

On Omega Topological Groups

Ahmad Al-Omari

ABSTRACT: In this paper by using ω -open sets and ω -continuity, we introduce and investigate the notions of ω -topological groups and obtain several properties of ω -topological groups.

Key Words: ω -open; topological group; ω -topological group; ω -disjoint; ω -discrete.

Contents

1	Introduction	1
2	ω-Topological Groups	2

1. Introduction

Throughout this paper, (G, τ) and (H, σ) stand for topological spaces with no separation axioms assumed unless otherwise stated. For a subset A of G , the closure of A and the interior of A will be denoted by $Cl(A)$ and $Int(A)$, respectively. A point $x \in G$ is called a condensation point of A if for each $U \in \tau$ with $x \in U$, the set $U \cap A$ is uncountable. A set A is said to be ω -closed [10] if it contains all its condensation points. The complement of an ω -closed set is said to be ω -open. It is well known that a subset W of G is ω -open if and only if for each $x \in W$, there exists $U \in \tau$ such that $x \in U$ and $U - W$ is countable. The family of all ω -open sets of G , denoted by τ_ω , forms a topology on G finer than τ . The ω -closure and ω -interior, that can be defined in the same way as $Cl(A)$ and $Int(A)$, respectively, will be denoted by $Cl_\omega(A)$ and $Int_\omega(A)$, respectively.

Recently, Hussain et. al. [13,14] introduced and studied some new notions in topological groups. In this paper, we introduce and study the class of ω -topological groups by using ω -open sets and ω -continuity. Also papers [3-7] have introduced some property related to ω -open sets.

Definition 1.1 [8] A subset A of G is called an ω -neighbourhood of a point $x \in G$ if there exists an ω -open set B such that $x \in B \subseteq A$.

Definition 1.2 [11] A function $f : (G, \tau) \rightarrow (H, \sigma)$ is said to be:

1. ω -continuous if $f^{-1}(V) \in \tau_\omega$ for every $V \in \sigma$.
2. ω^* -continuous if $f^{-1}(V) \in \tau_\omega$ for every $V \in \sigma_\omega$.
3. ω -open if $f(U) \in \sigma_\omega$ for every $U \in \tau$.
4. ω -closed if $f(U) \in (\sigma_\omega)^c$ for every $U \in (\tau)^c$.

Definition 1.3 A function $f : (G \times G, \tau \times \tau) \rightarrow (H, \sigma)$ is said to be: ω -continuous if $f^{-1}(V) \in \tau_\omega \times \tau_\omega$ for every $V \in \sigma$.

Lemma 1.1 [9] Let (G, τ) and (H, σ) be two topological spaces. Then $(\tau \times \sigma)_\omega \subseteq \tau_\omega \times \sigma_\omega$.

Lemma 1.2 Let (G, τ) and (H, σ) be a topological spaces. A Map $f : G \times G \rightarrow H$ is ω -continuous if and only if for each open neighbourhood C in H there exists $A, B \in \tau_\omega$ such that $f(A \times B) \subseteq C$.

Proof: Suppose f is ω -continuous then $f^{-1}(C) = S \in \tau_\omega \times \tau_\omega$ for every an open set $C \in H$. And, $S = A \times B$ where $A, B \in \tau_\omega$. Thus $f(S) = f(A \times B) \subseteq C$. Conversely, suppose for each open neighbourhood C in H there exists $A, B \in \tau_\omega$ such that $f(A \times B) \subseteq C$ and, $A \times B \in \tau_\omega \times \tau_\omega$, we have the inverse image of an open set is in $\tau_\omega \times \tau_\omega$. Hence f is ω -continuous. \square

2. ω -Topological Groups

In this section, we introduce and study a new class of topological groups by using ω -open sets and ω -continuity, which is called ω -topological groups.

Definition 2.1 [12] A topological group (G, \odot, τ) consists of a group (G, \odot) and a topology τ on G for which the multiplication map $\gamma : G \times G \rightarrow G$ such that $\gamma(x, y) = x \odot y$ and the inversion map $i : G \rightarrow G$ such that $i(x) = x^{-1}$ are continuous.

Now let $i : G \rightarrow G$ such that $i(x) = x^{-1}$ be the inverse map which is continuous in a topological group (G, \odot, τ) , and let U be an open neighborhood of h . Then $i^{-1}(U) = U^{-1}$ is open and contains h^{-1} .

Definition 2.2 A 3-tuple (G, \odot, τ) is called an ω -topological group if

1. for each open neighbourhood W of $x \odot y$ in G there exist an ω -open neighborhoods U of x and V of y such that $U \odot V \subseteq W$.
2. for each open neighbourhood N of x^{-1} there exist an ω -open neighborhoods M of x such that $M^{-1} \subseteq N$.

For a subsets $A, B \subseteq G$, $A^{-1} = \{a^{-1} : a \in A\}$ and $A \odot B = \{a \odot b : a \in A, b \in B\}$.

By Lemma 1.2 and by definition of ω -continues, it is equivalently saying that in an ω -topological group, multiplication and inversion are ω -continuous.

Theorem 2.1 Let (G, \odot, τ) be an ω -topological group. Then the functions $i : G \rightarrow G$, where $i(x) = x^{-1}$ and $g : G \times G \rightarrow G$, where $g(x, y) = x \odot y$ are ω -continuous.

Proof: (1): Let $x \in G$ and N be the open neighbourhood of x^{-1} , let e be the identity element of G . Then there exist an ω -open neighbourhoods M_e of e and M_x of x such that $M_e \odot M_x^{-1} \subseteq N$. Thus $i(M_x) = M_x^{-1} = e \odot M_x^{-1} \subseteq M_e \odot M_x^{-1} \subseteq N$ implies that i is ω -continuous on G .

(2): Let $(x, y) \in G \times G$, let N be open neighbourhood of $x \odot y$. Then there exist an ω -open neighbourhoods M_x of x and M_y of y^{-1} such that $M_x \odot M_y^{-1} \subseteq N$ and M_y^{-1} is an ω -open neighbourhood of y . Since $M_x \times M_y^{-1} \in \tau_\omega \times \tau_\omega$ is neighbourhood of (x, y) . Thus $g(M_x \times M_y^{-1}) = M_x \odot M_y^{-1} \subseteq N$ implies that g is ω -continuous function. \square

It follows from the above definition that every topological group is an ω -topological group and if U is open in τ , then U^{-1} is also ω -open.

The following lemma will be used in the sequel.

Lemma 2.1 If (G, \odot, τ) is an ω -topological group, then

1. If $A \in \tau$, then $A^{-1} \in \tau_\omega$.
2. If $A \in \tau$ and $B \subseteq G$, then $A \odot B$ and $B \odot A$ are both in τ_ω .

Proof: (1): It follows by Theorem 2.1.

(2): Let $x \in B$ and $z \in A \odot x$, $z = y \odot x$ for some $y \in A = (A \odot x) \odot x^{-1}$. Now, $y = z \odot x^{-1}$ and by Definition 2.2, there exists ω -open neighbourhoods M_z of z and $M_{x^{-1}}$ of x^{-1} such that $M_z \odot x^{-1} \subseteq M_z \odot M_{x^{-1}}^{-1} \subseteq A$, we have $z \in M_z \subseteq A \odot x$, thus $A \odot x \in \tau_\omega$. Since arbitrary union of ω -open sets is ω -open, we have $\cup\{A \odot x : x \in B\} = A \odot B \in \tau_\omega$. Also $B \odot A$ in τ_ω . \square

Theorem 2.2 Let (G, \odot, τ) be an ω -topological group. Then the function $f : G \times G \rightarrow G$, where $f(x, y) = x \odot y^{-1}$ is ω -continuous relative to the product topology for $G \times G$.

Proof: For any $(x, y) \in G \times G$, let N be open neighbourhood of $x \odot y^{-1}$. Then there exist an ω -open neighbourhoods M_x of x and M_y of y such that $M_x \odot M_y^{-1} \subseteq N$ and $M_x \times M_y \in \tau_\omega \times \tau_\omega$ is neighbourhood of (x, y) . Thus $f(M_x \times M_y) = M_x \odot M_y^{-1} \subseteq N$ implies that f is ω -continuous on $G \times G$. \square

Theorem 2.3 Let H be any closed subset of an ω -topological group (G, \odot, τ) . Then $g \odot H$ and $H \odot g$ are ω -closed for all $g \in G$.

Proof: Let $x \in Cl_\omega(g \odot H)$. Let $b = g^{-1} \odot x$ and D be an open neighbourhood of b . Then by Definition of 2.2, there exists $A, B \in \tau_\omega$ of g^{-1} and x in G , respectively such that $A \odot B \subseteq D$. Since $x \in Cl_\omega(g \odot H)$ we have $B \cap (g \odot H) \neq \emptyset$. Let $c \in B \cap (g \odot H)$, then $g^{-1} \odot c \in H \cap (A \odot B) \subseteq H \cap D$ which implies that $H \cap D \neq \emptyset$. Thus b is a limit point of H . Since H is closed we have $b \in H$. Now $x = g \odot b$ and so $x \in (g \odot H)$. Hence $Cl_\omega(g \odot H) \subseteq g \odot H$ and since $g \odot H \subseteq Cl_\omega(g \odot H)$ we have $g \odot H = Cl_\omega(g \odot H)$ and $g \odot H$ is ω -closed for all $g \in G$. \square

Definition 2.3 A bijective function $f : (G, \tau) \rightarrow (H, \sigma)$ is said to be ω -homeomorphism if it is ω -continuous and ω -open.

The following simple result is of fundamental importance in what follows.

Theorem 2.4 Let (G, \odot, τ) be an ω -topological group. Then each left (right) translation $l_g : G \rightarrow G$, $l_g(x) = g \odot x$ ($r_g : G \rightarrow G$) and inversion $i : G \rightarrow G$, where $i(x) = x^{-1}$ are an ω -homeomorphism

Proof: Let $a, b \in G$ be arbitrary and D_1 be an open set containing $a \odot b$. By Definition 2.2, there exists ω -open set E_1 containing a and ω -open set F_1 containing b such that $E_1 \odot F_1 \subseteq D_1$ which implies that $a \odot F_1 \subseteq D_1$ and so left translation is ω -continuous. Let A be an open set in G . Then by Lemma 2.1 (2) and Theorem 2.3, the set $l_x(A) = x \odot A = \{x\} \odot A$ is ω -open in G , which means that l_x is an ω -open mapping. Hence each left translation is ω -homeomorphism.

Let H be an open set containing a^{-1} . Since G is ω -topological group, for each an open set H containing a^{-1} , there exists ω -open set K containing a such that $K^{-1} \subseteq H$. Thus, inversion mapping is ω -continuous. Let A be an open set containing a . Since inversion is ω -continuous there exists ω -open set B containing a^{-1} such that $B^{-1} \subseteq A$, which means that the inversion is an ω -open mapping. Hence each inversion is ω -homeomorphism. \square

Recall that a family β of subsets of a topological space G is said to be a neighbourhood base of $x \in G$ if for each open subset U of G containing x there exists $B \in \beta$ such that $x \in B \subseteq U$.

Theorem 2.5 Let (G, \odot, τ) be an ω -topological group and let β_e be the base at identity element e of G . Then

1. for every $U \in \beta_e$, there exists $V \in \tau_\omega(e)$ such that $V^2 \subseteq U$.
2. for every $U \in \beta_e$, there exists $V \in \tau_\omega(e)$ such that $V^{-1} \subseteq U$.
3. for every $U \in \beta_e$ and $x \in U$, there exists $V \in \tau_\omega(e)$ such that $V \odot x \subseteq U$.

Proof: (1). Let $U \in \beta_e$. Then U is an open set containing e . We know that $e = e \odot e$ and by Definition 2.2, there exists two ω -open sets A and B containing e such that $A \odot B \subseteq U$. Let V be the smallest among A and B and so there exists ω -open set V containing e such that $V^2 \subseteq U$.

(2). Let $U \in \beta_e$. Then U is an open set containing e . We know that the inverse of e is itself. Since inversion mapping $a \rightarrow a^{-1}$ is ω -continuous, then there exists ω -open set V containing e such that $V^{-1} \subseteq U$.

(3). Let $U \in \beta_e$ and $x \in U$. We know that $x = e \odot x$. Since G is an ω -topological group, by Definition 2.2, there exists ω -open set A containing x and ω -open set V containing e such that $A \odot V \subseteq U$. So for all $x \in U$, there is ω -open set V containing e such that $V \odot x \subseteq U$. \square

Corollary 2.1 Let (G, \odot, τ) be an ω -topological group and x be any element of G . Then for any local base β_e at $e \in G$, then each of the families $\beta_x = \{x \odot U : U \in \beta_e\}$ and $\{x \odot U^{-1} : U \in \beta_e\}$ is an ω -open neighbourhood system at x .

Definition 2.4 An ω -topological space (G, \odot, τ) is said to be ω -homogeneous if for all $x, y \in X$ there is an ω -homeomorphism f of the space X onto itself such that $f(x) = y$.

Corollary 2.2 Every ω -topological group (G, \odot, τ) is an ω -homogeneous space.

Proof: Take any elements x and y in G and put $z = x^{-1} \odot y$. Then l_z is an ω -homeomorphism of G and $l_z(x) = x \odot z = x \odot (x^{-1} \odot y) = y$. \square

Theorem 2.6 Let (G, \odot, τ) be an ω -topological group and H a subgroup of G . If H contains a nonempty open set, then H is ω -open in G .

Proof: Let U be a nonempty open subset of G with $U \subseteq H$. By Theorem 2.4, each translation is ω -homeomorphism, so any $h \in H$ the set $l_h(U) = h \odot U$ is ω -open in G and it is a subset of H . Therefore, the subgroup $H = \bigcup_{h \in H} (h \odot U)$ is ω -open in G as the union of ω -open sets. \square

Theorem 2.7 Every open subgroup H of an ω -topological group (G, \odot, τ) is also an ω -topological group (called ω -topological subgroup of G).

Proof: We have to show that for each $x, y \in H$ and each open set $W \subseteq H$ containing $x \odot y^{-1}$ there exist ω -open set $U \subseteq H$ of x and $V \subseteq H$ of y such that $U \odot V^{-1} \subseteq W$. Since H is open in G , W is an open subset of an ω -topological group G there are an ω -open sets A of x and B of y , respectively such that $A \odot B^{-1} \subseteq W$. The sets $U = A \cap H$ and $V = B \cap H$ are ω -open subsets of H because H is open (also ω -open). Thus, $U \odot V^{-1} \subseteq A \odot B^{-1} \subseteq W$, which means that H is an ω -topological group. \square

Theorem 2.8 Let (G, \odot, τ) be an ω -topological group. Then every open subgroup of G is ω -closed in G .

Proof: Let H be an open subgroup of G . Then by Theorem 2.3 every left coset $x \odot H$ of H is ω -open. Thus $Y = \bigcup_{x \in G \setminus H} x \odot H$ is also ω -open as a union of ω -open sets. Hence $H = G \setminus Y$ is ω -closed. \square

A mapping $f : G \rightarrow H$ is called a homomorphism if it satisfies $h(x \odot y) = h(x) \odot h(y)$ for all $x, y \in G$. It is easy to see that if e is the identity of G , then $h(e)$ is the identity of H for every homomorphism h of G to H .

Theorem 2.9 Let $f : G \rightarrow H$ be a homomorphism of ω -topological groups. If f is ω^* -continuous at the neutral element e_G of G , then f is ω -continuous on G .

Proof: Let $x \in G$. Suppose that W is an open set containing $y = f(x)$ in H . Since the left translations in H are ω -continuous mappings, there is an ω -open set V containing of the element e_H of H such that $l_y(V) = y \odot V \subseteq W$. Since f is ω^* -continuous of f at e_G it follows the existence of an ω -open set $U \subseteq G$ containing e_G such that $f(U) \subseteq V$. Since $l_x : G \rightarrow G$ is an ω -open mapping, the set $x \odot U$ is an ω -open set containing x , and we have $f(x \odot U) = f(x) \odot f(U) = y \odot f(U) \subseteq y \odot V \subseteq W$. Hence f is ω -continuous at the point x of G , hence on G , because x was an arbitrary element in G . \square

Definition 2.5 [2] An topological space (G, τ) is said to be ω -regular if for each closed set $F \subseteq X$ and each $x \notin F$, there exists two disjoint sets $H, W \in \tau_\omega$ such that $F \subseteq H$ and $x \in W$.

A subset A of a group G is symmetric if $A = A^{-1}$.

Theorem 2.10 Let (G, \odot, τ) be an ω -topological group with base \mathcal{B}_e at the identity element e such that for each $U \in \mathcal{B}_e$ there is a symmetric open neighbourhood V of e such that $V \odot V \subseteq U$. Then G satisfies the axiom of ω -regularity at e .

Proof: Let U be an open set containing the identity e . Then, by assumption, there is a symmetric open neighbourhood V of e satisfying $V \odot V \subseteq U$. We have to show that $Cl_\omega(V) \subseteq U$. Let $x \in Cl_\omega(V)$. The set $x \odot V$ is an ω -open neighbourhood of x , which implies $x \odot V \cap V \neq \emptyset$. Therefore, there are points $a, b \in V$ such that $b = x \odot a$, that is, $x = b \odot a^{-1} \in V \odot V^{-1} = V \odot V \subseteq U$. Hence $Cl_\omega(V) \subseteq U$. \square

Theorem 2.11 Let A and B be subsets of an ω -topological group (G, \odot, τ) . Then:

1. $Cl_\omega(A) \odot Cl_\omega(B) \subseteq Cl(A \odot B)$;
2. $[Cl_\omega(A)]^{-1} \subseteq Cl(A^{-1})$.

Proof: (1): Suppose that $x \in Cl_\omega(A)$, $y \in Cl_\omega(B)$. Let W be an open neighbourhood of $x \odot y$. Then there are ω -open neighbourhoods U and V of x and y , respectively such that $U \odot V \subseteq W$. Since $x \in Cl_\omega(A)$, $y \in Cl_\omega(B)$, there exists $a \in A \cap U$ and $b \in B \cap V$. Then $a \odot b \in (A \odot B) \cap (U \odot V) \subseteq (A \odot B) \cap W$. This means $x \odot y \in Cl(A \odot B)$, i.e. we have $Cl_\omega(A) \odot Cl_\omega(B) \subseteq Cl(A \odot B)$.

(2): Let $x \in [Cl_\omega(A)]^{-1}$ and let U be an open neighbourhood of x . Since the inverse mapping is ω -continuous, the set U^{-1} is ω -open neighbourhood of x^{-1} . Since $x^{-1} \in Cl_\omega(A)$, and $U^{-1} \cap A \neq \emptyset$. Therefore, $U \cap A^{-1} \neq \emptyset$, that is $x \in Cl(A^{-1})$, and so $[Cl_\omega(A)]^{-1} \subseteq Cl(A^{-1})$. \square

The inclusions in the previous theorem are not true for ω -topological groups as shown by the following example.

Example 2.1 The set $G = \{1, 3, 5, 7\}$ is an abelian group under multiplication $m = \odot_8$ the usual multiplication modulo 8. Endow G with the topology $\tau = \{G, \emptyset, \{1\}, \{1, 3, 5\}\}$. We have $\tau_\omega = P(G)$. Take a sets $A = \{1, 3\}$ and $B = \{5, 7\}$. Then $Cl_\omega(A) = A$ and $Cl_\omega(B) = B$. Therefore, $Cl_\omega(A) \odot Cl_\omega(B) = A \odot B = \{5, 7\}$, and $Cl_\omega(A \odot B) = A \odot B = \{5, 7\}$ and $Cl(A \odot B) = \{3, 5, 7\}$. Hence $Cl_\omega(A) \odot Cl_\omega(B) \neq Cl(A \odot B)$.

Also $B^{-1} = \{5, 7\}$, $Cl(B^{-1}) = \{3, 5, 7\}$, $[Cl_\omega(B)]^{-1} = B^{-1} = \{5, 7\}$, $A^{-1} = \{1, 3\}$, $Cl(A^{-1}) = G$ and $[Cl_\omega(A)]^{-1} = A$. Hence $[Cl_\omega(A)]^{-1} \neq Cl(A^{-1})$.

Remark 2.1 The set $G = \{1, 3, 5, 7\}$ is an abelian group under multiplication $m = \odot_8$ the usual multiplication modulo 8. Endow G with the topology $\tau = \{G, \emptyset, \{1\}, \{1, 3, 5\}\}$. We have (G, \odot_8, τ) is an ω -topological group since τ_ω is the power set of G and not a topological group since the multiplication map $\gamma : G \times G \rightarrow G$ such that $\gamma(x, y) = x \odot y$ is not continuous.

Theorem 2.12 If V is an open neighbourhood of e in ω -topological group (G, \odot, τ) , then $V \subseteq Cl_\omega(V) \subseteq V^2$.

Proof: Since $g \odot V$ is an ω -open neighbourhood of g , it must intersects V . Thus there is $t \in V$ of the form $g \odot v^{-1}$, where $v \in V$. But $g = t \odot v \in V \odot V = V^2$ and $Cl_\omega(V) \subseteq V^2$. \square

The previous theorem is not true if V is not an open neighbourhood of e as shown by the following example.

Example 2.2 The set $G = \{1, 3, 5, 7\}$ is an abelian group under multiplication $m = \odot_8$ the usual multiplication modulo 8. Endow G with the topology $\tau = \{G, \emptyset, \{1\}, \{1, 3, 5\}\}$. Take a set $V = \{5, 7\}$ with $e \notin V$. Then $Cl_\omega(V) = V$ and $V^2 = \{1, 3\}$. Therefore, $V \subseteq Cl_\omega(V) \not\subseteq V^2$.

Theorem 2.13 If (G, \odot, τ) is an ω -topological group, let $A \subseteq G$, then $Cl_\omega(A) \subseteq A \odot U$ every open neighbourhood U of e .

Proof: Since (G, \odot, τ) is an ω -topological group, for every open neighbourhood U of e , there exists $V \in \tau_\omega(e)$ such that $V^{-1} \subseteq U$. Let $x \in Cl_\omega(A)$ and V is an ω -open neighbourhood of x . Then there exists $a \in A \cap (x \odot V)$, that is $a \in x \odot V$. This implies that $a = x \odot b$ for some $b \in V$ and $x = a \odot b^{-1} \in a \odot V^{-1} \subseteq A \odot U$. Hence $Cl_\omega(A) \subseteq A \odot U$. \square

The previous theorem is not true if U is not an open neighbourhood of e as shown by the following example.

Example 2.3 The set $G = \mathbb{Z}_3 = \{0, 1, 2\}$ and \oplus_3 -the usual addition modulo 3, where $\tau = \{\mathbb{Z}_3, \emptyset, \{0\}, \{0, 1\}\}$. $\tau^c = \{\mathbb{Z}_3, \emptyset, \{1, 2\}, \{2\}\}$. Then (G, \oplus, τ) is an ω -topological group. Take a sets $A = \{2\}$ and $U = \{1, 2\}$. Then $Cl_\omega(A) = A$ and $A \oplus U = \{0, 1\}$. Therefore, $Cl_\omega(A) \not\subseteq A \oplus U$.

The previous theorem is not true if $A \subseteq G$, $Cl(A) \not\subseteq A \odot U$ for every open neighbourhood U of e as shown by the following example.

Example 2.4 The set $G = \mathbb{Z}_3 = \{0, 1, 2\}$ and \oplus_3 -the usual addition modulo 3, where $\tau = \{\mathbb{Z}_3, \emptyset, \{0\}, \{0, 1\}\}$. $\tau^c = \{\mathbb{Z}_3, \emptyset, \{1, 2\}, \{2\}\}$. Then (G, \oplus, τ) is an ω -topological group. Take a sets $A = \{0, 2\}$ and $U = \{0\}$ be open neighbourhood of e . Then $Cl(A) = \mathbb{Z}_3$ and $A \oplus U = \{0, 2\}$. Therefore, $Cl(A) \not\subseteq A \oplus U$.

Theorem 2.14 If (G, \odot, τ) is an ω -topological group and \mathcal{B}_e be a base of the space (G, τ) at the neutral element e , then for every subset A of G , we have $Cl_\omega(A) = \{A \odot U : U \in \mathcal{B}_e\}$.

Proof: We only have to verify that if $x \notin Cl_\omega(A)$, then there exists $U \in \mathcal{B}_e$ such that $x \notin A \odot U$. Since $x \notin Cl_\omega(A)$, then there exists an ω -open neighbourhood W of e such that $x \odot W \cap A = \emptyset$. Take U in \mathcal{B}_e satisfying the condition $U^{-1} \subseteq W$. Then $x \odot U^{-1} \cap A = \emptyset$, that is $\{x\} \cap A \odot U = \emptyset$. This implies that $x \notin A \odot U$. \square

Definition 2.6 [1] A topological space (G, τ) is called ω - T_2 -space if for every two different points x, y of G , there exist two disjoint ω -open sets U, V of G such that $x \in U$ and $y \in V$.

Theorem 2.15 Let (G, \odot, τ) be an ω -topological group, then (G, τ) is ω -regular and ω - T_2 -space.

Proof: Suppose that $F \subseteq G$ is closed and $s \notin F$. Multiplication by s^{-1} allows us to assume that $s = e$. Since F is closed, $W = G \setminus F$ is an open neighbourhood of e . Then there exists $V \in \tau_\omega(e)$ such that $V^2 \subseteq W$. Hence $Cl_\omega(V) \subseteq V \odot W \subseteq W$. Then $U = G \setminus Cl_\omega(V)$ is an ω -neighbourhood containing F which is disjoint from V . This proves that (G, \odot, τ) is ω -regular. That is, $e \in V \in \tau_\omega$ and $e \neq y \in F \subseteq U \in \tau_\omega$ such that $V \cap U = \emptyset$. Hence G is ω - T_2 -space. \square

Theorem 2.16 A nonempty subgroup H of an ω -topological group G is ω -open if its interior is nonempty.

Proof: Assume that $x \in Int(H)$. Then by definition, there is an open set V such that $x \in V \subseteq H$. For every $y \in H$, we have $y \odot V \subseteq y \odot H = H$. Since V is open, so is $y \odot V$ is ω -open, we conclude that $H = \cup\{y \odot V : y \in H\}$ is an ω -open set. \square

Theorem 2.17 Let (G, \odot, τ) is an ω -topological group. If U is an open set, then $H = \cup_{n=1}^{\infty} U^n$ is an ω -open set. Also if U be any symmetric open neighbourhood of e . Then the set H is subgroup of G .

Proof: Since U is open in an ω -topological group (G, \odot, τ) , then by Lemma 2.1, $U \odot U = U^2 \in \tau_\omega$, $U^2 \odot U = U^3 \in \tau_\omega$ and similarly U^4, U^5, \dots all are ω -open sets in G . Thus the set $H = \cup_{n=1}^{\infty} U^n$ being the union of ω -open sets is an ω -open set.

We prove that $H = \cup_{n=1}^{\infty} U^n$ is a subgroup of G . Let $x, y \in H$. If $x = u^k, y = u^l, x \odot y = u^k \odot u^l = u^{k+l} \in H, x^{-1} = (u^k)^{-1} = (u^{-1})^k = u^k \in H$. This implies that H is a subgroup of G . \square

Theorem 2.18 If A be a subset of an ω -topological group (G, \odot, τ) , then $[Int_{\omega}(A)]^{-1} = Int_{\omega}(A^{-1})$.

Proof: Since the inverse mapping $i : G \rightarrow G$ is an ω -homeomorphism, $Int_{\omega}(i(A)) = Int_{\omega}(A^{-1}) = i(Int_{\omega}(A)) = [Int_{\omega}(A)]^{-1}$. \square

Definition 2.7 Let U be an ω -open neighbourhood of the neutral element e of an ω -topological group (G, \odot, τ) . A subset A of G is called ω -disjoint of U if $b \notin a \odot U$ for any disjoint $a, b \in A$.

Example 2.5 The set $G = \{1, 3, 5, 7\}$ is an abelian group under multiplication $m = \odot_8$ the usual multiplication modulo 8. Endow G with the topology $\tau = \{G, \emptyset, \{1\}, \{1, 3, 5\}\}$. Take a set $A = \{1, 7\}$ and $U = \{1, 3, 5\}$. Then a subset A of G is ω -disjoint of U . Since, $1 \notin 7 \odot U$ and $7 \notin 1 \odot U$.

Definition 2.8 A collection Ω of subsets of a topological space (G, τ) is ω -discrete, provided each $x \in G$ has an ω -open neighbourhood that intersects at most one member of Ω .

Theorem 2.19 Let U be an ω -open and V be open neighbourhoods of the neutral element e in an ω -topological group (G, \odot, τ) such that $V^4 \subseteq U$ and $V^{-1} = V$. If a subset A of G is ω -disjoint of U , then the family of ω -open sets $\{a \odot V : a \in A\}$ is ω -discrete in G .

Proof: It suffices to verify that, for every $x \in G$, an ω -open neighbourhood $x \odot V$ of x intersects at most one element of the family $\{a \odot V : a \in A\}$. Suppose to the contrary that, for some $x \in G$, there exists distinct elements $a, b \in A$ such that $x \odot V \cap a \odot V \neq \emptyset$ and $x \odot V \cap b \odot V \neq \emptyset$. Then $x^{-1} \odot a \in V^2$ and $b^{-1} \odot x \in V^2$, where $b^{-1} \odot a = (b^{-1} \odot x) \odot (x^{-1} \odot a) \in V^4 \subseteq U$. This implies that $a \in b \odot U$. This contradicts the assumption that A is ω -disjoint of U . \square

Acknowledgments

The author wishes to thank the referees for useful comments and suggestions.

References

1. S. Al Ghour and W. Zareer, *Omega open sets in generalized topological spaces*, J. Nonlinear Sci. Appl., **9** (2016), 3010–3017.
2. A. Al-Omari and H. Al-Saadi, *On ω^* -connected spaces*, Songklanakarin J. Sci. Technol., **(42)**, No. 2 (2020), 280–283.
3. A. Al-Omari and Mohd Salmi Md Noorani, *Regular Generalized ω -Closed Sets*, Int. J. Math. Math. Sci., vol. 2007, Article ID 016292, 11 pages, 2007. <https://doi.org/10.1155/2007/16292>
4. A. Al-Omari and Mohd Salmi Md Noorani, *Contra- ω -Continuous and Almost Contra- ω -Continuous*, Int. J. Math. Math. Sci., vol. 2007, Article ID 040469, 13 pages, 2007. <https://doi.org/10.1155/2007/40469>
5. A. Al-Omari, T. Noiri and Mohd. Salmi Md. Noorani, *Characterizations of Strongly Compact Spaces*, Int. J. Math. Math. Sci., vol. 2009, Article ID 573038, 9 pages, 2009. <https://doi.org/10.1155/2009/573038>
6. A. Al-Omari, T. Noiri and Mohd. Salmi Md. Noorani, *Weak and Strong Forms of ω -Continuous Functions*, Int. J. Math. Math. Sci., vol. 2009, Article ID 174042, 12 pages, 2009. <https://doi.org/10.1155/2009/174042>
7. A. Al-Omari and Mohd. Salmi Md. Noorani, *Decomposition of continuity via b -open aet*, Bol. Soc. Paran. Mat., **26**(1-2)(2008), 53–64.
8. k. Al-Zoubi, and B. Al-Nashef, *The topology of ω -open subsets*, Al-Manareh **9** (2) (2003), 169–179.
9. K. Al-Zoubi, *On generalized ω -closed sets*, Intern. J. Math. Math. Sci., **13** (2005), 2011–2021.
10. H. Z. Hdeib, *ω -closed mappings*, Rev. Colombiana Mat., **16** (1982), 65–78.
11. H. Z. Hdeib, *ω -continuous functions*, Dirasat J., **16** (1989), 136–153.
12. Higgins, Phillips J. An Introduction to Topological Groups. London: Cambridge University Press, 1974.
13. M. Hussain, M. Khan and C. Ozel, *On generalized topological groups*, Filomat, **27** (2013), 567–575.
14. M. Hussain, M. Khan and C. Ozel, *More on generalized topological groups*, Creative Mathematics and Informatics, **22** (2013), 47–51.

Ahmad Al-Omari,

Al al-Bayt University,

Department of Mathematics,

Jordan.

E-mail address: omarimutah1@yahoo.com