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abstract: In the present work, we establish the existence of common fixed points for pairs of subsequential
continuous mappings and variants of sequential continuous mappings as well as variants of R-weakly commut-
ing mappings, non-compatible and faintly compatible mappings satisfying a generalized (ψ, ϕ)-weak integral
contractive condition involving cubic terms of distance functions. We also discuss the existence and uniqueness
of common solutions for a system of functional equations arising in dynamic programming.

Key Words:Generalized (ψ, ϕ)-weak integral contractive condition, faintly compatible mappings,
R-weakly commuting mappings, subsequential continuous mappings, variants of sequential continuous
mappings, functional equations.

Contents

1 Introduction and preliminaries 1

2 Main results 4

3 Consequences and Example 12

4 Application 14

5 Conclusion 17

1. Introduction and preliminaries

Banach contraction principle [5] ensures the existence and uniqueness of fixed point for every con-
traction mapping defined on a complete metric space. Over a hundred years, researchers have made efforts
to extend, generalize and improve the Banach fixed point theorem in various directions. Jungck [21] was
the first to prove a common fixed point theorem for a pair of commuting mappings. This theorem paved
the path of generalization of the Banach contraction principle for a pair/pairs of mappings satisfying a
set of minimal commutative conditions.

Now, we recall some basic definitions that are useful for this paper.
Let (E, d) be a metric space and (S, T ) be a pair of self mappings of E. Let Xn denotes a collection of
all sequences {un} of E such that lim

n→∞
Sun = lim

n→∞
Tun = z, for some z ∈ E.

Definition 1.1 The pair (S, T ) is said to be

(i) compatible [22] if and only if lim
n→∞

d(STun, TSun) = 0, for any sequence {un} ∈ Xn.

(ii) non-compatible [22] if there exists a sequence {un} ∈ Xn such that lim
n→∞

d(STun, TSun) is

either non zero or does not exist.

(iii) weakly compatible [23] if the pair commutes on the set of coincidence points, i.e., STu = TSu,
whenever Su = Tu for some u ∈ E.

(iv) occasionally weakly compatible [3], if there exists a coincidence point u ∈ E such that Su = Tu
implies STu = TSu.
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In 1994, Pant [33] introduced the notion of R−weak commutativity in metric spaces. In 1997, Pathak
et al. [37] gave the generalization of R-weakly commuting in the form of R-weakly commuting of type
(AS) and type (AT ). Further, Kumar and Garg [28] introduced the notion of R-weakly commuting of
type (P ).

Definition 1.2 The pair (S, T ) is said to be

(i) R-weakly commuting [33] if there exists R > 0 such that d(STu, TSu) ≤ Rd(Su, Tu),

(ii) R-weakly commuting of type (AS) [37] if there exists R > 0 such that d(STu, TTu) ≤ Rd(Su, Tu),

(iii) R-weakly commuting of type (AT ) [37] if there exists R > 0 such that d(TSu, SSu) ≤ Rd(Su, Tu),

(iv) R-weakly commuting of type (P ) [28] if there exists R > 0 such that d(SSu, TTu) ≤ Rd(Su, Tu),

for all u ∈ E.

Remark 1.1 Notions of R-weakly commuting and R-weakly commuting of type (AS) or type (AT )
are independent to each other,(see, [37]). But at a coincidence point, R-weakly commuting and all
the notions analogous to R-weakly commuting are equivalent and imply commutativity, (see, [1]
). Both compatible and non-compatible mappings can imply R-weakly commuting of type (AS) or
(AT ),(see, [32,36] ).
In 2010, Pant et. al [31] redefined the concept of occasionally weakly compatible mappings in the form

of conditional commuting mappings. In 2012, Pant and Bisht [35] introduced a concept of conditional
compatible mappings and proved that conditional compatibility is independent of compatibility condition.
They also proved that conditional compatible mappings need not commute at the coincidence points. In
2013, Bisht and Sahhzad [10] introduced the notion of conditionally compatible mappings in a different
setting and coined it as faintly compatible mappings.

Definition 1.3 The pair (S, T ) is said to be

(i) conditionally commuting [31] if the pair commutes on a non empty subset of the set of coinci-
dence points whenever the set of coincidences is non empty.

(ii) conditionally compatible [35] if and only if there exists a sequence {vn} ∈ Xn such that

lim
n→∞

d(STvn, TSvn) = 0,

whenever the set Xn ̸= ∅
(iii) faintly compatible [10] if and only if the pair (S, T ) is conditionally compatible and S and T

commute on a non empty subset of coincidence points whenever the set of coincidences is non
empty.

For a comparative discussion on Definition 1.3 along with Definition 1.1, we present the following
examples.

(a) Conditional compatibility does not imply compatibility, see the example given below

Example 1.1 Let E = [2, 10] and d be a usual metric. Let S, T : E → E be two mappings
defined as Su = 3, Tu = 6 − u, u ∈ [2, 3] and Su = 4, Tu = 10, u ∈ (3, 10]. If we consider
the constant sequence {un}, where un = 3, for each n, then lim

n→∞
Sun = 3, lim

n→∞
Tun = 3 and

lim
n→∞

d(STun, TSun) = 0, but if we consider the sequence {3 − 1
n}, then lim

n→∞
Sun = lim

n→∞
Tun = 3

and lim
n→∞

d(STun, TSun) = 1 ̸= 0. Thus S and T are conditionally compatible but not compatible.

(b) Faintly compatibility and non-compatibility are independent of each other, see examples given below

Example 1.2 Let E = [0, 10] and d be a usual metric. Let S, T : E → E be two mappings defined
as Su = 10, Tu = 0, u ∈ [0, 6) and Su = 0, Tu = u − 6, u ∈ [6, 10]. If we consider the sequence
{un}, where un = 6 + 1

n , for each n, then lim
n→∞

Sun = lim
n→∞

Tun = 0 and lim
n→∞

d(STun, TSun) =

10 ̸= 0.Thus S and T are non-compatible but not faintly compatible.
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(c) Weakly compatibility implies faintly compatibility but the converse may not be true.

Example 1.3 Let E = [0, 45 ] and d be a usual metric. Define self mappings S and T as Tu = 4−5u
10

and Su = 2
5 −

∣∣ 2
5 − u

∣∣, for all u ∈ E. Consider a constant sequence {un = 4
15} and a coincidence

point u = 4
15 for which the mappings S and T are commuting, therefore, the pair (S, T ) is faintly

compatible. But the mappings do not commute at the coincidence point u = 4
5 , hence, pair (S, T )

is not weakly compatible.

In 1998, Pant [34] introduced the concept of reciprocal continuity and initiated the study of fixed
points for discontinuous mappings. In 2009, Bouhadjera and Godet-Thobie [11] introduced the concept of
subsequential continuous mappings. In 2012, Gopal et al. [17] gave the concept of variants of sequential
continuous mappings ( type (AS), type (AT )). Motivated by Gopal et al. [17], Chauhan et al. [15]
presented the concept of sequential continuous mappings of type (P ).

Definition 1.4 The pair (S, T ) is said to be

(i) reciprocally continuous [34] if lim
n→∞

STun = Sz and lim
n→∞

TSun = Tz, for any sequence {un} ∈
Xn.

(ii) subsequential continuous [11], if there exists a sequence {un} ∈ Xn such that lim
n→∞

STun = Sz

and lim
n→∞

TSun = Tz.

(iii) sequentially continuous of type (AS) [17] if and only if there exists a sequence {un} ∈ Xn such
that lim

n→∞
STun = Sz and lim

n→∞
TTun = Tz.

(iv) sequentially continuous of type (AT ) [17] if and only if there exists a sequence {un} ∈ Xn such
that lim

n→∞
TSun = Tz and lim

n→∞
SSun = Sz.

(v) sequentially continuous of type (P ) [15] if and only if there exists a sequence {un} ∈ Xn such
that lim

n→∞
SSun = Sz and lim

n→∞
TTun = Tz.

Remark 1.2 If the pair (S, T ) is continuous then it is reciprocally continuous and subsequential
continuous also, but the converse is not true in general (see [26, Example 2.2]).

Remark 1.3 Subsequential continuity and reciprocal continuity are independent from each other(see
[26, Examples 2.3- 2.4]). Also, it may be noted that the concept of subsequential continuity and
sequential continuity of type (AS) and type (AT ) are independent of each other(see, [17, Example
2.1- 2.2]).
Khan et al. [27] gave the idea of altering the distance/control function as follows. An altering distance

is an increasing continuous function ϕ : [0,∞) → [0,∞) which vanishes only at zero. Many researchers
generalized the Banach contraction principle using control functions. In this direction, Boyd and Wong
[12] introduced the concept of ϕ contraction mappings as follows. A self mapping T defined on a complete
metric space E is said to be ϕ contraction mapping if d(Tu, Tv) ≤ ϕ(d(u, v)), for all u, v ∈ E, where
ϕ : [0,∞) → [0,∞) is an upper semi continuous function from right such that 0 ≤ ϕ(t) < t for all t > 0.

Alber and Guerre- Delabriere [2] generalized ϕ contraction to ϕ−weak contraction in Hilbert spaces,
and further, Rhoades [39] proved some results of ϕ−weak contraction in the setting of complete metric
spaces.

A self mapping T of a complete metric space is said to be a ϕ− weak contraction, if for each u, v ∈ E,
there exists a continuous non-decreasing function ϕ : [0,∞) → [0,∞) satisfying ϕ(t) > 0, for all t > 0
and ϕ(0) = 0 such that d(Tu, Tv) ≤ d(u, v)− ϕ(d(u, v)).

In 2013, Murthy and Prasad [30] introduced a new weak contraction involving cubic terms of distance
functions.

Theorem 1.1 [30] Let T be a self mapping on a complete metric space E satisfying

[1 + pd(u, v)]d2(Tu, Tv) ≤ pmax
{1
2
[d2(u, Tu)d(v, Tv) + d(u, Tu)d2(v, Tv)],

d(u, Tu)d(u, Tv)d(v, Tu), d(u, Tv)d(v, Tu)d(v, Tv)
}
+m(u, v)− ϕ(m(u, v)), (1.1)
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where

m(u, v) = max
{
d2(u, v), d(u, Tu)d(v, Tv), d(u, Tv)d(v, Tu),

1

2
[d(u, Tu)d(u, Tv) + d(v, Tu)d(v, Tv)]

}
, (1.2)

p ≥ 0 is a real number and ϕ : [0,∞) → [0,∞) is a continuous function with ϕ(t) = 0 if and only if t = 0
and ϕ(t) > 0, for each t > 0. Then T has a unique fixed point in E.

In 2022, Kavita and Kumar [25] generalized the weak contraction (1.1) by introducing a generalized
(ψ, ϕ)−weak contraction involving cubic terms of distance functions.

In 2002, Branciari [13] introduced an integral version of the Banach contraction principle and obtained
a fixed point theorem for a contractive mapping of integral type in metric spaces as follows.

Theorem 1.2 [13] Let (E, d) be a complete metric space and f : E → E be a mapping such that for
each u, v ∈ E and c ∈ (0, 1)

d(fu,fv)∫
0

ζ(t)dt < c

d(u,v)∫
0

ζ(t)dt,

where ζ : [0,∞) → [0,∞) is a Lebesgue integrable function, which is summable on each compact subset of

[0,∞) such that for each ϵ > 0,
ϵ∫
0

ζ(t) dt > 0. Then f has a unique fixed point z ∈ E and lim
n→∞

fnu = z,

for each u ∈ E.

In recent years, researchers have been fascinated with the study of common fixed points for pairs of
mappings satisfying contractive conditions of integral type and proved several fixed point theorems for
more general integral contractive mappings, see, for example, [4,6,15,16,29,40,41].

The present work aims to establish the existence of a common fixed point for pairs of subsequential
continuous mappings and variants of sequential continuous mappings as well as variants of R-weakly
commuting mappings, faintly compatible mappings satisfying a generalized (ψ, ϕ)-weak integral contrac-
tive condition involving cubic terms of distance functions that improve the Theorem 1.1 and the results
of Branciari [13], Jain et al. [18,20], Kang et al. [24] and Murthy and Prasad [30], Kumar et al. [29] and
many more results cited in the literature.

2. Main results

Let Ψ be a collection of all non decreasing functions ψ : [0,∞)4 → [0,∞) such that ψ is an upper
semi continuous in each coordinate variables and for each t > 0,

∆(t) = max{ψ(t, t, 0, 0), ψ(0, 0, 0, t), ψ(0, 0, t, 0), ψ(t, t, t, t)} ≤ t.

Let Φ be a collection of all continuous functions ϕ : [0,∞) → [0,∞) such that ϕ(t) > 0 and ϕ(0) = 0.
Let A be a collection of all sequences {un} of E such that lim

n→∞
fun = lim

n→∞
Sun = x, for some x ∈ E

and B be a collection of all sequences {vn} of E such that lim
n→∞

gvn = lim
n→∞

Tvn = y, for some y ∈ E,

where f, g, S and T are self mappings of a metric space E.

Now, we establish the existence of a fixed point for pairs of subsequential continuous mappings and
variants of sequential continuous mappings as well as variants of R-weakly commuting mappings.
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Theorem 2.1 Let (E, d) be a metric space and f , g, S and T be self mappings defined on E such that
for all u, v ∈ E, there exists a function ϕ ∈ Φ, a function ψ ∈ Ψ and a real number p ≥ 0 such that

[
1 + p

d(fu,gv)∫
0

ζ(t)dt
]( d(Su,Tv)∫

0

ζ(t)dt
)2

≤ pψ

(( d(fu,Su)∫
0

ζ(t)dt
)2

·
d(gv,Tv)∫

0

ζ(t)dt,

∫ d(fu,Su)

0

ζ(t)dt ·
(∫ d(gv,Tv)

0

ζ(t)dt
)2
,∫ d(fu,Su)

0

ζ(t)dt ·
∫ d(fu,Tv)

0

ζ(t)dt ·
∫ d(gv,Su)

0

ζ(t)dt,∫ d(fu,Tv)

0

ζ(t)dt ·
∫ d(gv,Su)

0

ζ(t)dt ·
∫ d(gv,Tv)

0

ζ(t)dt

)
+m(fu, gv)− ϕ(m(fu, gv)),

(2.1)

where

m(fu, gv) = max
{(∫ d(fu,gv)

0

ζ(t)dt
)2
,

∫ d(fu,Su)

0

ζ(t)dt ·
∫ d(gv,Tv)

0

ζ(t)dt,∫ d(fu,Tv)

0

ζ(t)dt ·
∫ d(gv,Su)

0

ζ(t)dt,

1

2
[

∫ d(fu,Su)

0

ζ(t)dt ·
∫ d(fu,Tv)

0

ζ(t)dt+∫ d(gv,Su)

0

ζ(t)dt ·
∫ d(gv,Tv)

0

ζ(t)dt]
}
,

(2.2)

and ζ : [0,∞) → [0,∞) is a Lebesgue integrable function which is summable on each compact subset

of [0,∞) such that for each ϵ > 0,
ϵ∫
0

ζ(t) dt > 0. Suppose the pairs (f, S) and (g, T ) are either of the

followings

(i) subsequential continuous as well as R-weakly commuting.

(ii) sequential continuous of type (Af ) and (Ag) as well as R-weakly commuting of type (Af ) and (Ag)
respectively.

(iii) sequential continuous of type (AS) and (AT ) as well as R-weakly commuting of type (AS) and (AT )
respectively.

(iv) sequential continuous of type (P ) as well as R-weakly commuting of type (P ).

Then f, g, S and T have a unique common fixed point in E.

Proof: Case (i) Suppose the pair (f, S) is subsequential continuous as well as R−weakly commuting.
Then there exists a sequence {un} in A such that lim

n→∞
fSun = fz and lim

n→∞
Sfun = Sz, for some z ∈ E.

Also, lim
n→∞

d(fSun, Sfun) ≤ Rd(fun, Sun) = 0, which implies that d(fz, Sz) = lim
n→∞

d(fSun, Sfun) = 0.

Therefore, we have fz = Sz, i.e., z is a coincidence point of the pair (f, S).
As the pair (g, T ) is subsequential continuous as well as R−weakly commuting, there exists a sequence

{vn} ∈ B such that lim
n→∞

gTvn = gw and lim
n→∞

Tgvn = Tw, for some w ∈ E. Also, lim
n→∞

d(gTvn, T gvn) ≤
Rd(gvn, T vn) = 0 implies that lim

n→∞
d(gTvn, T gvn) = 0, i.e., d(gw, Tw) = 0, i.e., gw = Tw. Thus, w is a

coincidence point of the pair (g, T ).
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Now, we claim that z = w. Taking u = un and v = vn in (2.1) and (2.2) and letting n→ ∞, we have

[
1 + p

d(z,w)∫
0

ζ(t)dt
]( d(z,w)∫

0

ζ(t)dt
)2

≤ pψ

(( d(z,z)∫
0

ζ(t)dt
)2

·
d(w,w)∫
0

ζ(t)dt,

∫ d(z,z)

0

ζ(t)dt ·
(∫ d(w,w)

0

ζ(t)dt
)2
,∫ d(z,z)

0

ζ(t)dt ·
∫ d(z,w)

0

ζ(t)dt ·
∫ d(w,z)

0

ζ(t)dt,∫ d(z,w)

0

ζ(t)dt ·
∫ d(w,z)

0

ζ(t)dt ·
∫ d(w,w)

0

ζ(t)dt

)
+m(z, w)− ϕ(m(z, w)),

where

m(z, w) = max
{(∫ d(z,w)

0

ζ(t)dt
)2
,

∫ d(z,z)

0

ζ(t)dt ·
∫ d(w,w)

0

ζ(t)dt,∫ d(z,w)

0

ζ(t)dt ·
∫ d(w,z)

0

ζ(t)dt,

1

2
[

∫ d(z,z)

0

ζ(t)dt ·
∫ d(z,w)

0

ζ(t)dt+∫ d(w,z)

0

ζ(t)dt ·
∫ d(w,w)

0

ζ(t)dt]
}

=
(∫ d(z,w)

0

ζ(t)dt
)2
.

After simplification, we get

p
( d(z,w)∫

0

ζ(t)dt
)3

+ ϕ
(( ∫ d(z,w)

0

ζ(t)dt
)2)

≤ 0,

which is true only if d(z, w) = 0, i.e., z = w.

Next, we claim that Sz = z. Substituting u = z and v = vn in (2.1) and (2.2) and letting n→ ∞, we
have

[
1 + p

d(fz,z)∫
0

ζ(t)dt
]( d(Sz,z)∫

0

ζ(t)dt
)2

≤ pψ

(( d(fz,Sz)∫
0

ζ(t)dt
)2

·
d(z,z)∫
0

ζ(t)dt,

∫ d(fz,Sz)

0

ζ(t)dt ·
(∫ d(z,z)

0

ζ(t)dt
)2
,∫ d(fz,Sz)

0

ζ(t)dt ·
∫ d(fz,z)

0

ζ(t)dt ·
∫ d(z,Sz)

0

ζ(t)dt,∫ d(fz,z)

0

ζ(t)dt ·
∫ d(z,Sz)

0

ζ(t)dt ·
∫ d(z,z)

0

ζ(t)dt

)
+m(fz, z)− ϕ(m(fz, z)),
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where

m(fz, z) = max
{(∫ d(fz,z)

0

ζ(t)dt
)2
,

∫ d(fz,Sz)

0

ζ(t)dt ·
∫ d(z,z)

0

ζ(t)dt,∫ d(fz,z)

0

ζ(t)dt ·
∫ d(z,Sz)

0

ζ(t)dt,

1

2
[

∫ d(fz,Sz)

0

ζ(t)dt ·
∫ d(fz,z)

0

ζ(t)dt+∫ d(z,Sz)

0

ζ(t)dt ·
∫ d(z,z)

0

ζ(t)dt]
}
.

On solving, we conclude that

p
( d(Sz,z)∫

0

ζ(t)dt
)3

+ ϕ
(( ∫ d(Sz,z)

0

ζ(t)dt
)2)

≤ 0.

which holds only for d(Sz, z) = 0, i.e., Sz = z.

Next, we prove that gz = z. For this, taking u = v = z in (2.1) and (2.2), we get

[
1 + p

d(fz,gz)∫
0

ζ(t)dt
]( d(Sz,Tz)∫

0

ζ(t)dt
)2

≤ pψ

(( d(fz,Sz)∫
0

ζ(t)dt
)2

·
d(gz,Tz)∫

0

ζ(t)dt,

∫ d(fz,Sz)

0

ζ(t)dt ·
(∫ d(gz,Tz)

0

ζ(t)dt
)2
,∫ d(fz,Sz)

0

ζ(t)dt ·
∫ d(fz,Tz)

0

ζ(t)dt ·
∫ d(gz,Sz)

0

ζ(t)dt,∫ d(fz,Tz)

0

ζ(t)dt ·
∫ d(gz,Sz)

0

ζ(t)dt ·
∫ d(gz,Tz)

0

ζ(t)dt

)
+m(fz, gz)− ϕ(m(fz, gz)),

where

m(fz, gz) = max
{(∫ d(fz,gz)

0

ζ(t)dt
)2
,

∫ d(fz,Sz)

0

ζ(t)dt ·
∫ d(gz,Tz)

0

ζ(t)dt,∫ d(fz,Tz)

0

ζ(t)dt ·
∫ d(gz,Sz)

0

ζ(t)dt,

1

2
[

∫ d(fz,Sz)

0

ζ(t)dt ·
∫ d(fz,Tz)

0

ζ(t)dt+

∫ d(gz,Sz)

0

ζ(t)dt ·
∫ d(gz,Tz)

0

ζ(t)dt]
}
.

Using the facts fz = Sz = z, z = w and gw = Tw, the above inequality reduces to

p
( d(z,gz)∫

0

ζ(t)dt
)3

+ ϕ
(( ∫ d(z,gz)

0

ζ(t)dt
)2)

≤ 0,

which is true only for d(z, gz) = 0, i.e., gz = z. Thus, z is a common fixed point of f, g, S and T .

Suppose mappings f, g, S and T have two common fixed points, say z and x.
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Putting u = z and v = x in (2.1) and (2.2), we have

[
1 + p

∫ d(z,x)

0

ζ(t)dt
]( ∫ d(z,x)

0

ζ(t)dt
)2

≤ pψ

((∫ d(z,z)

0

ζ(t)dt
)2

·
∫ d(x,x)

0

ζ(t)dt,

∫ d(z,z)

0

ζ(t)dt ·
(∫ d(x,x)

0

ζ(t)dt
)2
,∫ d(z,z)

0

ζ(t)dt ·
∫ d(z,x)

0

ζ(t)dt ·
∫ d(x,z)

0

ζ(t)dt,∫ d(z,x)

0

ζ(t)dt ·
∫ d(x,z)

0

ζ(t)dt ·
∫ d(x,x)

0

ζ(t)dt

)
+m(z, x)− ϕ(m(z, x)),

where

m(z, x) = max
{(∫ d(z,x)

0

ζ(t)dt
)2
,

∫ d(z,z)

0

ζ(t)dt ·
∫ d(x,x)

0

ζ(t)dt,∫ d(z,x)

0

ζ(t)dt ·
∫ d(x,z)

0

ζ(t)dt,
1

2
[

∫ d(z,z)

0

ζ(t)dt ·
∫ d(z,x)

0

ζ(t)dt+∫ d(x,z)

0

ζ(t)dt ·
∫ d(x,x)

0

ζ(t)dt]
}
=
(∫ d(z,x)

0

ζ(t)dt
)2
.

Solving the above inequality, we have

p
(∫ d(z,x)

0

ζ(t)dt
)3

+ ϕ
((∫ d(z,x)

0

ζ(t)dt
)2)

≤ 0.

The hypotheses of p and ϕ gives d(x, z) = 0, i.e., z = x. Hence, z is a unique common fixed point of
f, g, S and T .

Case (ii) Assume that the pair (f, S) is sequential continuous of type (Af ) as well as R−weakly
commuting of type (Af ). Then there exists a sequence {un} ∈ A such that lim

n→∞
fSun = fz and

lim
n→∞

SSun = Sz, for some z ∈ E. Also, d(fSun, SSun) ≤ Rd(fun, Sun). Letting n tends to ∞, we have

d(fz, Sz) = lim
n→∞

d(fSun, SSun) ≤ R · 0, which is true only for d(fz, Sz) = 0, i.e., fz = Sz. This implies

that z is a coincidence point of f and S.
As the pair (g, T ) is sequential continuous of type (Ag) as well as R−weakly commuting of type (Ag),

therefore, for some w ∈ E there exists a sequence {vn} ∈ B such that lim
n→∞

gTvn = gw, lim
n→∞

TTvn = Tw.

Also, d(gTvn, TTvn) ≤ Rd(gvn, T vn). Taking limit as n→ ∞, we have d(gw, Tw) = lim
n→∞

d(gTvn, TTvn)

≤ R · 0, which is possible only if d(gw, Tw) = 0, i.e., gw = Tw, which implies that w is a coincidence
point of g and T . The rest of the proof follows from case (i).

Case (iii) Suppose the pair (f, S) is sequential continuous of type (AS) as well as R−weakly com-
muting of type (AS).Then, for some z ∈ E, there exists a sequence {un} ∈ A such that lim

n→∞
Sfun = Sz

and lim
n→∞

ffun = fz. Also, d(Sfun, ffun) ≤ Rd(fun, Sun). As n → ∞, we have d(Sz, fz) =

lim
n→∞

d(Sfun, ffun) ≤ R · 0, which holds only if d(Sz, fz) = 0, i.e., fz = Sz. This implies that z is

a coincidence point of f and S.
Similarly, the pair (g, T ) is sequential continuous of type (AT ) as well as R−weakly commuting of

type (AT ), so, for some w ∈ E, there exists a sequence {vn} ∈ B satisfying lim
n→∞

Tgvn = Tw and

lim
n→∞

ggvn = gw. Also, d(Tgvn, ggvn) ≤ Rd(gvn, T vn). Proceeding with n → ∞, we have d(Tw, gw) =

lim
n→∞

d(Tgvn, ggvn) ≤ R · 0, which is possible only if d(Tw, gw) = 0, i.e., gw = Tw, which implies that w

is a coincidence point of g and T . The rest of the proof follows on the similar lines of case (i).
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Case (iv) Let the pair (f, S) is sequential continuous of type (P ) as well as R−weakly commuting of
type (P ), for some z ∈ E, there exists a sequence {un} ∈ A such that lim

n→∞
ffun = fz and lim

n→∞
SSun =

Sz. Also, d(ffun, SSun) ≤ Rd(fun, Sun). Letting n → ∞, we have d(fz, Sz) = lim
n→∞

d(ffun, SSun) ≤
R · 0, which holds for d(fz, Sz) = 0, i.e., fz = Sz.Thus, z is a coincidence point of f and S.

Similarly, sequential continuity of type (P ) as well as R−weakly commuting of type (P ) of the pair
(g, T ) implies that for some w ∈ E, there exists a sequence {vn} ∈ B such that lim

n→∞
ggvn = gw

and lim
n→∞

TTvn = Tw. Also, d(ggvn, TTvn) ≤ Rd(gvn, T vn). Letting n → ∞, we have d(gw, Tw) =

lim
n→∞

d(ggvn, TTvn) ≤ R · 0, which is possible only for d(gw, Tw) = 0, i.e., gw = Tw, which implies that

w is a coincidence point of g and T . The rest of the proof follows from case (i). 2

Now, we present the existence of a unique common fixed point for pairs of faintly compatible mappings.

Theorem 2.2 Let (E, d) be a metric space. Let f, g, S and T be continuous self mappings of E such that
S(E) ⊂ g(E), T (E) ⊂ f(E). If (f, S) and (g, T ) are pairs of non-compatible as well as faintly compatible
mappings satisfying (2.1) and (2.2), then the mappings f, g, S and T have a unique common fixed point
in E.

Proof: Since the pair (f, S) is non-compatible, therefore, there exists some sequences {un} ∈ A such
that lim

n→∞
d(fSun, Sfun) is either non zero or does not exist. Also, the pair (f, S) is faintly compatible

and A ̸= ∅, therefore, there exists a sequence {xn} ∈ A such that lim
n→∞

fxn = lim
n→∞

Sxn = z, for some

z ∈ E and

lim
n→∞

d(fSxn, Sfxn) = 0. (2.3)

Suppose S is continuous, then

lim
n→∞

SSxn = lim
n→∞

Sfxn = Sz, for some z ∈ E. (2.4)

Using equations (2.3) and (2.4), we have lim
n→∞

fSxn = lim
n→∞

Sfxn = Sz, for some z ∈ E. Since

S(E) ⊂ g(E), therefore, there exists some w ∈ E such that Sz = gw and hence, lim
n→∞

SSxn = lim
n→∞

Sfxn =

Sz = gw.

Similarly, non-compatibility of the pair (g, T ) implies that there exists a sequence {vn} ∈ B such that
lim
n→∞

d(gTvn, T gvn) is either non zero or does not exist. Also, the pair (g, T ) is faintly compatible and

B ≠ ∅, therefore, there exists a sequence {yn} in B such that lim
n→∞

Tyn = lim
n→∞

gyn = y, for some y ∈ E

and

lim
n→∞

d(gTyn, T gyn) = 0. (2.5)

Next, suppose that T is continuous, then

lim
n→∞

TTyn = lim
n→∞

Tgyn = Ty, for some y ∈ E. (2.6)

Using equations ( 2.5 ) and ( 2.6), we have lim
n→∞

gTyn = lim
n→∞

Tgyn = Ty.

Since T (E) ⊂ f(E) implies that there exists x ∈ E such that Ty = fx and lim
n→∞

TTyn = lim
n→∞

Tgyn =

lim
n→∞

gTyn = fx.
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We claim that z = y. Taking u = xn, v = yn in (2.1) and (2.2) and letting n→ ∞, we get

[
1 + p

∫ d(z,y)

0

ζ(t)dt
]( ∫ d(z,y)

0

ζ(t)dt
)2

≤ pψ

((∫ d(z,z)

0

ζ(t)dt
)2

·
∫ d(y,y)

0

ζ(t)dt,

∫ d(z,z)

0

ζ(t)dt ·
(∫ d(y,y)

0

ζ(t)dt
)2
,∫ d(z,z)

0

ζ(t)dt ·
∫ d(z,y)

0

ζ(t)dt ·
∫ d(y,z)

0

ζ(t)dt,∫ d(z,y)

0

ζ(t)dt ·
∫ d(y,z)

0

ζ(t)dt ·
∫ d(y,y)

0

ζ(t)dt

)
+m(z, y)− ϕ(m(z, y)),

where

m(z, y) = max
{(∫ d(z,y)

0

ζ(t)dt
)2
,

∫ d(z,z)

0

ζ(t)dt ·
∫ d(y,y)

0

ζ(t)dt,∫ d(z,y)

0

ζ(t)dt ·
∫ d(y,z)

0

ζ(t)dt,

1

2
[

∫ d(z,z)

0

ζ(t)dt ·
∫ d(z,y)

0

ζ(t)dt+∫ d(y,z)

0

ζ(t)dt ·
∫ d(y,y)

0

ζ(t)dt]
}
=
(∫ d(z,y)

0

ζ(t)dt
)2
.

Solving the above inequality, we have

p
(∫ d(z,y)

0

ζ(t)dt
)3

+ ϕ
((∫ d(z,y)

0

ζ(t)dt
)2)

≤ 0.

The hypothesis of p and ϕ yields d(z, y) = 0, i.e., z = y. Therefore, lim
n→∞

Sxn = lim
n→∞

fxn = lim
n→∞

Tyn =

lim
n→∞

gyn = z.

Further, continuity of the mappings f and g along with equations (2.3) and (2.5) imply that

lim
n→∞

Sfxn = lim
n→∞

ffxn = lim
n→∞

fSxn = fz

lim
n→∞

Tgyn = lim
n→∞

ggyn = lim
n→∞

gTyn = gz.

Next, we claim that fz = gz. Substituting u = fxn, v = gyn in (2.1) and (2.2) and letting n → ∞,
we get

[
1 + p

∫ d(fz,gz)

0

ζ(t)dt
]( ∫ d(fz,gz)

0

ζ(t)dt
)2

≤ pψ

((∫ d(fz,fz)

0

ζ(t)dt
)2

·
∫ d(gz,gz)

0

ζ(t)dt,

∫ d(fz,fz)

0

ζ(t)dt ·
(∫ d(gz,gz)

0

ζ(t)dt
)2
,∫ d(fz,fz)

0

ζ(t)dt ·
∫ d(fz,gz)

0

ζ(t)dt ·
∫ d(gz,fz)

0

ζ(t)dt,∫ d(fz,gz)

0

ζ(t)dt ·
∫ d(gz,fz)

0

ζ(t)dt ·
∫ d(gz,gz)

0

ζ(t)dt

)
+m(fz, gz)− ϕ(m(fz, gz)),
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where

m(fz, gz) = max
{(∫ d(fz,gz)

0

ζ(t)dt
)2
,

∫ d(fz,fz)

0

ζ(t)dt ·
∫ d(gz,gz)

0

ζ(t)dt,∫ d(fz,gz)

0

ζ(t)dt ·
∫ d(gz,fz)

0

ζ(t)dt,

1

2
[

∫ d(fz,fz)

0

ζ(t)dt ·
∫ d(fz,gz)

0

ζ(t)dt+∫ d(gz,fz)

0

ζ(t)dt ·
∫ d(gz,gz)

0

ζ(t)dt]
}
=
(∫ d(fz,gz)

0

ζ(t)dt
)2
.

Simplifying the above inequality, we have

p
(∫ d(fz,gz)

0

ζ(t)dt
)3

+ ϕ
((∫ d(fz,gz)

0

ζ(t)dt
)2)

≤ 0.

Using the hypothesis of p and ϕ, we have d(fz, gz) = 0, i.e., fz = gz. Next, we claim that gz = Sz. For
this putting u = z, v = gyn in (2.1) and (2.2) and letting n→ ∞, we get

[
1 + p

∫ d(fz,gz)

0

ζ(t)dt
]( ∫ d(Sz,gz)

0

ζ(t)dt
)2

≤ pψ

((∫ d(fz,Sz)

0

ζ(t)dt
)2

·
∫ d(gz,gz)

0

ζ(t)dt,

∫ d(fz,Sz)

0

ζ(t)dt ·
(∫ d(gz,gz)

0

ζ(t)dt
)2
,∫ d(fz,Sz)

0

ζ(t)dt ·
∫ d(fz,gz)

0

ζ(t)dt ·
∫ d(gz,Sz)

0

ζ(t)dt,∫ d(fz,gz)

0

ζ(t)dt ·
∫ d(gz,Sz)

0

ζ(t)dt ·
∫ d(gz,gz)

0

ζ(t)dt

)
+m(fz, gz)− ϕ(m(fz, gz)),

where

m(fz, gz) = max
{(∫ d(fz,gz)

0

ζ(t)dt
)2
,

∫ d(fz,Sz)

0

ζ(t)dt ·
∫ d(gz,gz)

0

ζ(t)dt,∫ d(fz,gz)

0

ζ(t)dt ·
∫ d(gz,Sz)

0

ζ(t)dt,

1

2
[

∫ d(fz,Sz)

0

ζ(t)dt ·
∫ d(fz,gz)

0

ζ(t)dt+∫ d(gz,Sz)

0

ζ(t)dt ·
∫ d(gz,gz)

0

ζ(t)dt]
}
= 0.

Simplifying the above inequality, we have(∫ d(Sz,gz)

0

ζ(t)dt
)2

≤ 0,

which is possible only if d(Sz, gz) = 0,i.e., Sz = gz. Therefore, we have fz = gz = Sz. Next, we prove
that Sz = Tz. Taking u = v = z in (2.1) and (2.2), we get[

1 + p

∫ d(fz,gz)

0

ζ(t)dt
]( ∫ d(Sz,Tz)

0

ζ(t)dt
)2

≤ pψ(0, 0, 0, 0) +m(fz, gz)− ϕ(m(fz, gz)),
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where

m(fz, gz) = max
{(∫ d(fz,gz)

0

ζ(t)dt
)2
,

∫ d(fz,Sz)

0

ζ(t)dt ·
∫ d(gz,Tz)

0

ζ(t)dt,∫ d(fz,Tz)

0

ζ(t)dt ·
∫ d(gz,Sz)

0

ζ(t)dt,

1

2

[ ∫ d(fz,Sz)

0

ζ(t)dt ·
∫ d(fz,Tz)

0

ζ(t)dt+∫ d(gz,Sz)

0

ζ(t)dt ·
∫ d(gz,Tz)

0

ζ(t)dt

]}
= 0.

After simplification, we get (∫ d(Sz,Tz)

0

ζ(t)dt
)2

≤ 0,

which holds only for d(Sz, Tz) = 0,i.e., Sz = Tz. Therefore, z is a coincidence point of f, g, S, and T . It
remains to prove that z is a common fixed point. For this, putting u = z, v = yn in (2.1) and (2.2) and
letting n→ ∞, we get[

1 + p

∫ d(fz,z)

0

ζ(t)dt
]( ∫ d(Sz,z)

0

ζ(t)dt
)2

≤ pψ(0, 0, 0, 0) +m(fz, z)− ϕ(m(fz, z)),

where

m(fz, z) = max
{(∫ d(fz,gz)

0

ζ(t)dt
)2
,

∫ d(fz,Sz)

0

ζ(t)dt ·
∫ d(z,z)

0

ζ(t)dt,∫ d(fz,z)

0

ζ(t)dt ·
∫ d(z,fz)

0

ζ(t)dt,

1

2
[

∫ d(fz,Sz)

0

ζ(t)dt ·
∫ d(fz,z)

0

ζ(t)dt+∫ d(z,Sz)

0

ζ(t)dt ·
∫ d(z,z)

0

ζ(t)dt]
}
=
(∫ d(fz,z)

0

ζ(t)dt
)2
.

After simplifying the above inequality,

p
(∫ d(fz,z)

0

ζ(t)dt
)3

+ ϕ
((∫ d(fz,z)

0

ζ(t)dt
)2)

≤ 0.

The hypothesis of p and ϕ yields d(fz, z) = 0, which implies that fz = z. Hence, z is a common fixed
point of f, g, S, and T . The uniqueness follows easily. 2

3. Consequences and Example

Setting ζ(t) = 1 in Theorems 2.1 and 2.2, we have following results.

Corollary 3.1 Let (E, d) be a metric space and f , g, S and T be self mappings defined on E such that
for all u, v ∈ E, there exists a function ϕ ∈ Φ, a function ψ ∈ Ψ and a real number p ≥ 0 such that

[1 + pd(fu, gv)]d2(Su, Tv) ≤ pψ

(
d2(fu, Su)d(gv, Tv), d(fu, Su)d2(gv, Tv),

d(fu, Su)d(fu, Tv)d(gv, Su),

d(fu, Tv)d(gv, Su)d(gv, Tv)

)
+m(fu, gv)− ϕ(m(fu, gv)),

(3.1)
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where

m(fu, gv) = max
{
d2(fu, gv), d(fu, Su)d(gv, Tv), d(fu, Tv)d(gv, Su),

1

2
[d(fu, Su)d(fu, Tv) + d(gv, Su)d(gv, Tv)]

}
.

(3.2)

If the pairs (f, S) and (g, T ) are either of the followings

(i) subsequential continuous as well as R-weakly commuting.

(ii) sequential continuous of type (Af ) and (Ag) as well as R-weakly commuting of type (Af ) and (Ag)
respectively.

(iii) sequential continuous of type (AS) and (AT ) as well as R-weakly commuting of type (AS) and (AT )
respectively.

(iv) sequential continuous of type (P ) as well as R-weakly commuting of type (P ).

Then f, g, S, and T have a unique common fixed point in E.

Corollary 3.2 Let (E, d) be a metric space and Let f, g, S and T be continuous self mappings of E
such that S(E) ⊂ g(E), T (E) ⊂ f(E). If pairs (f, S) and (g, T ) are non-compatible as well as faintly
compatible satisfying (3.1) and (3.2), then the mappings f, g, S and T have a unique common fixed point
in E.

By taking f = g and S = T in Theorems 2.1 and 2.2, one can deduce the following results for two
self mappings.

Corollary 3.3 Let (E, d) be a metric space and f and S be self mappings defined on E such that for all
u, v ∈ E, there exists a function ϕ ∈ Φ, a function ψ ∈ Ψ and a real number p ≥ 0 such that

[
1 + p

d(fu,fv)∫
0

ζ(t)dt
]( d(Su,Sv)∫

0

ζ(t)dt
)2

≤ pψ

(( d(fu,Su)∫
0

ζ(t)dt
)2

·
d(fv,Sv)∫

0

ζ(t)dt,

∫ d(fu,Su)

0

ζ(t)dt ·
(∫ d(fv,Sv)

0

ζ(t)dt
)2
,∫ d(fu,Su)

0

ζ(t)dt ·
∫ d(fu,Sv)

0

ζ(t)dt ·
∫ d(fv,Su)

0

ζ(t)dt,∫ d(fu,Sv)

0

ζ(t)dt ·
∫ d(fv,Su)

0

ζ(t)dt ·
∫ d(fv,Sv)

0

ζ(t)dt

)
+m(fu, fv)− ϕ(m(fu, fv)),

(3.3)

where

m(fu, fv) = max
{(∫ d(fu,fv)

0

ζ(t)dt
)2
,

∫ d(fu,Su)

0

ζ(t)dt ·
∫ d(fv,Sv)

0

ζ(t)dt,∫ d(fu,Sv)

0

ζ(t)dt ·
∫ d(fv,Su)

0

ζ(t)dt,
1

2
[

∫ d(fu,Su)

0

ζ(t)dt ·
∫ d(fu,Sv)

0

ζ(t)dt+∫ d(fv,Su)

0

ζ(t)dt ·
∫ d(fv,Sv)

0

ζ(t)dt]
}
,

(3.4)

and ζ : [0,∞) → [0,∞) is a Lebesgue integrable function which is summable on each compact subset of

[0,∞) such that for each ϵ > 0,
ϵ∫
0

ζ(t) dt > 0. If f and S are either of the followings
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(i) subsequential continuous as well as R-weakly commuting.

(ii) sequential continuous of type (Af ) as well as R-weakly commuting of type (Af ).

(iii) sequential continuous of type (AS) as well as R-weakly commuting of type (AS).

(iv) sequential continuous of type (P ) as well as R-weakly commuting of type (P ).

Then f and S have a unique common fixed point in E.

Corollary 3.4 Let (E, d) be a metric space. Let f and S be two continuous self mappings of E such that
S(E) ⊂ f(E). If S and f are non-compatible as well as faintly compatible mappings satisfying (3.3) and
(3.4), then both mappings f and S have a unique common fixed point in E.

The following example shows the validity of Corollary 3.2

Example 3.1 Let E = [0, 20] and d be a usual metric. Let f, g, S, T : E → E be four mappings defined
by fu = 10, Su = −u+60

5 , gu = 4u+10
5 , for u ∈ [0, 10], fu = gu = Su = 20 − u, for u ∈ (10, 20] and

Tu = 20 − u, for u ∈ [0, 20]. Let p be a positive real number and ϕ : [0,∞) → [0,∞) be a function
defined by ϕ(t) = 3

2 t, for t ≥ 0 and ψ : [0,∞)4 → [0,∞) be a function defined by ψ(w1, w2, w3, w4) =
max {w1, w2, w3, w4}, wi ≥ 0, i = 1, 2, 3, 4.

Consider a constant sequence {un}, where un = 10, for each n. For this, fS(10) = Sf(10), therefore,
the pairs (f, S) and (g, T ) are faintly compatible mappings on E. Also, the pairs (f, S) and (g, T ) are
non-compatible mappings, for this consider a sequence {un = 20− 1

n} in E such that lim
n→∞

un = 20, then

lim
n→∞

fun = lim
n→∞

Sun = lim
n→∞

gun = lim
n→∞

Tun = 0

and

lim
n→∞

d(fSun, Sfun) ̸= 0, lim
n→∞

d(gTun, T gun) ̸= 0

It is easy to verify that the mappings f, g, S and T are satisfying all the conditions of the Corollary 3.2
and u = 10 is the only common fixed point of f, g, S and T .

4. Application

Let U, V denote Banach spaces, Ŝ ⊂ U , D ⊂ V are state spaces and decision spaces respectively.
Let R denotes the set of all real numbers and C(Ŝ) = {h : Ŝ → R, h is continuous }. Let d(h, k) =
sup{|h(u)− k(u)| : u ∈ Ŝ}, for any h, k ∈ C(Ŝ). Obviously, (C(Ŝ), d) is a complete metric space.

Bellman and Lee [9] gave the basic form of functional equation as follows.

g(u) = opt
v

G(u, v, g(τ(u, v))),

where u ∈ Ŝ, v ∈ D, τ is the transformation process, g(u) is the optimal return with initial state u and
the opt denotes max or min.

Now, we discuss the existence of a common solution for the following functional equations that are
arising in dynamic programming (see [7,8,9]):

fi(u) = sup
v∈D

Fi(u, v, fi(τ(u, v))), u ∈ Ŝ (4.1)

gi(u) = sup
v∈D

Gi(u, v, gi(τ(u, v))), u ∈ Ŝ, (4.2)

where τ : Ŝ ×D → Ŝ and Fi, Gi : Ŝ ×D × R → R, i = 1, 2.
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Theorem 4.1 Let Fi, Gi : Ŝ ×D × R → R, i = 1, 2. be bounded. Define the mappings Pi, Qi : C(Ŝ) →
C(Ŝ), as follows

Pih(u) = sup
v∈D

Fi(u, v, h(τ(u, v))),

Qik(u) = sup
v∈D

Gi(u, v, k(τ(u, v))),
(4.3)

for all u ∈ Ŝ, h, k ∈ C(Ŝ), i = 1, 2. Let W denotes the collection of all sequences {hn} of C(Ŝ) such that
lim
n→∞

Pihn = lim
n→∞

Qihn,i = 1, 2. Suppose that the following conditions hold:

(a) for all u, t ∈ Ŝ, v ∈ D, h, k ∈ C(Ŝ),∣∣F1(u, v, h(t))− F2(u, v, k(t))
∣∣2 ≤M−1

(
pψ
(
d2(Q1h, P1h)d(Q2k, P2k),

d(Q1h, P1h)d
2(Q2k, P2k),

d(Q1h, P1h)d(Q1h, P2k)d(Q2k, P1h),

d(Q1h, P2k)d(Q2k, P1h)d(Q2k, P2k)
)
+

m(Q1h,Q2k)− ϕ(m(Q1h,Q2k))
)
,

where

m(Q1h,Q2k) = max

{
d2(Q1h,Q2k), d(Q1h, P1h)d(Q2k, P2k), d(Q1h, P2k)d(Q2k, P1h)

1

2
[d(Q1h, P1h)d(Q1h, P2k) + d(Q2k, P1h)d(Q2k, P2k)]

}
,

M = 1 + pd(Q1h,Q2k), ϕ ∈ Φ, ψ ∈ Ψ, p is a positive real number,

(b) for any h ∈ C(Ŝ), there exists k1, k2 ∈ C(Ŝ) such that P1h(u) = Q2k1(u), P2h(u) = Q1k2(u), u ∈ Ŝ,

(c)) for i ∈ {1, 2}, (Pi, Qi) is non-compatible and faintly compatible mappings.

Then the system of functional equations (4.1) and (4.2) has a unique common solution in C(Ŝ).

Proof: Since Fi, Gi, are continuous, for i = 1, 2, so, the mappings defined by (4.3) are continuous. By
conditions (b) and (c), P1(C(Ŝ)) ⊂ Q2(C(Ŝ)) and P2(C(Ŝ)) ⊂ Q1(C(Ŝ)) and the pairs (P1, Q1) and
(P2, Q2) are non-compatible and faintly compatible. For η > 0, u ∈ Ŝ and k1, k2 ∈ C(Ŝ), there exists
v1, v2 ∈ D such that

Piki(u) < Fi(u, vi, ki(ui)) + η, (4.4)

where ui = τ(u, vi), i = 1, 2. Also, we have

P1k1(u) ≥ F1(u, v2, k1(u2)), (4.5)

P2k2(u) ≥ F2(u, v1, k2(u1)). (4.6)

From (4.4),(4.6) and condition (a), we have

(P1k1(u)− P2k2(u))
2 <(F1(u, v1, k1(u1))− F2(u, v1, k2(u1)) + η)2

= (F1(u, v1, k1(u1))− F2(u, v1, k2(u1)))
2 + ξ,

≤M−1
(
pψ
(
d2(Q1k1, P1k1)d(Q2k2, P2k2),

d(Q1k1, P1k1)d
2(Q2k2, P2k2),

d(Q1k1, P1k1)d(Q1k1, P2k2)d(Q2k2, P1k1),

d(Q1k1, P2k2)d(Q2k2, P1k1)d(Q2k2, P2k2)
)
+

m(Q1k1, Q2k2)− ϕ(m(Q1k1, Q2k2))
)
+ ξ,

(4.7)
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where ξ = η2 + 2η(F1 − F2).

From (4.4), (4.5) and condition (a), we have

(P1k1(u)− P2k2(u))
2 >(F1(u, v2, k1(u2))− F2(u, v2, k2(u2))− η)2

= (F1(u, v1, k1(u1))− F2(u, v1, k2(u1)))
2 + ξ1,

≥ −M−1
(
pψ
(
d2(Q1k1, P1k1)d(Q2k2, P2k2),

d(Q1k1, P1k1)d
2(Q2k2, P2k2),

d(Q1k1, P1k1)d(Q1k1, P2k2)d(Q2k2, P1k1),

d(Q1k1, P2k2)d(Q2k2, P1k1)d(Q2k2, P2k2)
)
+

m(Q1k1, Q2k2)− ϕ(m(Q1k1, Q2k2))
)
− ξ,

where ξ1 = η2 − 2η(F1 − F2) < ξ.

(4.8)

From (4.7) and (4.8), we obtain

|P1k1(u)− P2k2(u)|2 ≤M−1
(
pψ
(
d2(Q1k1, P1k1)d(Q2k2, P2k2),

d(Q1k1, P1k1)d
2(Q2k2, P2k2),

d(Q1k1, P1k1)d(Q1k1, P2k2)d(Q2k2, P1k1),

d(Q1k1, P2k2)d(Q2k2, P1k1)d(Q2k2, P2k2)
)
+

m(Q1k1, Q2k2)− ϕ(m(Q1k1, Q2k2))
)
+ ξ,

(4.9)

As η > 0 is arbitrary, so ξ is negligible and (4.9) is true for all u ∈ Ŝ, taking supremum, we get

[1 + pd(Q1k1, Q2k2)]d
2(P1k1, P2k2) ≤ pψ

(
d2(Q1k1, P1k1)d(Q2k2, P2k2), d(Q1k1, P1k1)d

2(Q2k2, P2k2),

d(Q1k1, P1k1)d(Q1k1, P2k2)d(Q2k2, P1k1),

d(Q1k1, P2k2)d(Q2k2, P1k1)d(Q2k2, P2k2)
)

+m(Q1k1, Q2k2)− ϕ(m(Q1k1, Q2k2)).

All the hypotheses of Corollary 3.2 are satisfied. So, P1, P2, Q1 and Q2 have a unique common fixed point
k∗ ∈ C(Ŝ), i.e., k∗(u) is a unique common solution of the system of functional equations (4.1) and (4.2).

2

Remark 4.1 Corollary 3.1 is also applicable, if the conditions (b) and (c) in the above Theorem 4.1
are replaced with either of the following conditions.

(d) There exists numbers R,R′ > 0 such that d(Q1P1h, P1Q1h) ≤ Rd(Q1h, P1h) and d(Q2P2h, P2Q2h) ≤
R′d(Q2h, P2h), for all h ∈ C(Ŝ).

(e) There exist numbers R,R′ > 0 such that d(Q1P1h, P1P1h) ≤ Rd(Q1h, P1h) and d(Q2P2h, P2P2h) ≤
R′d(Q2h, P2h), for all h ∈ C(Ŝ).

(f) There exist numbers R,R′ > 0 such that d(Q1Q1h, P1Q1h) ≤ Rd(Q1h, P1h) and d(Q2Q2h, P2Q2h) ≤
R′d(Q2h, P2h), for all h ∈ C(Ŝ).

(g) There exist numbers R,R′ > 0 such that d(Q1Q1h, P1P1h) ≤ Rd(Q1h, P1h) and d(Q2Q2h, P2P2h) ≤
R′d(Q2h, P2h), for all h ∈ C(Ŝ).

Taking the rest of the conditions as it is in the Theorem 4.1.
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5. Conclusion

Theorem 2.1 and Corollary 3.1 are improved versions of the result of Jain et al. [19, Theorem 2]
with the use of control function, generalized weak integral contraction condition and in the manner that
containment, continuity of the mappings are relaxed. Theorems 2.1 and 2.2 and Corollaries 3.1 and 3.2
generalize the results of Jain et al. [18,20], Kang et al. [24], Murthy and Prasad [30] and Kumar et
al. [29] in various aspects. Theorem 2.2 and Corollary 3.2 generalize the results of Bisht and Shahzad
[10], Chandra et al. [14], Rani et al. [38] for pairs of faintly compatible mappings. Theorem 4.1 and
Remark 4.1 show the applicability of obtained results in finding the common solution of certain systems
of functional equations arising in dynamic programming.
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