The set G = {1, 3, 5, 7} is an abelian group under multiplication m = ⊙8 the usual mul-
tiplication modulo 8. Endow G with the topology τ = {G, ∅, {1}, {1, 3, 5}}. Take a set A = {1, 7} and
U = {1, 3, 5}. Then a subset A of G is ω-disjoint of U . Since, 1 /∈ 7⊙ U and 7 /∈ 1⊙ U .

Definition 2.8 A collection Ω of subsets of a topological space (G, τ) is ω-discrete, provided each
x ∈ G has an ω-open neighbourhood that intersects at most one member of Ω.

Theorem 2.19 Let U be an ω-open and V be open neighbourhoods of the neutral element e in an ω
-topological group (G,⊙, τ) such that V 4 ⊆ U and V −1 = V . If a subset A of G is ω-disjoint of U , then
the family of ω-open sets {a⊙ V : a ∈ A} is ω-discrete in G.

Proof: It suffices to verify that, for every x ∈ G, an ω-open neighbourhood x⊙V of x intersects at most
one element of the family {a ⊙ V : a ∈ A}. Suppose to the contrary that, for some x ∈ G, there exists
distinct elements a, b ∈ A such that x⊙ V ∩ a⊙ V ̸= ∅ and x⊙ V ∩ b⊙ V ̸= ∅. Then x−1 ⊙ a ∈ V 2 and
b−1 ⊙ x ∈ V 2, where b−1 ⊙ a = (b−1 ⊙ x) ⊙ (x−1 ⊙ a) ∈ V 4 ⊆ U . This implies that a ∈ b ⊙ U . This
contradicts the assumption that A is ω-disjoint of U . 2
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