(3s.) **v. 2025 (43)** : 1–17. ISSN-0037-8712 doi:10.5269/bspm.68306

Schatten class Localization operators for Wigner Transform Associated with the Jacobi-Dunkl operator

Ahmed Chana* and Abdellatif Akhlidj

ABSTRACT: The main crux of this paper is to introduce a new integral transform called the Jacobi-Dunkl-Wigner transform and to give some new results related to this transform as inversion formula. Next, we introduce a new class of pseudo-differential operator $\mathcal{L}_{u,v}(\sigma)$ called localization operator which depend on a symbol σ and two admissible functions u and v, we give a criteria in terms of the symbol σ for its boundedness and compactness, we also show that these operators belongs to the Schatten-Von Neumann class S^p for all $p \in [1; +\infty]$ and we give a trace formula.

Key Words: Wigner transform, Localization operators, Jacobi-Dunkl operator, Schatten-von Neumann classes.

Contents

1	Introduction	J
2	Harmonic Analysis Associated with the Jacobi-Dunkl operator	2
	2.1 The eigenfunctions of the Jacobi-Dunkl operator	. 3
	2.1.1 Jacobi kernels	
	2.1.2 The Jacobi-Dunkl kernels	. 4
	2.2 The Jacobi-Dunkl transform	. 5
	2.3 The translation operator associated with the Jacobi-Dunkl transform	. 5
	2.4 The Schatten-Von Neumann classes	. 6
	2.5 Fourier-Wigner transform associated with the Jacobi-Dunkl operator $\dots \dots \dots$. 7
3	Localization operators associated with the Jacobi-Dunkl-Wigner transform	g
	3.1 Introduction	. 9
	3.2 Boundedness for $\mathcal{L}_{u,v}(\sigma)$ in S_{∞}	. 10
	3.3 $L_{\alpha,\beta}^p$ -Boundedness of localization operator $\mathcal{L}_{u,v}(\sigma)$. 11
	3.4 Trace of the localization operators $\mathcal{L}_{u,v}(\sigma)$	

1. Introduction

The Wigner transform has a long story wich stared in 1932 with Eugene Wigner's as a probability quasi-distribution which allows expression of quantum mechanical expectation values in the same form as the averages of classical statistical mechanics. It is also used in signal processing as a transform in time-frequency analysis, for more information one can see [7,20]. A mathematical object closely related to the Wigner transform is the windowed Fourier transform used in signal theory and time-frequency analysis, using this connection we will define and study the localization operators for the Fourier-Wigner transform associated with the Jacobi-Dunkl operator.

The classical Fourier transform in \mathbb{R}^d can be defined by many ways, its most basic formulation it is given by the integral transform

$$\mathcal{F}(f)(\lambda) = \frac{1}{(2\pi)^{\frac{d}{2}}} \int_{\mathbb{R}^d} e^{-i\langle \lambda, x \rangle} f(x) dx.$$

Alternatively, one can rewrite this transform as

$$\mathcal{F}(f)(\lambda) = \frac{1}{(2\pi)^{\frac{d}{2}}} \int_{\mathbb{R}^d} K(\lambda, x) f(x) dx,$$

^{*} Corresponding author 2010 Mathematics Subject Classification: 42A63, 35J05, 47B10, 42A38. Submitted May 05, 2023. Published June 20, 2024

where $K(\lambda, x)$ is the unique solution of the system of partial differential equations

$$\begin{cases} \partial_{x_j} K(\lambda, x) &= -i\lambda_j K(\lambda, x), & \text{for } j = 1, \dots, d, \\ K(\lambda, 0) &= 1, \quad \lambda \in \mathbb{R}^d. \end{cases}$$

A lot of attention has been given to various generalization of the classical Fourier transform. This paper focuses on the generalized Fourier transform associated with the Jacobi-Dunkl operator called the Jacobi-Dunkl transform, more precisely we consider the differential-difference operator $\Delta_{\alpha,\beta}$ defined for $\alpha,\beta\in\mathbb{R}$ with $\alpha\geq\beta\geq\frac{-1}{2}$ and $\alpha\neq\frac{-1}{2}$ on \mathbb{R} by

$$\Delta_{\alpha,\beta}f(x) := \frac{\partial}{\partial x}f(x) + [(2\alpha + 1)\coth x + (2\beta + 1)\tanh x] \times \frac{f(x) - f(-x)}{2}$$
(1.1)

The eigenfunctions of this operator are related to the Jacobi functions and they satisfy a product formula which permits to develop a new harmonic analysis associated with this operator see [1,4]. One of the aims of the Fourier transform is the study of the theory of localization operators called also Gabor multipliers. Toeplitz operators or Anti-Wick operators, this theory was initiated by Daubechies in [6], developed and detailed in the book [21] by Wong. Wong was the first one who defined the localization operators on the Weyl Heisenberg group in [22], next Boggiatto and Wong have extended this results on $L^p(\mathbb{R}^d)$ in [2]. Then Wong studies the localization operators associated to left regular representation of localy compact and Hausdorff group G on $L^p(G)$ in [23]. Some results for wavelets multipliers which are localization operators associated to modulation on the additive group on \mathbb{R}^d are given by Ma and Wong in [11]. The theory of localization operators associated with the Fourier-Wigner transform has been studied and known remarkable development in many settings for example in the Riemann-Liouville setting [12], in the spherical mean setting [14], in the Dunkl setting [13], in the Weinstein setting [17]. However, upto our knowledge, the localization operators have not been studied for the Jacobi-Dunkl transform, the main purpose of this paper is twofold on the one hand we introduce the Fourier-Wigner transform associated with the Jacobi-Dunkl operator and we give some new results related to this transform on the other hand we introduce the localization operator $\mathcal{L}_{u,v}(\sigma)$ associated with this transform and we give a criteria in terms of the symbol σ for its boundedness and compactness, we also show that these operators belongs to the Schatten-Von Neumann classes S^p for all $p \in [1; +\infty]$ and we give a trace formula.

The remainder of this paper is arranged as follows, in section 2 we recall the main results concerning the harmonic analysis associated with the Jacobi-Dunkl transform and Schatten-Von Neumann classes, in section 3 we will study the boundedness, compactness and the Schatten properties of the localization operator associated with the Jacobi-Dunkl-Wigner transform.

2. Harmonic Analysis Associated with the Jacobi-Dunkl operator

In this section we set some notations and we recall some results in harmonic analysis related to the Jacobi-Dunkl operator and the Schatten-Von Neumann classes, for more details we refer the reader to [1,4,15,21].

In the following we denote by

- $C_0(\mathbb{R})$, the space of continuous functions defined on \mathbb{R} satisfying $\lim_{|x|\to+\infty}f(x)=0$, and $\|f\|_{C_0}=\sup_{x\in\mathbb{R}}|f(x)|<\infty$.
- $\mathcal{S}(\mathbb{R})$, the usual Schwartz space of \mathcal{C}^{∞} -functions on \mathbb{R} rapidly decreasing together with their derivatives, equipped with the topology of semi-norms $q_{m,n}, (m,n) \in \mathbb{N}^2$, where

$$q_{m,n}(f) = \sup_{x \in \mathbb{R}, 0 \le k \le n} \left[\left(1 + x^2 \right)^m \left| \frac{d^k}{dx^k} f(x) \right| \right] < +\infty.$$

• $S_*(\mathbb{R}) = \{(\cosh(x))^{-2\rho}f; f \in S(\mathbb{R})\}$ with $\rho \in \mathbb{R}$ and α, β denote real numbers such that $\alpha \geq \beta \geq -\frac{1}{2}$ and $\alpha \neq -\frac{1}{2}$. we put

$$A_{\alpha,\beta}(x) = 2^{2\rho} (\sinh|x|)^{2\alpha+1} (\cosh x)^{2\beta+1}, \quad \rho = \alpha + \beta + 1$$
 (2.1)

• $L^p_{\alpha,\beta}(\mathbb{R}), p \geq 1$, the space of measurable functions f on \mathbb{R} such that

$$||f||_{p,\alpha,\beta} = \begin{cases} \left(\int_{\mathbb{R}} |f(x)|^p d\mu_{\alpha,\beta}(x) \right)^{1/p} < +\infty & \text{si } 1 \le p < +\infty, \\ \text{ess } \sup_{x \in \mathbb{R}} |f(x)| < +\infty & \text{si } p = +\infty. \end{cases}$$

where $\mu_{\alpha,\beta}$ is the measure given by

$$d\mu_{\alpha,\beta}(x) = \mathcal{A}_{\alpha,\beta}(x)dx,$$

and $\mathcal{A}_{\alpha,\beta}(x)$ is given by (2.1).

For $p=2, L^2_{\alpha,\beta}(\mathbb{R})$ is a Hilbert space with inner product defined for $f,g\in L^2_{\alpha,\beta}(\mathbb{R})$ by

$$\langle f, g \rangle_{\mu_{\alpha,\beta}} = \int_{\mathbb{D}} f(x) \overline{g(x)} d\mu_{\alpha,\beta}(x).$$

• $L^p_{\sigma}(\mathbb{R}), p \geq 1$, the space of measurable functions f on \mathbb{R} such that

$$||f||_{p,\sigma} = \begin{cases} \left(\int_{\mathbb{R}} |f(\lambda)|^p d\sigma(\lambda) \right)^{1/p} < +\infty & \text{ si } 1 \le p < +\infty, \\ \operatorname{ess\,sup}_{\lambda \in \mathbb{R}} |f(\lambda)| < +\infty & \text{ si } p = +\infty. \end{cases}$$

where σ is the spectral measure supported in $\mathbb{R}\setminus]-\rho,\rho[$ given by

$$d\sigma(\lambda) = \frac{|\lambda|}{8\pi\sqrt{\lambda^2 - \rho^2} \left| C_{\alpha,\beta} \left(\sqrt{\lambda^2 - \rho^2} \right) \right|} 1_{\mathbb{R}\setminus]-\rho,\rho[}(\lambda) d\lambda,$$

where

$$C_{\alpha,\beta}(\mu) = \frac{2^{\rho - i\mu} \Gamma(\alpha + 1) \Gamma(i\mu)}{\Gamma\left(\frac{1}{2}(\rho + i\mu)\right) \Gamma\left(\frac{1}{2}(\alpha - \beta + 1 + i\mu)\right)}, \quad \mu \in \mathbb{C} \setminus (i\mathbb{N}),$$

is the Harish-Chandra function given explicitely in [9,10,16] and $1_{\mathbb{R}\setminus]-\rho,\rho[}$ is the characteristic function of $\mathbb{R}\setminus]-\rho,\rho[$.

In this paper, we consider the differential-difference operator $\Delta_{\alpha,\beta}$ given by (1.1), this operator is a particular case of the operator Δ_A given by

$$\Delta_A(f)(x) = \frac{\partial f(x)}{\partial x} + \frac{A'(x)}{A(x)} \left(\frac{f(x) - f(-x)}{2}\right),$$

where $A(x) = \mathcal{A}_{\alpha,\beta}(x)$.

The operator $\Delta_{\alpha,\beta}$ is skew-adjoint i.e $\Delta_{\alpha,\beta}^* = -\Delta_{\alpha,\beta}$ that mean for two continuous functions f,g on \mathbb{R} with at least one of them with compact support we have

$$\int_{\mathbb{R}} \Delta_{\alpha,\beta} f(x) g(x) d\mu_{\alpha,\beta}(x) = -\int_{\mathbb{R}} f(x) \Delta_{\alpha,\beta} g(x) d\mu_{\alpha,\beta}(x),$$

furthermore if one of them is even then we have

$$\Delta_{\alpha,\beta}(fg) = \Delta_{\alpha,\beta}(f)g + f\Delta_{\alpha,\beta}(g).$$

2.1. The eigenfunctions of the Jacobi-Dunkl operator

The main purpose of this subsection is to define the eigenfunctions of the Jacobi-Dunkl operator which will be used later to define the Jacobi-Dunkl transform, to do this we need to define first those of the Jacobi operator.

2.1.1. Jacobi kernels. Harmonic analysis associated with the Jacobi operator was firstly developed by Flensted-Jensen and Koorwinder see [9,10].

For $\alpha \geq \frac{-1}{2}, \beta \in \mathbb{R}$, the Jacobi operator $J_{\alpha,\beta}$ on $]0, +\infty[$ is given by

$$J_{\alpha,\beta}f(x) = \frac{\partial^2}{\partial x^2}f(x) + [(2\alpha+1)\coth x + (2\beta+1)\tanh x]\frac{\partial}{\partial x}f(x).$$

We point out that $J_{\alpha,\beta}$ is the radial part of the Laplace-Beltrami operator on a symetric space of rank one see [9,10].

The Jacobi function $\varphi_{\mu}^{\alpha,\beta}$, $\mu \in \mathbb{C}$ is defined on \mathbb{R} by

$$\forall x \in \mathbb{R}, \quad \varphi_{\mu}^{\alpha,\beta}(x) = {}_{2}F_{1}\left(\frac{\rho + i\mu}{2}, \frac{\rho - i\mu}{2}; \alpha + 1; -(\sinh x)^{2}\right),\tag{2.2}$$

where ${}_{2}F_{1}$ is the Gauss hyper-geometric function given by

$$_{2}F_{1}(a,b,c,z) = \sum_{l=0}^{\infty} \frac{(a)_{l}(b)_{l}}{(c)_{l}l!} z^{l}, \quad |z| < 1,$$

with $a, b, c \in \mathbb{C}$ and $c \notin -\mathbb{N}$ and $(a)_0 = 1, (a)_l = a(a+1) \cdots (a+l-1) = \frac{\Gamma(a+l)}{\Gamma(a)}$.

For a special values of α and β the Jacobi functions (2.2) are interpreted as spherical functions on non-compact Riemannian symmetric spaces of rank one [9].

From [16], the Jacobi function (2.2) satisfies the following properties.

Proposition 2.1

(1) $\varphi_{\mu}^{\alpha,\beta}$ is the unique solution on $[0,+\infty[$ of the differential equation

$$\begin{cases} J_{\alpha,\beta}(f) = -(\mu^2 + \rho^2) f \\ f(0) = 1, f'(0) = 0 \end{cases}$$

(2) $\varphi_{\mu}^{\alpha,\beta}$ is even, infinitely differentiable on $[0,+\infty[$ and we have

$$\frac{\partial}{\partial x}\varphi_{\mu}^{\alpha,\beta}(x) = -\frac{\mu^2 + \rho^2}{4(\alpha + 1)}\sinh(2x)\varphi_{\mu}^{\alpha + 1,\beta + 1}(x). \tag{2.3}$$

We will use this function to define the eigenfunctions of the Jacobi-Dunkl operator.

2.1.2. The Jacobi-Dunkl kernels. Now we consider the Jacobi-Dunkl operator given by (1.1) and we determine the eigenfunctions $\psi_{\lambda}^{\alpha,\beta}$ of this operator called the Jacobi-Dunkl kernels associated with the eigenvalue $(i\lambda)$, $\lambda \in \mathbb{C}$ and equal to 1 for x=0.

For $\lambda \in \mathbb{C}, x \in \mathbb{R}$ we put

$$\forall x \in \mathbb{R}, \quad \psi_{\lambda}^{\alpha,\beta}(x) := \begin{cases} \varphi_{\mu}^{\alpha,\beta}(x) - \frac{i}{\lambda} \frac{\partial}{\partial x} \varphi_{\mu}^{\alpha,\beta}(x) & \text{if } \lambda \in \mathbb{C}^*, \\ 1 & \text{if } \lambda = 0, \end{cases}$$
 (2.4)

where $\varphi_{\mu}^{\alpha,\beta}$ is the Jacobi function given by (2.2), the function $\psi_{\lambda}^{\alpha,\beta}$ is called the Jacobi-Dunkl kernel and we have the following results for the proofs we refer the reader to [1,4,15].

Proposition 2.2

(1) The Jacobi-Dunkl kernel $\psi_{\lambda}^{\alpha,\beta}$ is the unique \mathcal{C}^{∞} -solution on \mathbb{R} of the differential-difference equation

$$\left\{ \begin{array}{l} \Delta_{\alpha,\beta}(u) = -i\lambda(u), \lambda \in \mathbb{C}, \\ f(0) = 1. \end{array} \right.$$

Furthermore it is infinitely differentiable and we have

$$\left| \frac{\partial^n}{\partial \lambda^n} \psi_{\lambda}^{\alpha,\beta}(x) \right| \le |x|^n e^{|Im(\lambda)||x|}.$$

In particular we have the following important result

$$\forall x, \lambda \in \mathbb{R} \quad |\psi_{\lambda}^{\alpha,\beta}(x)| \le 1. \tag{2.5}$$

Remark 2.1 Using the relation (2.3), the Jacobi-Dunkl kernel (2.4) can be written as

$$\psi_{\lambda}^{\alpha,\beta}(x) = \varphi_{\mu}^{\alpha,\beta}(x) + i \frac{\lambda}{4(\alpha+1)} \sinh(2x) \varphi_{\mu}^{\alpha+1,\beta+1}(x), \quad x \in \mathbb{R}.$$
 (2.6)

We will use the Jacobi-Dunkl kernel (2.6) to define the Jacobi-Dunkl transform

2.2. The Jacobi-Dunkl transform

Definition 2.1 The Jacobi-Dunkl transform $\mathcal{F}_{\alpha,\beta}$ defined on $L^1_{\alpha,\beta}(\mathbb{R})$ by

$$\mathcal{F}_{\alpha,\beta}(f)(\lambda) = \int_{\mathbb{R}} \psi_{\lambda}^{\alpha,\beta}(x) f(x) d\mu_{\alpha,\beta}(x) \quad for \quad \lambda \in \mathbb{R}.$$

Some basic properties of this transform are as follows, for the proofs, we refer the reader to [1,4,15].

Proposition 2.3

(1) (Riemann-Lebesgue) For all $f \in L^1_{\alpha,\beta}(\mathbb{R})$, the function $\mathcal{F}_{\alpha,\beta}(f)$ belongs to $C_0(\mathbb{R})$ and we have

$$\|\mathcal{F}_{\alpha}(f)\|_{\infty,\sigma} \le \|f\|_{1,\alpha,\beta}. \tag{2.7}$$

(2)(Inversion formula) For all $f \in L^1_{\alpha,\beta}(\mathbb{R})$ such that $\mathcal{F}_{\alpha,\beta}(f) \in L^1_{\sigma}(\mathbb{R})$ we have

$$f(x) = \int_{\mathbb{R}} \psi_{-\lambda}^{\alpha,\beta}(x) \mathcal{F}_{\alpha,\beta}(f)(\lambda) d\sigma(\lambda), \quad a.e \quad x \in \mathbb{R}.$$
 (2.8)

(3) (Plancherel theorem) The Jacobi-Dunkl transform is a topological isomorphism from $S_*(\mathbb{R})$ onto $S(\mathbb{R})$ and extends uniquely to a unitary isomorphism from $L^2_{\alpha,\beta}(\mathbb{R})$ onto $L^2_{\sigma}(\mathbb{R})$ and for all $f \in L^2_{\alpha,\beta}(\mathbb{R})$ we have

$$\int_{\mathbb{R}} |f(x)|^2 d\mu_{\alpha,\beta}(x) = \int_{\mathbb{R}} |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^2 d\sigma(\lambda). \tag{2.9}$$

2.3. The translation operator associated with the Jacobi-Dunkl transform

From [1,4,18], the Jacobi-Dunkl kernel $\psi_{\lambda}^{\alpha,\beta}$ is multiplicative on \mathbb{R} in the sense

$$\psi_{\lambda}^{\alpha,\beta}(x)\psi_{\lambda}^{\alpha,\beta}(y) = \int_{\mathbb{R}} \psi_{\lambda}^{\alpha,\beta}(z)d\delta_{x,y}^{\alpha,\beta}(z), \tag{2.10}$$

where $\delta_{x,y}^{\alpha,\beta}$ is a real uniformly bounded measure with compact support wich may not be positive given explicitly in [1,4,19].

The product formula (2.10) permits to define a translation operator, a convolution product and to develop a new harmonic analysis associated with the Jacobi-Dunkl operator (1.1).

Definition 2.2 Let $x, y, z \in \mathbb{R}$ and f be a measurable function on \mathbb{R} the translation operator associated with the Jacobi-Dunkl transform is defined by:

$$\mathcal{T}_{\alpha,\beta}^{x}(f)(y) = \int_{\mathbb{R}} f(z)d\delta_{x,y}^{\alpha,\beta}(z).$$

The following proposition summarizes some properties of the Jacobi-Dunkl translation operator, for the proofs we refer the reader to [1,4,19].

Proposition 2.4 For all $x, y, z \in \mathbb{R}$, f a measurable function on \mathbb{R} we have

(1)
$$\mathcal{T}_{\alpha,\beta}^{x}(f)(y) = \mathcal{T}_{\alpha,\beta}^{x}(f)(x). \tag{2.11}$$

(2)
$$\mathcal{T}_{\alpha,\beta}^{x}(\psi_{\lambda}^{\alpha,\beta}(.))(y) = \psi_{\lambda}^{\alpha,\beta}(x)\psi_{\lambda}^{\alpha,\beta}(y).$$

(3)
$$\int_{\mathbb{R}} \mathcal{T}_{\alpha,\beta}^{x}(f)(y)d\mu_{\alpha,\beta}(x) = \int_{\mathbb{R}} f(y)d\mu_{\alpha,\beta}(x). \tag{2.12}$$

(4) for $f \in L^p_{\alpha,\beta}(\mathbb{R})$ with $p \in [1; +\infty]$, $\mathcal{T}^x_{\alpha,\beta}(f) \in L^p_{\alpha,\beta}(\mathbb{R})$ and we have

$$\|\mathcal{T}_{\alpha,\beta}^{x}(f)\|_{p,\alpha,\beta} \le \|f\|_{p,\alpha,\beta}. \tag{2.13}$$

By using the generalized translation, we define the generalized convolution product of $f, g \in \mathcal{S}_*(\mathbb{R})$ and $x \in \mathbb{R}$ by

$$(f * g)(x) = \int_{\mathbb{R}} \mathcal{T}_{\alpha,\beta}^{x}(f)(-y)g(y)d\mu_{\alpha,\beta}(y).$$

This convolution is commutative, associative and its satisfies the following properties, for the proofs we refer the reader to [1,4,15,19].

Proposition 2.5

(1)(Young's inequality) for all $p,q,r \in [1;+\infty]$ such that: $\frac{1}{p} + \frac{1}{q} = 1 + \frac{1}{r}$ and for all $f \in L^p_{\alpha,\beta}(\mathbb{R}), g \in L^q_{\alpha,\beta}(\mathbb{R})$ the function $f *_{\alpha} g$ belongs to the space $L^r_{\alpha,\beta}(\mathbb{R})$ and we have

$$||f *_{\alpha} g||_{r,\alpha,\beta} \le ||f||_{p,\alpha,\beta} ||g||_{q,\alpha,\beta}. \tag{2.14}$$

(2) For $f, g \in L^2_{\alpha,\beta}(\mathbb{R})$ the function $f *_{\alpha} g$ belongs to $L^2_{\alpha,\beta}(\mathbb{R})$ if and only if the function $\mathcal{F}_{\alpha,\beta}(f)\mathcal{F}_{\alpha,\beta}(g)$ belongs to $L^2_{\sigma}(\mathbb{R})$ and in this case we have

$$\mathcal{F}_{\alpha,\beta}(f*g) = \mathcal{F}_{\alpha,\beta}(f)\mathcal{F}_{\alpha,\beta}(g).$$

and

$$\int_{\mathbb{P}} |f * g(x)|^2 d\mu_{\alpha,\beta}(x) = \int_{\mathbb{P}} |\mathcal{F}_{\alpha}(f)(\lambda)|^2 |\mathcal{F}_{\alpha}(g)(\lambda)|^2 d\sigma(\lambda). \tag{2.15}$$

2.4. The Schatten-Von Neumann classes

Notation: we denote by

• $l^p(\mathbb{N}), 1 \leq p \leq \infty$, the set of all infinite sequences of real (or complex) numbers $u := (u_j)_{j \in \mathbb{N}}$, such that

$$||u||_p := \left(\sum_{j=1}^{\infty} |u_j|^p\right)^{\frac{1}{p}} < \infty, \quad \text{if} \quad 1 \le p < \infty,$$

$$||u||_{\infty} := \sup_{j \in \mathbb{N}} |u_j| < \infty, \quad \text{if} \quad p = +\infty.$$

• $B\left(L^p_{\alpha,\beta}\left(\mathbb{R}\right)\right)$, $1 \leq p \leq \infty$, the space of bounded operators from $L^p_{\alpha,\beta}(\mathbb{R})$ into itself.

For p=2, we define the space $S_{\infty}:=B\left(L_{\alpha,\beta}^{2}\left(\mathbb{R}\right)\right)$, equipped with the norm,

$$||A||_{S_{\infty}} := \sup_{v \in L^{2}_{\alpha,\beta}(\mathbb{R}): ||v||_{2,\alpha,\beta} = 1} ||Av||_{2,\alpha,\beta}.$$
(2.16)

Definition 2.3

- (1) The singular values $(s_n(A))_{n\in\mathbb{N}}$ of a compact operator A in $B\left(L^p_{\alpha,\beta}(\mathbb{R})\right)$ are the eigenvalues of the positive self-adjoint operator $|A| = \sqrt{A^*A}$.
- (2) For $1 \leq p < \infty$, the Schatten class S_p is the space of all compact operators whose singular values lie in $l^p(\mathbb{N})$. The space S_p is equipped with the norm

$$||A||_{S_p} := \left(\sum_{n=1}^{\infty} (s_n(A))^p\right)^{\frac{1}{p}}.$$

Remark 2.2 We note that the space S_2 is the space of Hilbert-Schmidt operators, and S_1 is the space of trace class operators.

Definition 2.4 The trace of an operator A in S_1 is defined by

$$\operatorname{tr}(A) = \sum_{n=1}^{\infty} \langle A\phi_n, \phi_n \rangle_{\mu_{\alpha,\beta}}, \qquad (2.17)$$

where $(\phi_n)_n$ is any orthonormal basis of $L^2_{\alpha,\beta}(\mathbb{R})$.

Remark 2.3 If A is positive, then

$$tr(A) = ||A||_{S_1}. (2.18)$$

Moreover, a compact operator A on the Hilbert space $L^2_{\alpha,\beta}(\mathbb{R})$ is Hilbert-Schmidt, if the positive operator A^*A is in the space of trace class S_1 . Then

$$||A||_{HS}^2 := ||A||_{S_2}^2 = ||A^*A||_{S_1} = \operatorname{tr}(A^*A) = \sum_{n=1}^{\infty} ||A\phi_n||_{2,\alpha,\beta}^2,$$
(2.19)

for any orthonormal basis $(\phi_n)_n$ of $L^2_{\alpha,\beta}(\mathbb{R})$.

For more informations about the Schatten-Von neumann classes one can see [3,5,21].

2.5. Fourier-Wigner transform associated with the Jacobi-Dunkl operator

In this section we define and give some results for the Wigner transform associated with the Jacobi-Dunkl operator.

Notation: we denote by

- $\mathcal{S}(\mathbb{R}^2)$ the generalized Schwartz space defined on \mathbb{R}^2 equipped with it s usual topology.
- $L^p_{\theta}(\mathbb{R}^2), 1 \leq p \leq +\infty$ the space of measurable functions on \mathbb{R}^2 satisfying

$$||f||_{p,\theta} := \begin{cases} \left(\int_{\mathbb{R}^2} |f(x,\lambda)|^p d\theta_{\alpha,\beta}(x,\lambda)^{\frac{1}{p}}, & \text{if } p \in [1,+\infty[,\\ \operatorname{ess\,sup}|f(x,\lambda)|, & \text{if } p = +\infty. \end{cases}$$

where $\theta_{\alpha,\beta}$ is the measure defined on \mathbb{R}^2 by

$$d\theta_{\alpha,\beta}(x,\lambda) := d\sigma(\lambda) \otimes d\mu_{\alpha,\beta}(x)$$

for all $x, \lambda \in \mathbb{R}$.

Definition 2.5 The Wigner transform associated with the Jacobi-Dunkl operator is defined on $S_*(\mathbb{R}) \times S_*(\mathbb{R})$ by

$$\mathcal{W}(f,g)(x,\lambda) := \int_{\mathbb{R}} f(y) \mathcal{T}_{\alpha,\beta}^{x}(g)(-y) \psi_{\lambda}^{\alpha,\beta}(y) d\mu_{\alpha,\beta}(y). \tag{2.20}$$

Remark 2.4 the transform W is a bilinear mapping from $S_*(\mathbb{R}) \times S_*(\mathbb{R})$ into $S(\mathbb{R}^2)$ and can be written as

$$W(f,g)(x,\lambda) = (g * f\psi_{\lambda}^{\alpha,\beta}(.)(x)$$
(2.21)

$$= \mathcal{F}_{\alpha}(f\widetilde{\mathcal{T}_{\alpha\beta}^{x}(g)})(\lambda, m). \tag{2.22}$$

where $\widetilde{h}(x) = h(-x)$.

We have the following results.

Proposition 2.6 Let $f, g \in L^2_{\alpha,\beta}(\mathbb{R})$ then W(f,g) is well defined and belongs to $L^2_{\theta}(\mathbb{R}^2) \cap L^{\infty}_{\theta}(\mathbb{R}^2)$ and we have

$$\|\mathcal{W}(f,g)\|_{2,\theta} \le \|f\|_{2,\alpha,\beta} \|g\|_{2,\alpha,\beta},\tag{2.23}$$

and

$$\|\mathcal{W}(f,g)\|_{\infty,\theta} \le \|f\|_{2,\alpha,\beta} \|g\|_{2,\alpha,\beta}. \tag{2.24}$$

Proof: Let $f, g \in L^2_{\alpha,\beta}(\mathbb{R})$, $x, \lambda \in \mathbb{R}$ by using the relations (2.9),(2.11), (2.22) and Fubini's theorem we find that

$$\|\mathcal{W}(f,g)\|_{2,\theta}^2 = \int_{\mathbb{R}} \left[\int_{\mathbb{R}} |f(y)|^2 |\mathcal{T}_{\alpha,\beta}^{-y}(g)(x)|^2 \mathrm{d}\mu_{\alpha,\beta}(y) \right] \mathrm{d}\mu_{\alpha,\beta}(x),$$

by using the relation (2.13) we get

$$\|\mathcal{W}(f,g)\|_{2,\theta}^2 = \|f\|_{2,\alpha,\beta}^2 \|\mathcal{T}_{\alpha,\beta}^{-y}(g)\|_{2,\alpha,\beta}^2 \le \|f\|_{2,\alpha,\beta}^2 \|g\|_{2,\alpha,\beta}^2$$

which give the result.

On the other hand we have

$$\|\mathcal{W}(f,g)\|_{\infty,\theta} = \|\mathcal{F}_{\alpha,\beta}(f\widetilde{\mathcal{T}_{\alpha,\beta}(g)})\|_{\infty,\sigma},$$

by the Riemann-Lebesgue result (2.7), Hölder's inequality and the relation (2.13) we find (2.24). \Box

Remark 2.5 For $p, q, r \in [1, +\infty]$ such that $\frac{1}{p} + \frac{1}{q} - 1 = \frac{1}{r}$ and for $f \in L^p_{\alpha,\beta}(\mathbb{R})$, $g \in L^q_{\alpha,\beta}(\mathbb{R})$ we define the Wigner transform $\mathcal{W}(f,g)$ by the relation (2.21), then we have the following result.

Proposition 2.7 Let $p,q,r \in [1,+\infty]$ such that $\frac{1}{p} + \frac{1}{q} - 1 = \frac{1}{r}$ and for $f \in L^p_{\alpha,\beta}(\mathbb{R})$, $g \in L^q_{\alpha,\beta}(\mathbb{R})$ and $\lambda \in \mathbb{R}$ then the function

$$x \longmapsto \mathcal{W}(f,g)(x,\lambda)$$

belongs to $L^r_{\alpha,\beta}(\mathbb{R})$ and we have

$$\|\mathcal{W}(f,g)(.,\lambda)\|_{r,\alpha,\beta} \le \|f\|_{p,\alpha,\beta} \|g\|_{q,\alpha,\beta}. \tag{2.25}$$

Proof: By the relation (2.21) we have

$$\mathcal{W}(f,g)(.,\lambda) = g * f \psi_{\lambda}^{\alpha,\beta}(.),$$

by Young's inequality (2.14) we find that

$$\|\mathcal{W}(f,g)(.,\lambda)\|_{r,\alpha,\beta} \le \|g\|_{q,\alpha,\beta} \|f\psi_{\lambda}^{\alpha,\beta}(.)\|_{p,\alpha,\beta},$$

the relation (2.5) gives the discred result.

We have the following theorem wich can be used to derive an inversion formula for the Jacobi-Dunkl-Wigner transform.

Theorem 2.1 Let $f,g \in L^1_{\alpha,\beta}(\mathbb{R}) \cap L^2_{\alpha,\beta}(\mathbb{R})$ such that $c_g := \int_{\mathbb{R}} g(y) d\mu_{\alpha,\beta}(y) \neq 0$ then we have

$$\mathcal{F}_{\alpha,\beta}(f)(\lambda) = \frac{1}{c_g} \int_{\mathbb{R}} \mathcal{W}(f,g)(x,\lambda) d\mu_{\alpha,\beta}(x). \tag{2.26}$$

Proof: From the relation (2.25) we deduce that the right quantity in (2.26) is well defined furthermore, for $\lambda \in \mathbb{R}$ we have

$$\int_{\mathbb{R}} \mathcal{W}(f,g)(x,\lambda) d\mu_{\alpha,\beta}(x) = \int_{\mathbb{R}} \left[\int_{\mathbb{R}} f(y) \mathcal{T}_{\alpha,\beta}^{x}(g)(-y) \psi_{\lambda}^{\alpha,\beta}(y) d\mu_{\alpha,\beta}(y) \right] d\mu_{\alpha}(x),$$

by using the relations (2.11), (2.12) we find that

$$\int_{\mathbb{R}} \mathcal{W}(f, g)(x, \lambda) d\mu_{\alpha, \beta}(x) = c_g \mathcal{F}_{\alpha, \beta}(f)(\lambda),$$

which give the result.

Corollary 2.1 With the hypothesis of the theorem 2.1, if furthermore we have $\mathcal{F}_{\alpha,\beta}(f) \in L^1_{\alpha,\beta}(\mathbb{R})$ then the following inversion formula for the Jacobi-Dunkl-Wigner transform W holds:

$$f(x) = \frac{1}{c_q} \int_{\mathbb{R}} \psi_{-\lambda}^{\alpha,\beta}(x) \left[\int_{\mathbb{R}} \mathcal{W}(f,g)(y,\lambda) d\mu_{\alpha,\beta}(y) \right] d\sigma(\lambda).$$

Proof: By using the relation (2.26) we have

$$\int_{\mathbb{R}} \psi_{-\lambda}^{\alpha,\beta}(x) \left[\int_{\mathbb{R}} \mathcal{W}(f,g)(y,\lambda) d\mu_{\alpha,\beta}(y) \right] d\sigma(\lambda) = c_g \int_{\mathbb{R}} \mathcal{F}_{\alpha,\beta}(f)(\lambda) \psi_{-\lambda}^{\alpha,\beta}(x) d\sigma(\lambda),$$

by using inversion formula for the Jacobi-Dunkl transform (2.8) we find the result.

3. Localization operators associated with the Jacobi-Dunkl-Wigner transform

3.1. Introduction

In this section we will define and give sufficient conditions for the boundedness, compactness and Schatten class properties of localization operators $\mathcal{L}_{u,v}(\sigma)$ associated with the Jacobi-Dunkl-Wigner transform in terms of properties of the symbol σ and the functions u and v.

Definition 3.1 Let u and v be measurable functions on \mathbb{R} , σ be a measurable function on the set \mathbb{R}^2 , we define the localization operator $\mathcal{L}_{u,v}(\sigma)$ associated with the Jacobi-Dunkl-Wigner transform by

$$\mathscr{L}_{u,v}(\sigma)(f)(y) := \int_{\mathbb{R}^2} \sigma(x,\lambda) \mathcal{W}(f,u)(x,\lambda) \psi_{\lambda}^{\alpha,\beta}(y) \overline{\mathcal{T}_{\alpha,\beta}^x(v)(y)} d\theta_{\alpha,\beta}(x,\lambda). \tag{3.1}$$

Remark 3.1 In accordance with the different choices of the symbol σ and the different continuities required, we need to impose different conditions on u,v, and then we obtain an operator on $L^p_{\alpha,\beta}(\mathbb{R})$ for all $1 \leq p \leq +\infty$.

It is more convenient to interpret the definition of $\mathcal{L}_{u,v}(\sigma)$ in a weak sense, that is for all $f \in L^p_{\alpha,\beta}(\mathbb{R}), g \in L^q_{\alpha,\beta}(\mathbb{R})$ we have

$$\langle \mathscr{L}_{u,v}(\sigma)(f) \mid g \rangle_{\mu_{\alpha,\beta}} = \int_{\mathbb{D}^2} \sigma(x,\lambda) \mathcal{W}(f,u)(x,\lambda) \overline{\mathcal{W}(g,v)(x,\lambda)} d\theta_{\alpha,\beta}(x,\lambda). \tag{3.2}$$

we have the following result

Proposition 3.1 Let $1 \le p \le +\infty$, the adjoint of the linear operator

$$\mathscr{L}_{u,v}(\sigma): L^p_{\alpha,\beta}(\mathbb{R}) \longrightarrow L^p_{\alpha,\beta}(\mathbb{R})$$

is the operator

$$\mathscr{L}_{u,v}^*(\sigma): L_{\alpha,\beta}^{p'}(\mathbb{R}) \longrightarrow L_{\alpha,\beta}^{p'}(\mathbb{R})$$

where

$$\mathscr{L}_{u,v}^*(\sigma) = \mathscr{L}_{v,u}(\bar{\sigma}). \tag{3.3}$$

Proof: Let $f \in L^p_{\alpha,\beta}(\mathbb{R}), g \in L^q_{\alpha,\beta}(\mathbb{R})$ by using the relation (3.2) we have

$$\langle \mathscr{L}_{u,v}(\sigma)(f) \mid g \rangle_{\mu_{\alpha,\beta}} = \int_{\mathbb{R}^2} \sigma(x,\lambda) \mathcal{W}(f,u)(x,\lambda) \overline{\mathcal{W}(g,v)(x,\lambda)} d\theta_{\alpha,\beta}(x,\lambda)$$

$$= \overline{\int_{\mathbb{R}^2} \overline{\sigma(x,\lambda)} \mathcal{W}(g,v)(x,\lambda) \overline{\mathcal{W}(f,u)(x,\lambda)} d\theta_{\alpha,\beta}(x,\lambda)}$$

$$= \overline{\langle \mathscr{L}_{v,u}(\bar{\sigma})(g) \mid f \rangle_{\mu_{\alpha,\beta}}} = \langle f \mid \mathscr{L}_{v,u}(\bar{\sigma})(g) \rangle_{\mu_{\alpha,\beta}},$$

we get

$$\mathscr{L}_{u,v}^*(\sigma) = \mathscr{L}_{v,u}(\bar{\sigma}).$$

In the sequel of this section, u and v will be any functions in $L^2_{\alpha,\beta}(\mathbb{R})$ such that $||u||_{2,\mu_{\alpha}} = ||v||_{2,\mu_{\alpha}} = 1$. We note that this hypothesis is not essential and the result still true up some constant depending on $||u||_{2,\mu_{\alpha}}$ and $||v||_{2,\mu_{\alpha}}$.

3.2. Boundedness for $\mathcal{L}_{u,v}(\sigma)$ in S_{∞}

The main purpose of this subsection is to prove that the linear operator

$$\mathscr{L}_{u,v}(\sigma): L^2_{\alpha,\beta}(\mathbb{R}) \longrightarrow L^2_{\alpha,\beta}(\mathbb{R})$$

is bounded for all symbol $\sigma \in L^p_{\theta}(\mathbb{R}^2)$ with $1 \leq p + \infty$. We consider first the problem for $\sigma \in L^1_{\theta}(\mathbb{R}^2)$, next $\sigma \in L^\infty_{\theta}(\mathbb{R}^2)$ and we conclude by using interpolation theory.

Proposition 3.2 Let $\sigma \in L^2_{\theta}(\mathbb{R}^2)$ then the localization operator $\mathcal{L}_{u,v}(\sigma)$ is in S_{∞} and we have

$$\|\mathscr{L}_{u,v}(\sigma)\|_{S_{\infty}} \le \|\sigma\|_{1,\theta_{\alpha}}.\tag{3.4}$$

Proof: Let $f, g \in L^2_{\alpha,\beta}(\mathbb{R})$ by using the relation (3.2) we have

$$|\langle \mathcal{L}_{u,v}(\sigma)(f) | g \rangle_{\mu_{\alpha,\beta}} \leq \int_{\mathbb{R}^2} |\sigma(x,\lambda)| |\mathcal{W}(f,u)(x,\lambda)| |\mathcal{W}(g,v)(x,\lambda)| d\theta_{\alpha,\beta}(x,\lambda)$$

$$\leq ||\mathcal{W}(f,u)||_{\infty,\theta} ||\mathcal{W}(g,v)||_{\infty,\theta} ||\sigma||_{1,\theta},$$

by using the relation (2.24) we get

$$\left| \left\langle \mathscr{L}_{u,v}(\sigma)(f) \mid g \right\rangle_{\mu_{\alpha,\beta}} \right| \leq \|f\|_{2,\alpha,\beta} \|g\|_{2,\alpha,\beta} \|\sigma\|_{1,\theta_{\alpha}},$$

by (2.16) we find that

$$\|\mathcal{L}_{u,v}(\sigma)\|_{S_{\infty}} \le \|\sigma\|_{1,\theta}$$

Proposition 3.3 Let $\sigma \in L^{\infty}_{\theta}(\mathbb{R}^2)$, the localization operators $\mathcal{L}_{u,v}(\sigma)$ is in S_{∞} and we have

$$\|\mathscr{L}_{u,v}(\sigma)\|_{S_{\infty}} \le \|\sigma\|_{\infty,\theta}. \tag{3.5}$$

Proof: Let $f, g \in L^2_{\alpha,\beta}(\mathbb{R})$ by using the relation (3.2) we have

$$|\langle \mathscr{L}_{u,v}(\sigma)(f) | g \rangle_{\mu_{\alpha,\beta}}| \leq \int_{\mathbb{R}^2} |\sigma(x,\lambda)| |\mathcal{W}(f,u)(x,\lambda)| |\mathcal{W}(g,v)(x,\lambda)| d\theta_{\alpha,\beta}(x,\lambda),$$

by Hölder's inequality we find that

$$|\langle \mathscr{L}_{u,v}(\sigma)(f) | g \rangle_{\mu_{\alpha,\beta}}| \leq ||\sigma||_{\infty,\theta} ||\mathcal{W}(f,u)||_{2,\theta} ||\mathcal{W}(g,v)||_{2,\theta},$$

by using the relation (2.23) we get

$$|\langle \mathscr{L}_{u,v}(\sigma)(f) | g \rangle_{\mu_{\alpha,\beta}}| \leq ||\sigma||_{\infty,\theta} ||f||_{2,\alpha,\beta} ||g||_{2,\alpha,\beta},$$

thus

$$\|\mathscr{L}_{u,v}(\sigma)\|_{S_{\infty}} \leq \|\sigma\|_{\infty,\theta}.$$

We can now associate a localization operator $\mathscr{L}_{u,v}(\sigma)$ to every symbol σ in $L^p_{\theta}(\mathbb{R}^2)$ for all $1 \leq p \leq +\infty$, and prove that $\mathscr{L}_{u,v}(\sigma)$ belongs to S_{∞} .

Theorem 3.1 Let $\sigma \in L^p_{\theta}(\mathbb{R}^2), 1 \leq p \leq +\infty$ then there exists a unique bounded linear operator

$$\mathscr{L}_{u,v}(\sigma): L^2_{\alpha,\beta}(\mathbb{R}) \longrightarrow L^2_{\alpha,\beta}(\mathbb{R})$$

such that

$$\|\mathcal{L}_{u,v}(\sigma)\|_{S_{\infty}} \le \|\sigma\|_{p,\theta}. \tag{3.6}$$

Proof: Let $\sigma \in L^p_\theta(\mathbb{R}^2)$, $1 \le p \le +\infty$ and $f \in L^2_{\alpha,\beta}(\mathbb{R})$ we consider the following operator

$$T: L^1_{\theta}\left(\mathbb{R}^2\right) \cap L^{\infty}_{\theta}\left(\mathbb{R}^2\right) \longrightarrow L^2_{\alpha,\beta}(\mathbb{R}),$$

given by

$$T(\sigma) = \mathcal{L}_{u,v}(\sigma)(f),$$

then by using the relations (3.4) and (3.5) we have

$$||T(\sigma)||_{2,\alpha,\beta} \le ||f||_{2,\alpha,\beta} ||\sigma||_{1,\theta} \tag{3.7}$$

and

$$||T(\sigma)||_{2,\alpha,\beta} \le ||f||_{2,\alpha,\beta} ||\sigma||_{\infty,\theta_{\alpha}},\tag{3.8}$$

by using the relations (3.7),(3.8) and the Riesz-Thorin interpolation Theorem see [18,21], the operator T may be uniquely extended to a linear operator on $L^2_{\alpha,\beta}(\mathbb{R})$ for all $1 \leq p \leq +\infty$ and we have

$$||T(\sigma)||_{2,\alpha,\beta} = ||\mathcal{L}_{u,v}(\sigma)(f)||_{2,\alpha,\beta} \le ||f||_{2,\alpha,\beta} ||\sigma||_{p,\theta}, \tag{3.9}$$

since (3.9) true for all $f \in L^2_{\alpha}(\mathbb{R})$ which gives the discred result.

3.3. $L^p_{\alpha,\beta}$ -Boundedness of localization operator $\mathcal{L}_{u,v}(\sigma)$

Using Schur's technique [8] our main purpose of this subsection is to prove that the linear operator

$$\mathscr{L}_{u,v}(\sigma): L^p_{\alpha,\beta}(\mathbb{R}) \longrightarrow L^p_{\alpha,\beta}(\mathbb{R}),$$

is bounded for all $1 \le p \le +\infty$, we have the following theorem.

Theorem 3.2 Let $\sigma \in L^1_{\theta}(\mathbb{R}^2)$ and $u, v \in L^1_{\alpha,\beta}(\mathbb{R}) \cap L^{\infty}_{\alpha,\beta}(\mathbb{R})$ then the localization operator $\mathcal{L}_{u,v}(\sigma)$ extend to a unique bounded linear operator from $L^p_{\alpha,\beta}(\mathbb{R})$ into itself for all $1 \leq p \leq +\infty$, furthermore we have

$$\|\mathscr{L}_{u,v}(\sigma)\|_{B(L^{p}_{\alpha}(\mathbb{R}))} \leq \max(\|u\|_{1,\alpha,\beta}\|v\|_{\infty,\alpha,\beta}, \|u\|_{\infty,\alpha,\beta}\|v\|_{1,\alpha,\beta})\|\sigma\|_{1,\theta_{\alpha}}.$$

Proof: Let F be the function defined on \mathbb{R}^2 by

$$F(y,s) = \int_{\mathbb{D}^2} \sigma(x,\lambda) \psi_{\lambda}^{\alpha,\beta}(y) \overline{\mathcal{T}_{\alpha,\beta}^x(v)(y)} \psi_{\lambda}^{\alpha,\beta}(s)) \mathcal{T}_{\alpha,\beta}^x(u)(s) d\theta_{\alpha,\beta}(x,\lambda),$$

by using Fubini's theorem we find that

$$\mathscr{L}_{u,v}(\sigma)(f)(y) = \int_{\mathbb{R}} F(y,s)f(s)d\mu_{\alpha,\beta}(s),$$

furthermore by using the relation (2.11) and Fubini's theorem we find that

$$\int_{\mathbb{R}} |F(y,s)| d\mu_{\alpha,\beta}(y) \le ||u||_{\infty,\alpha,\beta} ||v||_{1,\alpha,\beta} ||\sigma||_{1,\theta}$$
(3.10)

and

$$\int_{\mathbb{R}} |F(y,s)| d\mu_{\alpha,\beta}(s) \le ||u||_{1,\mu_{\alpha}} ||v||_{\infty,\mu_{\alpha}} ||\sigma||_{1,\theta}$$
(3.11)

by using (3.10),(3.11) and Schur's lemma [8] we can conclude that the linear operator

$$\mathscr{L}_{u,v}(\sigma): L^p_{\alpha,\beta}(\mathbb{R}) \longrightarrow L^p_{\alpha,\beta}(\mathbb{R}),$$

is bounded for all $1 \le p \le +\infty$ and we have

$$\|\mathscr{L}_{u,v}(\sigma)\|_{B(L^{p}_{\alpha}(\mathbb{R}))} \leq \max(\|u\|_{1,\alpha,\beta}\|v\|_{\infty,\alpha,\beta},\|u\|_{\infty,\alpha,\beta}\|v\|_{1,\alpha,\beta})\|\sigma\|_{1,\theta}.$$

3.4. Trace of the localization operators $\mathcal{L}_{u,v}(\sigma)$

The main result of this subsection is to prove that the localization operator

$$\mathscr{L}_{u,v}(\sigma): L^2_{\alpha,\beta}(\mathbb{R}) \longrightarrow L^2_{\alpha,\beta}(\mathbb{R}),$$

is in the Schatten-Von Neumann class S^p for all $1 \le p \le +\infty$, firstly we have the following result

Theorem 3.3 Let $\sigma \in L^1_{\alpha}(\mathbb{R}^2)$ then the localization operator

$$\mathscr{L}_{u,v}(\sigma): L^2_{\alpha,\beta}(\mathbb{R}) \longrightarrow L^2_{\alpha,\beta}(\mathbb{R})$$

is an Hilbert-Schmidt operator in particular it is compact and we have

$$\|\mathscr{L}_{u,v}(\sigma)\|_{HS} \le 1 + \|\sigma\|_{1,\theta}^2.$$

Proof: Let $(\phi_k)_k$ be an orthonormal basis of $L^2_{\alpha,\beta}(\mathbb{R})$, by using Fubini's theorem and the relation (3.2) we get

$$\|\|\mathcal{L}_{u,v}(\sigma)(\phi_k)\|_{2,\alpha,\beta}^2 = \langle \mathcal{L}_{u,v}(\sigma)(\phi_k) | \mathcal{L}_{u,v}(\sigma)(\phi_k) \rangle_{\mu_{\alpha,\beta}}$$
$$= \int_{\mathbb{R}^2} \sigma(x,\lambda) \mathcal{W}(\phi_k, u)(x,\lambda) \overline{\mathcal{W}(\mathcal{L}_{u,v}(\sigma)(\phi_k), v)(x,\lambda)} d\theta_{\alpha,\beta}(x,\lambda),$$

by (2.22) we find that

$$\| \| \mathcal{L}_{u,v}(\sigma) (\phi_k) \|_{2,\alpha,\beta}^2 = \int_{\mathbb{R}^2} \sigma(x,\lambda) \mathcal{F}_{\alpha} \left(\phi_k \widetilde{\mathcal{T}_{\alpha,\beta}^x(u)} \right) (\lambda)$$

$$\overline{\mathcal{F}_{\alpha} \left(\mathcal{L}_{u,v}(\sigma) (\phi_k) \widetilde{\mathcal{T}_{\alpha,\beta}^x(v)} \right) (\lambda)} d\theta_{\alpha,\beta}(x,\lambda),$$

but

$$\mathcal{F}_{\alpha}\left(\phi_{k}\widetilde{\mathcal{T}_{\alpha,\beta}^{x}(u)}\right)(\lambda) = \left\langle \psi_{\lambda}^{\alpha,\beta}(.)\widetilde{\mathcal{T}_{\alpha,\beta}^{x}(u)} \mid \phi_{k} \right\rangle_{\mu_{\alpha,\beta}},$$

by the relation (3.3) we get

$$\mathcal{F}_{\alpha}\left(\mathcal{L}_{u,v}(\sigma)\left(\phi_{k}\right)\mathcal{T}_{\alpha,\beta}^{x}(v)\right)(\lambda) = \left\langle \phi_{k} \mid \mathcal{L}_{v,u}(\bar{\sigma})\left(\widetilde{\mathcal{T}_{\alpha,\beta}^{x}(v)}\right) \right\rangle_{\mu_{\alpha,\beta}},$$

So we find that

$$\left\| \left\| \mathcal{L}_{u,v}(\sigma)(\phi_{k}) \right\|_{2,\alpha,\beta}^{2} \leq \int_{\mathbb{R}^{2}} \left| \sigma(x,\lambda) \right\| \left\langle \psi_{\lambda}^{\alpha,\beta}(.) \widetilde{\mathcal{T}_{\alpha,\beta}(u)} \mid \phi_{k} \right\rangle_{\mu_{\alpha,\beta}} \right| \\ \left| \left\langle \phi_{k} \middle| \mathcal{L}_{v,u}(\bar{\sigma}) \left(\widetilde{\mathcal{T}_{\alpha,\beta}^{x}(v)} \psi_{\lambda}^{\alpha,\beta}(\cdot) \right)_{\mu_{\alpha,\beta}} \right| d\theta_{\alpha,\beta}(x,\lambda) \right. \\ \leq \frac{1}{2} \int_{\mathbb{R}^{2}} \left| \sigma(x,\lambda) \right| \left[\left| \left\langle \psi_{\lambda}^{\alpha,\beta}(.) \widetilde{\mathcal{T}_{\alpha,\beta}^{x}(u)} \mid \phi_{k} \right\rangle_{\mu_{\alpha,\beta}} \right|^{2} + \\ \left| \left\langle \mathcal{L}_{v,u}(\bar{\sigma}) \left(\widetilde{\mathcal{T}_{\alpha,\beta}^{x}(v)} \left(\psi_{\lambda}^{\alpha,\beta}(.) \right) \right) |\phi_{k} \rangle_{\mu_{\alpha,\beta}} \right|^{2} \right] d\theta_{\alpha,\beta}(x,\lambda),$$

by using Fubini's theorem we find that

$$\begin{split} \|\mathscr{L}_{u,v}(\sigma)\|_{HS}^{2} \leq & \frac{1}{2} \left[\int_{\mathbb{R}^{2}} |\sigma(x,\lambda)| \left[\sum_{k=1}^{+\infty} \left| \left\langle \psi_{\lambda}^{\alpha,\beta}(.) \widetilde{\mathcal{T}_{\alpha,\beta}^{x}}(u) \mid \phi_{k} \right\rangle_{\mu_{\alpha,\beta}} \right|^{2} \right. \\ & + \left. \sum_{k=1}^{+\infty} \left| \left\langle \mathscr{L}_{v,u}(\bar{\sigma}) \left(\widetilde{\mathcal{T}_{\alpha,\beta}^{x}}(v) \psi_{\lambda}^{\alpha,\beta}(.) \mid \phi_{k} \right\rangle_{\mu_{\alpha,\beta}} \right|^{2} \right] d\theta_{\alpha,\beta}(x,\lambda) \right]. \end{split}$$

By using Parseval's identity, the relations (2.5),(2.13),(3.4) and the fact that $||u||_{2,\alpha,\beta} = ||v||_{2,\alpha,\beta} = 1$ we find that

$$\|\mathscr{L}_{u,v}(\sigma)\|_{HS}^2 \le \frac{1}{2} \|\sigma\|_{1,\theta} \left(1 + \|\sigma\|_{1,\theta}^2\right) \le \left(1 + \|\sigma\|_{1,\theta}^2\right)^2 < \infty$$

which proves that $\mathscr{L}_{u,v}(\sigma)$ is an Hilbert-Schmidt operator so compact and we have

$$\|\mathscr{L}_{u,v}(\sigma)\|_{HS} \le 1 + \|\sigma\|_{1,\theta}^2.$$

In the following we prove that the localization operator

$$\mathscr{L}_{u,v}(\sigma): L^2_{\alpha,\beta}(\mathbb{R}) \longrightarrow L^2_{\alpha,\beta}(\mathbb{R})$$

is compact for all $\sigma \in L^p_{\alpha,\beta}\left(\mathbb{R}^2\right)$.

Proposition 3.4 Let $\sigma \in L^p_\theta(\mathbb{R}^2)$, $1 \leq p < +\infty$ then the localization operator

$$\mathscr{L}_{u,v}(\sigma): L^2_{\alpha,\beta}(\mathbb{R}) \longrightarrow L^2_{\alpha,\beta}(\mathbb{R})$$

is compact.

Proof: Let $\sigma \in L^1_{\theta}(\mathbb{R}^2)$ with $1 \leq p < +\infty$ and let $(\sigma_n)_n$ be a sequence of functions in $L^1_{\theta}(\mathbb{R}^2) \cap L^{\infty}_{\theta}(\mathbb{R}^2)$ such that $\sigma_n \longrightarrow \sigma$ in $L^p_{\theta}(\mathbb{R}^2)$ as $n \longrightarrow \infty$ then by using the relation (3.6) we find that

$$\left\| \mathcal{L}_{u,v}\left(\sigma_{n}\right) - \mathcal{L}_{u,v}\left(\sigma\right) \right\|_{S_{\infty}} \leq \left\| \sigma_{n} - \sigma \right\|_{p,\theta},$$

hence $\mathscr{L}_{u,v}\left(\sigma_{n}\right)\longrightarrow\mathscr{L}_{u,v}(\sigma)$ in S_{∞} as $n\longrightarrow\infty$ on the other hand by theorem 3.3 we have $\mathscr{L}_{u,v}\left(\sigma_{n}\right)$ is in S_{2} hence compact, it follows that $\mathscr{L}_{u,v}(\sigma)$ is compact.

In the next theorem we obtain a $L^1_{\alpha,\beta}$ -compactness result for the localization operator $\mathcal{L}_{u,v}(\sigma)$.

Theorem 3.4 Let $\sigma \in L^1_{\theta}(\mathbb{R}^2)$, u and v in $L^2_{\alpha,\beta}(\mathbb{R}) \cap L^2_{\alpha,\beta}(\mathbb{R})$ then the localization operator

$$\mathscr{L}_{u,v}(\sigma): L^1_{\alpha,\beta}(\mathbb{R}) \longrightarrow L^1_{\alpha,\beta}(\mathbb{R})$$

is compact.

Proof: By using theorem 3.2 the linear operator

$$\mathscr{L}_{u,v}(\sigma): L^1_{\alpha,\beta}(\mathbb{R}) \longrightarrow L^1_{\alpha,\beta}(\mathbb{R})$$

is well defined, let $(f_n) \subset L^1_{\alpha}(\mathbb{R})$ such that $f_n \longrightarrow 0$ weakly in $L^1_{\alpha,\beta}(\mathbb{R})$ as $n \longrightarrow \infty$, it is enough to prove that $\lim_{n \to +\infty} \|\mathscr{L}_{u,v}(\sigma)(f_n)\|_{1,\alpha,\beta} = 0$. By using the relation (3.1) we have

$$\left\| \mathcal{L}_{u,v}(\sigma) \left(f_n \right) \right\|_{1,\alpha,\beta}$$

$$\leq \int_{\mathbb{R}} \left[\int_{\mathbb{R}^2} \left| \sigma(x, \lambda) \left\| \mathcal{W} \left(f_n, u \right) (x, \lambda) \right\| \mathcal{T}_{\alpha, \beta}^x(v)(y) \right| d\theta_{\alpha, \beta}(x, \lambda) \right] d\mu_{\alpha}(y). \tag{3.12}$$

Using the fact that $f_n \longrightarrow 0$ weakly in $L^2_{\alpha,\beta}(\mathbb{R})$ as $n \longrightarrow \infty$, we deduce that

$$\lim_{n \to +\infty} \left| \mathcal{W}\left(f_n, u \right) (x, \lambda) \right\| \mathcal{T}_{\alpha, \beta}^x(v)(y) \right| = 0$$
(3.13)

for all $x, y, \lambda \in \mathbb{R}$, on the other hand as $f_n \longrightarrow 0$ weakly in $L^1_{\alpha,\beta}(\mathbb{R})$ as $n \longrightarrow \infty$, there exists a positive conctant c such that $||f_n||_{1,\alpha,\beta} \leq c$, so we find that

$$\| \mathcal{W}(f_n, u) ((x, \lambda) \| \mathcal{T}_{\alpha, \beta}^x(v)(y) \| \le c |\sigma(x, \lambda)| \| u \|_{\infty, \alpha, \beta} |v(y)|, \tag{3.14}$$

by using Fubuni's theorem we get

$$\int_{\mathbb{R}} \left[\int_{\mathbb{R}^2} \left| \sigma(x,\lambda) \left\| \mathcal{W}\left(f_n, u\right)(x,\lambda) \right\| \mathcal{T}_{\alpha,\beta}^x(v)(y) \right| d\theta_{\alpha,\beta}(x,\lambda) \right] d\mu_{\alpha}(y) \le c \|\sigma\|_{1,\theta} \|u\|_{\infty,\alpha,\beta} \|v\|_{1,\alpha,\beta} < \infty.$$
(3.15)

Thus from the relations (3.12),(3.13),(3.14),(3.15) and the Lebesgue dominated convergence theorem we deduce that $\lim_{n\to+\infty} \|\mathscr{L}_{u,v}(\sigma)(f_n)\|_{1,\alpha,\beta} = 0$ and the proof is complete.

In the following we show that the localization operator $\mathcal{L}_{u,v}$ is in the trace class S^1 .

Theorem 3.5 Let $\sigma \in L^1_{\theta}(\mathbb{R}^2)$ then the localization operator

$$\mathscr{L}_{u,v}(\sigma): L^2_{\alpha,\beta}(\mathbb{R}) \longrightarrow L^2_{\alpha,\beta}(\mathbb{R})$$

is in the trace class operators S_1 and we have

$$\|\tilde{\sigma}\|_{1,\theta} \le \|\mathcal{L}_{u,v}(\sigma)\|_{S_1} \le \|\sigma\|_{1,\theta}$$
 (3.16)

where $\tilde{\sigma}$ is given by

$$\tilde{\sigma}(x,\lambda) = \left\langle \mathcal{L}_{u,v}(\sigma) \left(\psi_{\lambda}^{\alpha,\beta}(.) \mathcal{T}_{\alpha,\beta}^{x}(u) \right) \mid \psi_{\lambda}^{\alpha,\beta}(.) \mathcal{T}_{\alpha,\beta}^{x}(v) \right\rangle_{u_{\alpha},\beta}.$$

Proof: Let $\sigma \in L^1_{\theta}(\mathbb{R}^2)$ by using theorem 3.4 we have $\mathscr{L}(\sigma)$ is a compact operator, using [21], there exists an orthonormal basis ϕ_j for j = 1, 2, ... for the orthogonal complement of the kernel of the operator $\mathscr{L}_{u,v}(\sigma)$ consisting of eigenvectors of $|\mathscr{L}_{u,v}(\sigma)|$ and $h_j j = 1, 2, ...$, an orthonormal set in $L^2_{\alpha,\beta}(\mathbb{R})$ such that the localization operators $\mathscr{L}_{u,v}(\sigma)$ can be diagonalized as

$$\mathcal{L}_{u,v}(\sigma)(f) = \sum_{j=1}^{+\infty} s_j \langle f \mid \phi_j \rangle_{\mu_{a,\beta}} h_j, \qquad (3.17)$$

where s_j for j = 1, 2, ... are the positive singular values of $\mathcal{L}_{u,v}(\sigma)$ corresponding to ϕ_j , then we get:

$$\|\mathscr{L}_{u,v}(\sigma)\|_{S^{1}} = \sum_{j=1}^{+\infty} s_{j} = \sum_{j=1}^{+\infty} \langle \mathscr{L}_{u,v}(\sigma) \left(\phi_{j}\right) \mid h_{j} \rangle_{\mu_{\alpha,\beta}},$$

by using the relations (3.1) and (3.2) we find that

$$\langle \mathcal{L}_{u,v}(\sigma) \left(\phi_{j}\right) \mid h_{j} \rangle_{\mu_{\alpha,\beta}} = \int_{\mathbb{R}^{2}} \left| \sigma(x,\lambda) \left\| \left\langle \psi_{\lambda}^{\alpha,\beta}(.) \mathcal{T}_{\alpha,\beta}^{x}(u) \mid \phi_{j} \right\rangle_{\mu_{\alpha,\beta}} \right\| \left\langle \psi_{\lambda}^{\alpha,\beta}(.) \widetilde{\mathcal{T}_{\alpha,\beta}^{x}(v)} \mid h_{j} \right\rangle_{\mu_{\alpha,\beta}} \right| d\theta_{\alpha,\beta}(x,\lambda),$$

So we find that

$$\|\mathscr{L}_{u,v}(\sigma)\|_{S^{1}} \leq \frac{1}{2} \int_{\mathbb{R}^{2}} |\sigma(x,\lambda)| \left[\sum_{j=1}^{+\infty} \left| \left\langle \psi_{\lambda}^{\alpha,\beta}(.) \mathcal{T}_{\alpha,\beta}^{x}(u) \mid \phi_{j} \right\rangle_{\mu_{\alpha,\beta}} \right|^{2} \right| + \sum_{j=1}^{+\infty} \left| \left\langle \psi_{\lambda}^{\alpha,\beta}(.) \mathcal{T}_{\alpha,\beta}^{x}(v) \mid h_{j} \right\rangle_{\mu_{\alpha,\beta}} \right|^{2} d\theta_{\alpha,\beta}(x,\lambda)$$

by using parseval's identity we get

$$\|\mathscr{L}_{u,v}(\sigma)\|_{S^1} \leq \frac{1}{2} \int_{\mathbb{R}^2} |\sigma(x,\lambda)| \left[\|\psi_{\lambda}^{\alpha,\beta}(.) \right) \mathcal{T}_{\alpha,\beta}^x(u) \|_{2,\alpha,\beta}^2 + \|\psi_{\lambda}^{\alpha,\beta}(.) \mathcal{T}_{\alpha,\beta}^x(v)\|_{2,\alpha,\beta}^2 \right] d\theta_{\alpha,\beta}(x,\lambda).$$

By using the relation (2.5),(2.13) and the fact that $||u||_{2,\alpha,\beta} = ||v||_{2,\alpha,\beta} = 1$ we get

$$\|\mathscr{L}_{u,v}(\sigma)\|_{S_1} \leq \|\sigma\|_{1,\theta}.$$

Now we prove that $\mathcal{L}_{u,v}(\sigma)$ satisfies the first member of (3.16), it is easy to see that $\tilde{\sigma} \in L^1_{\theta}(\mathbb{R}^2)$ and by using the relation (3.17) and Fubini's theorem we find that

$$\int_{\mathbb{R}^{2}} |\tilde{\sigma}(x,\lambda)| d\theta_{\alpha,\beta}(x,\lambda) \leq \frac{1}{2} \sum_{j=1}^{+\infty} s_{j} \left[\int_{\mathbb{R}^{2}} \left(\left| \left\langle \psi_{\lambda}^{\alpha,\beta}(.) \mathcal{T}_{\alpha,\beta}^{x}(u) \mid \phi_{j} \right\rangle_{\mu_{\alpha,\beta}} \right|^{2} + \left| \left\langle h_{j} \mid \psi_{\lambda}^{\alpha,\beta}(.) \mathcal{T}_{\alpha,\beta}^{x}(v) \right\rangle_{\mu_{\alpha,\beta}} \right|^{2} \right) d\theta_{\alpha,\beta}(x,\lambda) \right] \\
= \frac{1}{2} \sum_{j=1}^{+\infty} s_{j} \left[\int_{\mathbb{R}^{2}} |\mathcal{W}(\phi_{j},u)(x,\lambda)|^{2} + |\mathcal{W}(h_{j},v)(x,\lambda)|^{2} \right] d\theta_{\alpha,\beta}(x,\lambda),$$

by using the relation (2.23) and the fact that $||u||_{2,\alpha,\beta} = ||v||_{2,\alpha,\beta} = 1$ we get

$$\int_{\mathbb{R}^2} |\tilde{\sigma}(x,\lambda)| d\theta_{\alpha,\beta}(x,\lambda) \leq \frac{1}{2} \sum_{j=1}^{+\infty} s_j \left(\|u\|_{2,\alpha,\beta}^2 + \|v\|_{2,\alpha,\beta}^2 \right) = \sum_{j=1}^{+\infty} s_j = \|\mathcal{L}_{u,v}(\sigma)\|_{S_1},$$

the proof is complete.

In the following we give a trace formula for the localization operators $\mathcal{L}_{u,v}(\sigma)$.

Theorem 3.6 Let $\sigma \in L^1_{\theta}(\mathbb{R}^2)$ we have the following trace formula

$$\operatorname{Tr}\left(\mathcal{L}_{u,v}(\sigma)\right) = \int_{\mathbb{R}^2} \sigma(x,\lambda) \left\langle \psi_{\lambda}^{\alpha,\beta}(.) \widetilde{\mathcal{T}_{\alpha,\beta}^x(u)} \mid \psi_{\lambda}^{\alpha,\beta}(.) \widetilde{\mathcal{T}_{\alpha,\beta}^x(v)} \right\rangle_{\mu_{\alpha,\beta}} d\theta_{\alpha,\beta}(x,\lambda)$$

Proof: Let $\{\phi_j, j = 1, 2, \ldots\}$ be an orthonormal basis for $L^2_{\alpha,\beta}(\mathbb{R})$. From Theorem 3.5, the localization operator $\mathcal{L}_{u,v}(\sigma)$ belongs to S_1 , then by the definition of the trace given by the relation (2.17), Fubini's theorem and Parseval's identity, we get

$$\operatorname{Tr}\left(\mathscr{L}_{u,v}(\sigma)\right) = \sum_{j=1}^{\infty} \left\langle \mathscr{L}_{u,v}(\sigma)\left(\phi_{j}\right), \phi_{j} \right\rangle_{\mu_{\alpha,\beta}}$$

$$= \int_{\mathbb{R}^{2}} \sigma(x,\lambda) \sum_{j=1}^{\infty} \left\langle \phi_{j}, \psi_{\lambda}^{\alpha,\beta}(.), \widetilde{\mathcal{T}_{\alpha,\beta}^{x}(u)}. \right\rangle_{\mu_{\alpha,\beta}} \left\langle \widetilde{\mathcal{T}_{\alpha,\beta}^{x}(v)} \psi_{\lambda}^{\alpha,\beta}(.), \phi_{j} \right\rangle_{\mu_{\alpha,\beta}} d\theta_{\alpha,\beta}(x,\lambda)$$

$$= \int_{\mathbb{R}^{2}} \sigma(x,\lambda) \left\langle \psi_{\lambda}^{\alpha,\beta}(.) \widetilde{\mathcal{T}_{\alpha,\beta}^{x}(u)} \mid \psi_{\lambda}^{\alpha,\beta}(.) \widetilde{\mathcal{T}_{\alpha,\beta}^{x}(v)} \right\rangle_{\mu_{\alpha,\beta}} d\theta_{\alpha,\beta}(x,\lambda),$$

and the proof is complete.

Corollary 3.1 If u = v and if σ is a real valued, and nonegative function in $L^1_{\theta}(\mathbb{R}^2)$ then the localization operator

$$\mathscr{L}_u(\sigma): L^2_{\alpha,\beta}(\mathbb{R}) \longrightarrow L^2_{\alpha,\beta}(\mathbb{R})$$

is a positive operator and by using the relations (2.18) and (3.18) we find that

$$\|\mathscr{L}_{u}(\sigma)\|_{S_{1}} = \int_{\mathbb{R}^{2}} \sigma(x,\lambda) \left\| \psi_{\lambda}^{\alpha,\beta}(.) \widetilde{\mathcal{T}_{\alpha,\beta}^{x}(u)} \right\|_{2,\alpha,\beta}^{2} d\theta_{\alpha,\beta}(x,\lambda)$$

here $\mathcal{L}_u(\sigma)$ denote the operator $\mathcal{L}_{u,u}$.

In the following we give the main result of this section.

Corollary 3.2 Let σ in $L_{\theta}^{p}(\mathbb{R}^{2})$, $1 \leq p \leq +\infty$ then, the localization operator

$$\mathscr{L}_{u,v}(\sigma): L^2_{\alpha,\beta}(\mathbb{R}) \longrightarrow L^2_{\alpha,\beta}(\mathbb{R})$$

is in S^p and we have

$$\|\mathcal{L}_{u,v}(\sigma)\|_{S_p} \le \|\sigma\|_{p,\theta}.$$

Proof: The result follows from (3.5) and (3.16) and by interpolation theory see [21].

Acknowledgments

The authors are deeply indebted to the referees for providing constructive comments and helps in improving the contents of this article.

Disclosure statement

No potential conflict of interest was reported by the authors.

Data Availability Statements

Not applicable.

References

- 1. Ben Mohamed, H. The Jacobi-Dunkl transform and the convolution product on new spaces of distributions. Ramanujan J 21, 145–171 (2010). https://doi.org/10.1007/s11139-009-9171-3
- 2. Boggiatto, P., Wong, M. Two-Wavelet Localization Operators on $L^p(\mathbb{R}^n)$ for the Weyl-Heisenberg Group. Integr. equ. oper. theory 49, 1–10 (2004). https://doi.org/10.1007/s00020-002-1200-1
- 3. Calderón, A. (1963). Intermediate spaces and interpolation. Studia Mathematica, (1), 31-34.
- 5. Cobos, F., & Persson, L. E. (1998). Real interpolation of compact operators between quasi-Banach spaces. Mathematica Scandinavica, 138-160.
- 6. Daubechies, I. "Time-frequency localization operators: a geometric phase space approach," in IEEE Transactions on Information Theory, vol. 34, no. 4, pp. 605-612, July 1988, doi: 10.1109/18.9761.
- 7. De Gosson, M. A. (2017). The Wigner Transform. World Scientific Publishing Company.
- 8. Folland, Gerald B. Introduction to partial differential equations. Vol. 102. Princeton university press, 1995.
- 9. Flensted-Jensen, M. Paley-Wiener type theorems for a differential operator connected with symmetric spaces. Ark. Mat. 10, 143–162 (1972). https://doi.org/10.1007/BF02384806
- Flensted-Jensen, M., Koornwinder, T. The convolution structure for Jacobi function expansions. Ark. Mat. 11, 245–262 (1973). https://doi.org/10.1007/BF02388521
- Ma, B., Wong, M. W. (2004). Lp-boundedness of wavelet multipliers. Hokkaido Math. J, 33, 637-645.https://doi.org/10.14492/hokmj/1285851914

- 12. Mejjaoli, H. Spectral Theorems Associated with the Riemann–Liouville Two-Wavelet Localization Operators. Anal Math 45, 347–374 (2019). https://doi.org/10.1007/s10476-018-0609-y
- 13. Mejjaoli, H., Trimèche, K.Boundedness and compactness of localization operators associated with the Dunkl–Wigner transform, Integral Transforms and Special Functions, 29:4, 310-334 (2018)https://doi.org/10.1080/10652469.2018.1429429
- 14. Mejjaoli, H., Trimèche, K. Boundedness and Compactness of Localization Operators Associated with the Spherical Mean Wigner Transform. Complex Anal. Oper. Theory 13, 753–780 (2019). https://doi.org/10.1007/s11785-018-0794-5
- 15. Mili, M., Trimèche, K. Hypoelliptic Jacobi–Dunkl Convolution of Distributions. MedJM 4, 263–276 (2007). https://doi.org/10.1007/s00009-007-0117-y
- Platonov, S. S. (2020). Fourier-Jacobi harmonic analysis and some problems of approximation of functions on the half-axis in L 2 metric: Nikol'skii-Besov type function spaces. Integral Transforms and Special Functions, 31(4), 281-298.https://doi.org/10.1080/10652469.2019.1691548
- 17. Saoudi, A., Nefzi, B. Boundedness and compactness of localization operators for Weinstein-Wigner transform. J. Pseudo-Differ. Oper. Appl. 11, 675–702 (2020). https://doi.org/10.1007/s11868-020-00328-0
- Stein, E. M. (1956). Interpolation of linear operators. Transactions of the American Mathematical Society, 83(2), 482-492.
- 19. Vinogradov, O. L. (2012). On the norms of generalized translation operators generated by the jacobi-dunkl operators. Journal of Mathematical Sciences, 182(5), 603-617.
- Wigner, E. P. (1997). On the quantum correction for thermodynamic equilibrium. Part I: Physical Chemistry. Part II: Solid State Physics, 110-120.
- 21. Wong, M. W. (2002). Wavelet transforms and localization operators (Vol. 136). Springer Science, Business Media.
- 22. Wong, M. W. (2001). Localization operators on the Weyl-Heisenberg group. Geometry, analysis and applications (Varanasi, 2000), 303-314.
- 23. Wong, M. W. "Lp Boundedness of Localization Operators Associated to Left Regular Representations." Proceedings of the American Mathematical Society 130, no. 10 (2002): 2911–19. http://www.jstor.org/stable/1194608.

A. Chana and A. Akhlidj,

 $Laboratory\ of\ Fundamental\ and\ Applied\ Mathematics,$

Department of Mathematics and Informatics,

Faculty of Sciences Ain Chock,

University of Hassan II, B.P 5366 Maarif, Casablanca, Morocco.

E-mail address: maths.chana@gmail.com and akhlidj@hotmail.fr