
Bol. Soc. Paran. Mat. (3s.) v. 2025 (43) : 1–17.
©SPM – E-ISSN-2175-1188 ISSN-0037-8712
SPM: www.spm.uem.br/bspm doi:10.5269/bspm.68306

Schatten class Localization operators for Wigner Transform Associated with the
Jacobi-Dunkl operator

Ahmed Chana∗ and Abdellatif Akhlidj

abstract: The main crux of this paper is to introduce a new integral transform called the Jacobi-Dunkl-
Wigner transform and to give some new results related to this transform as inversion formula. Next, we
introduce a new class of pseudo-differential operator Lu,v(σ) called localization operator which depend on a
symbol σ and two admissible functions u and v, we give a criteria in terms of the symbol σ for its boundedness
and compactness, we also show that these operators belongs to the Schatten-Von Neumann class Sp for all
p ∈ [1;+∞] and we give a trace formula.
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mann classes.

Contents

1 Introduction 1

2 Harmonic Analysis Associated with the Jacobi-Dunkl operator 2
2.1 The eigenfunctions of the Jacobi-Dunkl operator . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Jacobi kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 The Jacobi-Dunkl kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 The Jacobi-Dunkl transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 The translation operator associated with the Jacobi-Dunkl transform . . . . . . . . . . . . 5
2.4 The Schatten-Von Neumann classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Fourier-Wigner transform associated with the Jacobi-Dunkl operator . . . . . . . . . . . 7

3 Localization operators associated with the Jacobi-Dunkl-Wigner transform 9
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Boundedness for Lu,v(σ) in S∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Lp

α,β-Boundedness of localization operator Lu,v(σ) . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Trace of the localization operators Lu,v(σ) . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1. Introduction

The Wigner transform has a long story wich stared in 1932 with Eugene Wigner’s as a probability
quasi-distribution which allows expression of quantum mechanical expectation values in the same form
as the averages of classical statistical mechanics.It is also used in signal processing as a transform in
time-frequency analysis, for more information one can see [7,20]. A mathematical object closely related
to the Wigner transform is the windowed Fourier transform used in signal theory and time-frequency
analysis, using this connection we will define and study the localization operators for the Fourier-Wigner
transform associated with the Jacobi-Dunkl operator.
The classical Fourier transform in Rd can be defined by many ways, its most basic formulation it is given
by the integral transform

F(f)(λ) =
1

(2π)
d
2

∫
Rd

e−i<λ,x>f(x)dx.

Alternatively, one can rewrite this transform as

F(f)(λ) =
1

(2π)
d
2

∫
Rd

K(λ, x)f(x)dx,
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2 A. Chana and A. Akhlidj

where K(λ, x) is the unique solution of the system of partial differential equations{
∂xjK(λ, x) = −iλjK(λ, x), for j = 1, . . . . . . ., d,

K(λ, 0) = 1, λ ∈ Rd.

A lot of attention has been given to various generalization of the classical Fourier transform. This paper
focuses on the generalized Fourier transform associated with the Jacobi-Dunkl operator called the Jacobi-
Dunkl transform, more precisely we consider the differential-difference operator ∆α,β defined for α, β ∈ R
with α ≥ β ≥ −1

2 and α ̸= −1
2 on R by

∆α,βf(x) :=
∂

∂x
f(x) + [(2α+ 1) cothx+ (2β + 1) tanhx]× f(x)− f(−x)

2
(1.1)

The eigenfunctions of this operator are related to the Jacobi functions and they satisfy a product formula
which permits to develop a new harmonic analysis associated with this operator see [1,4]. One of the aims
of the Fourier transform is the study of the theory of localization operators called also Gabor multipliers,
Toeplitz operators or Anti-Wick operators, this theory was initiated by Daubechies in [6], developed and
detailed in the book [21] by Wong. Wong was the first one who defined the localization operators on the
Weyl Heisenberg group in [22], next Boggiatto and Wong have extended this results on Lp

(
Rd
)
in [2].

Then Wong studies the localization operators associated to left regular representation of localy compact
and Hausdorff group G on Lp(G) in [23]. Some results for wavelets multipliers which are localization
operators associated to modulation on the additive group on Rd are given by Ma and Wong in [11].
The theory of localization operators associated with the Fourier-Wigner transform has been studied and
known remarkable development in many settings for example in the Riemann-Liouville setting [12], in
the spherical mean setting [14], in the Dunkl setting [13], in the Weinstein setting [17]. However, upto
our knowledge, the localization operators have not been studied for the Jacobi-Dunkl transform, the main
purpose of this paper is twofold on the one hand we introduce the Fourier-Wigner transform associated
with the Jacobi-Dunkl operator and we give some new results related to this transform on the other hand
we introduce the localization operator Lu,v(σ) associated with this transform and we give a criteria in
terms of the symbol σ for its boundedness and compactness, we also show that these operators belongs
to the Schatten-Von Neumann classes Sp for all p ∈ [1; +∞] and we give a trace formula.
The remainder of this paper is arranged as follows, in section 2 we recall the main results concerning
the harmonic analysis associated with the Jacobi-Dunkl transform and Schatten-Von Neumann classes,
in section 3 we will study the boundedness, compactness and the Schatten properties of the localization
operator associated with the Jacobi-Dunkl-Wigner transform.

2. Harmonic Analysis Associated with the Jacobi-Dunkl operator

In this section we set some notations and we recall some results in harmonic analysis related to the
Jacobi-Dunkl operator and the Schatten-Von Neumann classes, for more details we refer the reader to
[1,4,15,21].
In the following we denote by
• C0(R), the space of continuous functions defined on R satisfying
lim

|x|→+∞
f(x) = 0, and ∥f∥C0

= supx∈R |f(x)| <∞.

• S(R), the usual Schwartz space of C∞-functions on R rapidly decreasing together with their deriva-
tives, equipped with the topology of semi-norms qm,n, (m,n) ∈ N2, where

qm,n(f) = sup
x∈R,0≤k≤n

[(
1 + x2

)m ∣∣∣∣ dkdxk f(x)
∣∣∣∣] < +∞.

• S∗(R) =
{
(cosh(x))−2ρf ; f ∈ S(R)

}
with ρ ∈ R. and

α, β denote real numbers such that α ≥ β ≥ − 1
2 and α ̸= − 1

2 . we put

Aα,β(x) = 22ρ(sinh |x|)2α+1(coshx)2β+1, ρ = α+ β + 1 (2.1)
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• Lp
α,β(R), p ≥ 1, the space of measurable functions f on R such that

∥f∥p,α,β =

{(∫
R |f(x)|pdµα,β(x)

)1/p
< +∞ si 1 ≤ p < +∞,

ess supx∈R |f(x)| < +∞ si p = +∞.

where µα,β is the measure given by

dµα,β(x) = Aα,β(x)dx,

and Aα,β(x) is given by (2.1).
For p = 2, L2

α,β(R) is a Hilbert space with inner product defined for f, g ∈ L2
α,β(R) by

⟨f, g⟩µα,β
=

∫
R
f(x)g(x)dµα,β(x).

• Lp
σ(R), p ≥ 1, the space of measurable functions f on R such that

∥f∥p,σ =


(∫

R |f(λ)|pdσ(λ)
)1/p

< +∞ si 1 ≤ p < +∞,

ess sup
λ∈R

|f(λ)| < +∞ si p = +∞.

where σ is the spectral measure supported in R\]− ρ, ρ[ given by

dσ(λ) =
|λ|

8π
√
λ2 − ρ2

∣∣∣Cα,β

(√
λ2 − ρ2

)∣∣∣1R\]−ρ,ρ[(λ)dλ,

where

Cα,β(µ) =
2ρ−iµΓ(α+ 1)Γ(iµ)

Γ
(
1
2 (ρ+ iµ)

)
Γ
(
1
2 (α− β + 1 + iµ)

) , µ ∈ C\(iN),

is the Harish-Chandra function given explicitely in [9,10,16] and 1R\]−ρ,ρ[ is the characteristic function
of R\]− ρ, ρ[.
In this paper, we consider the differential-difference operator ∆α,β given by (1.1), this operator is a
particular case of the operator ∆A given by

∆A(f)(x) =
∂f(x)

∂x
+
A′(x)

A(x)
(
f(x)− f(−x)

2
),

where A(x) = Aα,β(x).
The operator ∆α,β is skew-adjoint i.e ∆∗

α,β = −∆α,β that mean for two continuous functions f, g on R
with at least one of them with compact support we have∫

R
∆α,βf(x)g(x)dµα,β(x) = −

∫
R
f(x)∆α,βg(x)dµα,β(x),

furthermore if one of them is even then we have

∆α,β(fg) = ∆α,β(f)g + f∆α,β(g).

2.1. The eigenfunctions of the Jacobi-Dunkl operator

The main purpose of this subsection is to define the eigenfunctions of the Jacobi-Dunkl operator which
will be used later to define the Jacobi-Dunkl transform, to do this we need to define first those of the
Jacobi operator.



4 A. Chana and A. Akhlidj

2.1.1. Jacobi kernels. Harmonic analysis associated with the Jacobi operator was firstly developed by
Flensted-Jensen and Koorwinder see [9,10].
For α ≥ −1

2 ,β ∈ R, the Jacobi operator Jα,β on ]0,+∞[ is given by

Jα,βf(x) =
∂2

∂x2
f(x) + [(2α+ 1) cothx+ (2β + 1) tanhx]

∂

∂x
f(x).

We point out that Jα,β is the radial part of the Laplace-Beltrami operator on a symetric space of rank
one see [9,10].
The Jacobi function φα,β

µ , µ ∈ C is defined on R by

∀x ∈ R, φα,β
µ (x) = 2F1

(
ρ+ iµ

2
,
ρ− iµ

2
;α+ 1;−(sinhx)2

)
, (2.2)

where 2F1 is the Gauss hyper-geometric function given by

2F1(a, b, c, z) =

∞∑
l=0

(a)l(b)l
(c)ll!

zl, |z| < 1,

with a, b, c ∈ C and c /∈ −N and (a)0 = 1, (a)l = a(a+ 1) · · · (a+ l − 1) = Γ(a+l)
Γ(a) .

For a special values of α and β the Jacobi functions (2.2) are interpreted as spherical functions on non-
compact Riemannian symmetric spaces of rank one [9].
From [16], the Jacobi function (2.2) satisfies the following properties.

Proposition 2.1

(1) φα,β
µ is the unique solution on [0,+∞[ of the differential equation{

Jα,β(f) = −
(
µ2 + ρ2

)
f

f(0) = 1, f ′(0) = 0

(2) φα,β
µ is even, infinitely differentiable on [0,+∞[ and we have

∂

∂x
φα,β
µ (x) = − µ2 + ρ2

4(α+ 1)
sinh(2x)φα+1,β+1

µ (x). (2.3)

We will use this function to define the eigenfunctions of the Jacobi-Dunkl operator.

2.1.2. The Jacobi-Dunkl kernels. Now we consider the Jacobi-Dunkl operator given by (1.1) and we

determine the eigenfunctions ψα,β
λ of this operator called the Jacobi-Dunkl kernels associated with the

eigenvalue (iλ), λ ∈ C and equal to 1 for x = 0.
For λ ∈ C,x ∈ R we put

∀x ∈ R, ψα,β
λ (x) :=

{
φα,β
µ (x)− i

λ
∂
∂xφ

α,β
µ (x) if λ ∈ C∗,

1 if λ = 0,
(2.4)

where φα,β
µ is the Jacobi function given by (2.2), the function ψα,β

λ is called the Jacobi-Dunkl kernel and
we have the following results for the proofs we refer the reader to [1,4,15].

Proposition 2.2

(1) The Jacobi-Dunkl kernel ψα,β
λ is the unique C∞-solution on R of the differential-difference equation{

∆α,β(u) = −iλ(u), λ ∈ C,
f(0) = 1.
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Furthermore it is infinitely differentiable and we have

| ∂
n

∂λn
ψα,β
λ (x)| ≤ |x|ne|Im(λ)||x|.

In particular we have the following important result

∀x, λ ∈ R |ψα,β
λ (x)| ≤ 1. (2.5)

Remark 2.1 Using the relation (2.3), the Jacobi-Dunkl kernel (2.4) can be written as

ψα,β
λ (x) = φα,β

µ (x) + i
λ

4(α+ 1)
sinh(2x)φα+1,β+1

µ (x), x ∈ R. (2.6)

We will use the Jacobi-Dunkl kernel (2.6) to define the Jacobi-Dunkl transform

2.2. The Jacobi-Dunkl transform

Definition 2.1 The Jacobi-Dunkl transform Fα,β defined on L1
α,β(R) by

Fα,β(f)(λ) =

∫
R
ψα,β
λ (x)f(x)dµα,β(x) for λ ∈ R.

Some basic properties of this transform are as follows, for the proofs, we refer the reader to [1,4,15].

Proposition 2.3

(1) (Riemann-Lebesgue) For all f ∈ L1
α,β(R), the function Fα,β(f) belongs to C0(R) and we have

∥Fα(f)∥∞,σ ≤ ∥f∥1,α,β . (2.7)

(2)(Inversion formula) For all f ∈ L1
α,β(R) such that Fα,β(f) ∈ L1

σ(R) we have

f(x) =

∫
R
ψα,β
−λ (x)Fα,β(f)(λ)dσ(λ), a.e x ∈ R. (2.8)

(3) (Plancherel theorem) The Jacobi-Dunkl transform is a topological isomorphism from S∗(R) onto S(R)
and extends uniquely to a unitary isomorphism from L2

α,β(R) onto L2
σ(R) and for all f ∈ L2

α,β(R) we
have ∫

R
|f(x)|2 dµα,β(x) =

∫
R
|Fα,β(f)(λ)|2 dσ(λ). (2.9)

2.3. The translation operator associated with the Jacobi-Dunkl transform

From [1,4,18], the Jacobi-Dunkl kernel ψα,β
λ is multiplicative on R in the sense

ψα,β
λ (x)ψα,β

λ (y) =

∫
R
ψα,β
λ (z)dδα,βx,y (z), (2.10)

where δα,βx,y is a real uniformly bounded measure with compact support wich may not be positive given
explicitly in [1,4,19].
The product formula (2.10) permits to define a translation operator, a convolution product and to develop
a new harmonic analysis associated with the Jacobi-Dunkl operator (1.1).

Definition 2.2 Let x, y, z ∈ R and f be a measurable function on R the translation operator associated
with the Jacobi-Dunkl transform is defined by:

T x
α,β(f)(y) =

∫
R
f(z)dδα,βx,y (z).

The following proposition summarizes some properties of the Jacobi-Dunkl translation operator, for the
proofs we refer the reader to [1,4,19].
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Proposition 2.4 For all x, y, z ∈ R, f a measurable function on R we have

(1)
T x
α,β(f)(y) = T x

α,β(f)(x). (2.11)

(2)

T x
α,β(ψ

α,β
λ (.))(y) = ψα,β

λ (x)ψα,β
λ (y).

(3) ∫
R
T x
α,β(f)(y)dµα,β(x) =

∫
R
f(y)dµα,β(x). (2.12)

(4) for f ∈ Lp
α,β(R) with p ∈ [1; +∞], T x

α,β(f) ∈ Lp
α,β(R) and we have

∥T x
α,β(f)∥p,α,β ≤ ∥f∥p,α,β . (2.13)

By using the generalized translation, we define the generalized convolution product of f, g ∈ S∗(R) and
x ∈ R by

(f ∗ g) (x) =
∫
R
T x
α,β(f)(−y)g(y)dµα,β(y).

This convolution is commutative, associative and its satisfies the following properties, for the proofs we
refer the reader to [1,4,15,19].

Proposition 2.5

(1)(Young’s inequality) for all p, q, r ∈ [1; +∞] such that: 1
p + 1

q = 1 + 1
r and for all f ∈ Lp

α,β(R), g ∈
Lq
α,β(R) the function f ∗α g belongs to the space Lr

α,β(R) and we have

∥f ∗α g∥r,α,β ≤ ∥f∥p,α,β∥g∥q,α,β . (2.14)

(2) For f, g ∈ L2
α,β(R) the function f ∗α g belongs to L2

α,β(R) if and only if the function Fα,β(f)Fα,β(g)

belongs to L2
σ(R) and in this case we have

Fα,β (f ∗ g) = Fα,β(f)Fα,β(g).

and ∫
R
|f ∗ g(x)|2 dµα,β(x) =

∫
R
|Fα(f)(λ)|2 |Fα(g)(λ)|2 dσ(λ). (2.15)

2.4. The Schatten-Von Neumann classes

Notation: we denote by
• lp(N), 1 ≤ p ≤ ∞, the set of all infinite sequences of real (or complex) numbers u := (uj)j∈N, such that

∥u∥p :=

 ∞∑
j=1

|uj |p
 1

p

<∞, if 1 ≤ p <∞,

∥u∥∞ := sup
j∈N

|uj | <∞, if p = +∞.

• B
(
Lp
α,β (R)

)
, 1 ≤ p ≤ ∞, the space of bounded operators from Lp

α,β(R) into itself.

For p = 2, we define the space S∞ := B
(
L2
α,β (R)

)
, equipped with the norm,

∥A∥S∞ := sup
v∈L2

α,β(R):∥v∥2,α,β=1

∥Av∥2,α,β . (2.16)
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Definition 2.3

(1) The singular values (sn(A))n∈N of a compact operator A in B
(
Lp
α,β (R)

)
are the eigenvalues of the

positive self-adjoint operator |A| =
√
A∗A.

(2) For 1 ≤ p < ∞, the Schatten class Sp is the space of all compact operators whose singular values lie
in lp(N). The space Sp is equipped with the norm

∥A∥Sp
:=

( ∞∑
n=1

(sn(A))
p

) 1
p

.

Remark 2.2 We note that the space S2 is the space of Hilbert-Schmidt operators, and S1 is the space
of trace class operators.

Definition 2.4 The trace of an operator A in S1 is defined by

tr(A) =

∞∑
n=1

⟨Aϕn, ϕn⟩µα,β
, (2.17)

where (ϕn)n is any orthonormal basis of L2
α,β(R).

Remark 2.3 If A is positive, then
tr(A) = ∥A∥S1

. (2.18)

Moreover, a compact operator A on the Hilbert space L2
α,β(R) is Hilbert-Schmidt, if the positive

operator A∗A is in the space of trace class S1. Then

∥A∥2HS := ∥A∥2S2
= ∥A∗A∥S1

= tr (A∗A) =

∞∑
n=1

∥Aϕn∥22,α,β , (2.19)

for any orthonormal basis (ϕn)n of L2
α,β(R).

For more informations about the Schatten-Von neumann classes one can see [3,5,21].

2.5. Fourier-Wigner transform associated with the Jacobi-Dunkl operator

In this section we define and give some results for the Wigner transform associated with the Jacobi-
Dunkl operator.
Notation : we denote by
• S(R2) the generlaized Schwartz space defined on R2 equipped with it s usual topology.
• Lp

θ(R2),1 ≤ p ≤ +∞ the space of measurable functions on R2 satisfying

∥f∥p,θ :=


(∫

R2 |f(x, λ)|pdθα,β(x, λ
) 1

p , if p ∈ [1,+∞[,

ess sup |f(x, λ)|,
(x,λ)∈R2

if p = +∞.

where θα,β is the measure defined on R2 by

dθα,β(x, λ) := dσ(λ)⊗ dµα,β(x)

for all x, λ ∈ R.

Definition 2.5 The Wigner transform associated with the Jacobi-Dunkl operator is defined on S∗ (R)×
S∗ (R) by

W(f, g)(x, λ) :=

∫
R
f(y)T x

α,β(g)(−y)ψ
α,β
λ (y)dµα,β(y). (2.20)
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Remark 2.4 the transform W is a bilinear mapping from S∗ (R) × S∗ (R) into S(R2) and can be
written as

W(f, g)(x, λ) = (g ∗ fψα,β
λ (.)(x) (2.21)

= Fα(f T̃ x
α,β(g))(λ,m). (2.22)

where h̃(x) = h(−x).
We have the following results.

Proposition 2.6 Let f, g ∈ L2
α,β(R) then W(f, g) is well defined and belongs to

L2
θ(R2) ∩ L∞

θ (R2) and we have
∥W(f, g)∥2,θ ≤ ∥f∥2,α,β∥g∥2,α,β , (2.23)

and
∥W(f, g)∥∞,θ ≤ ∥f∥2,α,β∥g∥2,α,β . (2.24)

Proof: Let f, g ∈ L2
α,β(R), x, λ ∈ R by using the relations (2.9),(2.11), (2.22) and Fubini’s theorem we

find that

∥W(f, g)∥22,θ =

∫
R
[

∫
R
|f(y)|2|T −y

α,β (g)(x)|
2dµα,β(y)]dµα,β(x),

by using the relation (2.13) we get

∥W(f, g)∥22,θ = ∥f∥22,α,β∥T
−y
α,β (g)∥

2
2,α,β ≤ ∥f∥22,α,β∥g∥22,α,β

which give the result.
On the other hand we have

∥W(f, g)∥∞,θ = ∥Fα,β(f T̃ x
α,β(g))∥∞,σ,

by the Riemann-Lebesgue result (2.7), Hölder’s inequality and the relation (2.13) we find (2.24). 2

Remark 2.5 For p, q, r ∈ [1,+∞] such that 1
p + 1

q − 1 = 1
r and for f ∈ Lp

α,β(R),
g ∈ Lq

α,β(R) we define the Wigner transform W(f, g) by the relation (2.21), then we have the
following result.

Proposition 2.7 Let p, q, r ∈ [1,+∞] such that 1
p + 1

q − 1 = 1
r and for f ∈ Lp

α,β(R), g ∈ Lq
α,β(R) and

λ ∈ R then the function
x 7−→ W(f, g)(x, λ)

belongs to Lr
α,β(R) and we have

∥W(f, g)(., λ)∥r,α,β ≤ ∥f∥p,α,β∥g∥q,α,β . (2.25)

Proof: By the relation (2.21) we have

W(f, g)(., λ) = g ∗ fψα,β
λ (.),

by Young’s inequality (2.14) we find that

∥W(f, g)(., λ)∥r,α,β ≤ ∥g∥q,α,β∥fψα,β
λ (.)∥p,α,β ,

the relation (2.5) gives the disered result. 2

We have the following theorem wich can be used to derive an inversion formula for the Jacobi-Dunkl-
Wigner transform.

Theorem 2.1 Let f, g ∈ L1
α,β(R) ∩ L2

α,β(R) such that cg :=
∫
R g(y)dµα,β(y) ̸= 0 then we have

Fα,β(f)(λ) =
1

cg

∫
R
W(f, g)(x, λ)dµα,β(x). (2.26)
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Proof: From the relation (2.25) we deduce that the right quantity in (2.26) is well defined furthermore,
for λ ∈ R we have∫

R
W(f, g)(x, λ)dµα,β(x) =

∫
R
[

∫
R
f(y)T x

α,β(g)(−y)ψ
α,β
λ (y)dµα,β(y)]dµα(x),

by using the relations (2.11),(2.12) we find that∫
R
W(f, g)(x, λ)dµα,β(x) = cgFα,β(f)(λ),

which give the result. 2

Corollary 2.1 With the hypothesis of the theorem 2.1, if furthermore we have Fα,β(f) ∈ L1
α,β(R) then

the following inversion formula for the Jacobi-Dunkl-Wigner transform W holds:

f(x) =
1

cg

∫
R
ψα,β
−λ (x)[

∫
R
W(f, g)(y, λ)dµα,β(y)]dσ(λ).

Proof: By using the relation (2.26) we have∫
R
ψα,β
−λ (x)[

∫
R
W(f, g)(y, λ)dµα,β(y)]dσ(λ) = cg

∫
R
Fα,β(f)(λ)ψ

α,β
−λ (x)dσ(λ),

by using inversion formula for the Jacobi-Dunkl transform (2.8) we find the result. 2

3. Localization operators associated with the Jacobi-Dunkl-Wigner transform

3.1. Introduction

In this section we will define and give sufficient conditions for the boundedness, compactness and
Schatten class properties of localization operators Lu,v(σ) associated with the Jacobi-Dunkl-Wigner
transform in terms of properties of the symbol σ and the functions u and v.

Definition 3.1 Let u and v be measurable functions on R, σ be a measurable function on the set R2, we
define the localization operator Lu,v(σ) asoociated with the Jacobi-Dunkl-Wigner transform by

Lu,v(σ)(f)(y) :=

∫
R2

σ(x, λ)W(f, u)(x, λ)ψα,β
λ (y)T x

α,β(v)(y)dθα,β(x, λ). (3.1)

Remark 3.1 In accordance with the different choices of the symbol σ and the different continuities
required, we need to impose different conditions on u,v, and then we obtain an operator on Lp

α,β(R)
for all 1 ≤ p ≤ +∞.
It is more convenient to interpret the definition of Lu,v(σ) in a weak sense, that is for all f ∈
Lp
α,β(R), g ∈ Lq

α,β(R) we have

⟨Lu,v(σ)(f) | g⟩µα,β
=

∫
R2

σ(x, λ)W(f, u)(x, λ)W(g, v)(x, λ)dθα,β(x, λ). (3.2)

we have the following result

Proposition 3.1 Let 1 ≤ p ≤ +∞, the adjoint of the linear operator

Lu,v(σ) : L
p
α,β(R) −→ Lp

α,β(R)

is the operator

L ∗
u,v(σ) : L

p′

α,β(R) −→ Lp′

α,β(R)
where

L ∗
u,v(σ) = Lv,u(σ̄). (3.3)
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Proof: Let f ∈ Lp
α,β(R), g ∈ Lq

α,β(R) by using the relation (3.2) we have

⟨Lu,v(σ)(f) | g⟩µα,β
=

∫
R2

σ(x, λ)W(f, u)(x, λ)W(g, v)(x, λ)dθα,β(x, λ)

=

∫
R2

σ(x, λ)W(g, v)(x, λ)W(f, u)(x, λ)dθα,β(x, λ)

= ⟨Lv,u(σ̄)(g) | f⟩µα,β
= ⟨f | Lv,u(σ̄)(g)⟩µα,β

,

we get
L ∗

u,v(σ) = Lv,u(σ̄).

2

In the sequel of this section, u and v will be any functions in L2
α,β(R) such that ∥u∥2,µα = ∥v∥2,µα = 1.We

note that this hypothesis is not essential and the result still true up some constant depending on ∥u∥2,µα

and ∥v∥2,µα
.

3.2. Boundedness for Lu,v(σ) in S∞

The main purpose of this subsection is to prove that the linear operator

Lu,v(σ) : L
2
α,β(R) −→ L2

α,β(R)

is bounded for all symbol σ ∈ Lp
θ(R2) with 1 ≤ p+∞.We consider first the problem for σ ∈ L1

θ(R2), next
σ ∈ L∞

θ (R2) and we conclude by using interpolation theory.

Proposition 3.2 Let σ ∈ L2
θ(R2) then the localization operator Lu,v(σ) is in S∞ and we have

∥Lu,v(σ)∥S∞ ≤ ∥σ∥1,θα . (3.4)

Proof: Let f, g ∈ L2
α,β(R) by using the relation (3.2) we have

| ⟨Lu,v(σ)(f) | g⟩µα,β
≤
∫
R2

|σ(x, λ)∥W(f, u)(x, λ)|W(g, v)(x, λ) | dθα,β(x, λ)

≤ ∥W(f, u)∥∞,θ∥W(g, v)∥∞,θ∥σ∥1,θ,

by using the relation (2.24) we get∣∣∣⟨Lu,v(σ)(f) | g⟩µα,β

∣∣∣ ≤ ∥f∥2,α,β∥g∥2,α,β∥σ∥1,θα ,

by (2.16) we find that
∥Lu,v(σ)∥S∞

≤ ∥σ∥1,θ
2

Proposition 3.3 Let σ ∈ L∞
θ (R2), the localization operators Lu,v(σ) is in S∞ and we have

∥Lu,v(σ)∥S∞ ≤ ∥σ∥∞,θ. (3.5)

Proof: Let f, g ∈ L2
α,β(R) by using the relation (3.2) we have

| ⟨Lu,v(σ)(f) | g⟩µα,β
| ≤

∫
R2

|σ(x, λ)||W(f, u)(x, λ)|W(g, v)(x, λ)|dθα,β(x, λ),

by Hölder’s inequality we find that

| ⟨Lu,v(σ)(f) | g⟩µα,β
| ≤ ∥σ∥∞,θ∥W(f, u)∥2,θ∥W(g, v)∥2,θ,
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by using the relation (2.23) we get

| ⟨Lu,v(σ)(f) | g⟩µα,β
| ≤ ∥σ∥∞,θ∥f∥2,α,β∥g∥2,α,β ,

thus
∥Lu,v(σ)∥S∞ ≤ ∥σ∥∞,θ.

2

We can now associate a localization operator Lu,v(σ) to every symbol σ in Lp
θ(R2) for all 1 ≤ p ≤ +∞,

and prove that Lu,v(σ) belongs to S∞.

Theorem 3.1 Let σ ∈ Lp
θ(R2),1 ≤ p ≤ +∞ then there exists a unique bounded linear operator

Lu,v(σ) : L
2
α,β(R) −→ L2

α,β(R)

such that
∥Lu,v(σ)∥S∞ ≤ ∥σ∥p,θ. (3.6)

Proof: Let σ ∈ Lp
θ

(
R2
)
, 1 ≤ p ≤ +∞ and f ∈ L2

α,β(R) we consider the following operator

T : L1
θ

(
R2
)
∩ L∞

θ

(
R2
)
−→ L2

α,β(R),

given by
T (σ) = Lu,v(σ)(f),

then by using the relations (3.4) and (3.5) we have

∥T (σ)∥2,α,β ≤ ∥f∥2,α,β∥σ∥1,θ (3.7)

and
∥T (σ)∥2,α,β ≤ ∥f∥2,α,β∥σ∥∞,θα , (3.8)

by using the relations (3.7),(3.8) and the Riesz-Thorin interpolation Theorem see [18, 21], the operator
T may be uniquely extended to a linear operator on L2

α,β(R) for all 1 ≤ p ≤ +∞ and we have

∥T (σ)∥2,α,β = ∥Lu,v(σ)(f)∥2,α,β ≤ ∥f∥2,α,β∥σ∥p,θ, (3.9)

since (3.9) true for all f ∈ L2
α(R) which gives the disered result.

2

3.3. Lp
α,β-Boundedness of localization operator Lu,v(σ)

Using Schur’s technique [8] our main purpose of this subsection is to prove that the linear operator

Lu,v(σ) : L
p
α,β(R) −→ Lp

α,β(R),

is bounded for all 1 ≤ p ≤ +∞, we have the following theorem.

Theorem 3.2 Let σ ∈ L1
θ(R2) and u, v ∈ L1

α,β(R)∩L∞
α,β(R) then the localization operator Lu,v(σ) extend

to a unique bounded linear operator from Lp
α,β(R) into itself for all 1 ≤ p ≤ +∞, furthermore we have

∥Lu,v(σ)∥B(Lp
α(R)) ≤ max(∥u∥1,α,β∥v∥∞,α,β , ∥u∥∞,α,β∥v∥1,α,β)∥σ∥1,θα .

Proof: Let F be the function defined on R2 by

F (y, s) =

∫
R2

σ(x, λ)ψα,β
λ (y)T x

α,β(v)(y)ψ
α,β
λ (s))T x

α,β(u)(s)dθα,β(x, λ),
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by using Fubini’s theorem we find that

Lu,v(σ)(f)(y) =

∫
R
F (y, s)f(s)dµα,β(s),

furthermore by using the relation (2.11) and Fubini’s theorem we find that∫
R
|F (y, s)|dµα,β(y) ≤ ∥u∥∞,α,β∥v∥1,α,β∥σ∥1,θ (3.10)

and ∫
R
|F (y, s)|dµα,β(s) ≤ ∥u∥1,µα

∥v∥∞,µα
∥σ∥1,θ (3.11)

by using (3.10),(3.11) and Schur’s lemma [8] we can conclude that the linear operator

Lu,v(σ) : L
p
α,β(R) −→ Lp

α,β(R),

is bounded for all 1 ≤ p ≤ +∞ and we have

∥Lu,v(σ)∥B(Lp
α(R)) ≤ max(∥u∥1,α,β∥v∥∞,α,β , ∥u∥∞,α,β∥v∥1,α,β)∥σ∥1,θ.

2

3.4. Trace of the localization operators Lu,v(σ)

The main result of this subsection is to prove that the localization operator

Lu,v(σ) : L
2
α,β(R) −→ L2

α,β(R),

is in the Schatten-Von Neumann class Sp for all 1 ≤ p ≤ +∞, firstly we have the following result

Theorem 3.3 Let σ ∈ L1
α

(
R2
)
then the localization operator

Lu,v(σ) : L
2
α,β(R) −→ L2

α,β(R)

is an Hilbert-Schmidt operator in particular it is compact and we have

∥Lu,v(σ)∥HS ≤ 1 + ∥σ∥21,θ.

Proof: Let (ϕk)k be an orthonormal basis of L2
α,β(R), by using Fubini’s theorem and the relation (3.2)

we get
∥| Lu,v(σ) (ϕk)∥22,α,β = ⟨Lu,v(σ) (ϕk) | Lu,v(σ) (ϕk)⟩µα,β

=

∫
R2

σ(x, λ)W (ϕk, u) (x, λ)W (Lu,v(σ) (ϕk) , v) (x, λ)dθα,β(x, λ),

by (2.22) we find that

∥| Lu,v(σ) (ϕk)∥22,α,β =

∫
R2

σ(x, λ)Fα

(
ϕkT̃ x

α,β(u)
)
(λ)

Fα

(
Lu,v(σ) (ϕk) T̃ x

α,β(v)
)
(λ)dθα,β(x, λ),

but
Fα

(
ϕkT̃ x

α,β(u)
)
(λ) =

〈
ψα,β
λ (.)T̃ x

α,β(u) | ϕk
〉
µα,β

,

by the relation (3.3) we get

Fα

(
Lu,v(σ) (ϕk) T x

α,β(v)
)
(λ) =

〈
ϕk | Lv,u(σ̄)

(
T̃ x
α,β(v)

)〉
µα,β

,
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So we find that ∥∥∥∥∣∣∣∣Lu,v(σ)(ϕk)

∥∥∥∥22,α,β ≤
∫
R2

∣∣∣∣σ(x, λ)∥〈ψα,β
λ (.)T̃α,β(u) | ϕk

〉
µa,β

∣∣∣∣
|
〈
ϕk

∣∣∣∣Lv,u(σ̄)
(
T̃ x
α,β(v)ψ

α,β
λ (·)

〉
µα,β

∣∣∣∣dθα,β(x, λ)
≤ 1

2

∫
R2

|σ(x, λ)|

[∣∣∣∣〈ψα,β
λ (.)T̃ x

α,β(u) | ϕk
〉
µα,β

∣∣∣∣2 +
|
〈

Lv,u(σ̄)

((
T̃ x
α,β(v)

(
ψα,β
λ (.)

))
|ϕk⟩µα,β

∣∣∣2] dθα,β(x, λ),
by using Fubini’s theorem we find that

∥Lu,v(σ)∥2HS ≤
1

2

[∫
R2

|σ(x, λ)|
[
+∞∑
k=1

∣∣∣∣〈ψα,β
λ (.) ˜T x

α,β(u) | ϕk
〉
µα,β

∣∣∣∣2

+

+∞∑
k=1

|
〈

Lv,u(σ̄)

(
˜T x
α,β(v)ψ

α,β
λ (.) |ϕk⟩µα,β

∣∣∣2]dθα,β(x, λ)

]
.

By using Parseval’s identity, the relations (2.5),(2.13),(3.4) and the fact that ∥u∥2,α,β = ∥v∥2,α,β = 1 we
find that

∥Lu,v(σ)∥2HS ≤ 1

2
∥σ∥1,θ

(
1 + ∥σ∥21,θ

)
≤
(
1 + ∥σ∥21,θ

)2
<∞

which proves that Lu,v(σ) is an Hilbert-Schmidt operator so compact and we have

∥Lu,v(σ)∥HS ≤ 1 + ∥σ∥21,θ.

2

In the following we prove that the localization operator

Lu,v(σ) : L
2
α,β(R) −→ L2

α,β(R)

is compact for all σ ∈ Lp
α,β

(
R2
)
.

Proposition 3.4 Let σ ∈ Lp
θ

(
R2
)
, 1 ≤ p < +∞ then the localization operator

Lu,v(σ) : L
2
α,β(R) −→ L2

α,β(R)

is compact.

Proof: Let σ ∈ L1
θ

(
R2
)
with 1 ≤ p < +∞ and let (σn)n be a sequence of functions in L1

θ

(
R2
)
∩L∞

θ

(
R2
)

such that σn −→ σ in Lp
θ

(
R2
)
as n −→ ∞ then by using the relation (3.6) we find that

∥Lu,v (σn)− Lu,v(σ)∥S∞
≤ ∥σn − σ∥p,θ ,

hence Lu,v (σn) −→ Lu,v(σ) in S∞ as n −→ ∞ on the other hand by theorem 3.3 we have Lu,v (σn) is
in S2 hence compact, it follows that Lu,v(σ) is compact. 2

In the next theorem we obtain a L1
α,β-compactness result for the localization operator Lu,v(σ).

Theorem 3.4 Let σ ∈ L1
θ

(
R2
)
, u and v in L2

α,β(R) ∩ L2
α,β(R) then the localization operator

Lu,v(σ) : L
1
α,β(R) −→ L1

α,β(R)

is compact.
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Proof: By using theorem 3.2 the linear operator

Lu,v(σ) : L
1
α,β(R) −→ L1

α,β(R)

is well defined, let (fn) ⊂ L1
α(R) such that fn −→ 0 weakly in L1

α,β(R) as n −→ ∞, it is enough to
prove that limn→+∞ ∥Lu,v(σ) (fn)∥1,α,β = 0. By using the relation (3.1) we have

∥Lu,v(σ) (fn)∥1,α,β

≤
∫
R

[∫
R2

∣∣σ(x, λ) ∥W (fn, u) (x, λ)∥ T x
α,β(v)(y)

∣∣dθα,β(x, λ)] dµα(y). (3.12)

Using the fact that fn −→ 0 weakly in L2
α,β(R) as n −→ ∞, we deduce that

lim
n→+∞

∣∣W (fn, u) (x, λ)∥T x
α,β(v)(y)

∣∣ = 0 (3.13)

for all x, y, λ ∈ R, on the other hand as fn −→ 0 weakly in L1
α,β(R) as n −→ ∞, there exists a positive

conctant c such that ∥fn∥1,α,β ≤ c, so we find that

| W (fn, u)
(
(x, λ)

∥∥T x
α,β(v)(y)| ≤ c|σ(x, λ)

∥∥u∥∞,α,β |v(y)|, (3.14)

by using Fubuni’s theorem we get∫
R

[∫
R2

∣∣σ(x, λ) ∥W (fn, u) (x, λ)∥ T x
α,β(v)(y)

∣∣dθα,β(x, λ)] dµα(y) ≤ c∥σ∥1,θ∥u∥∞,α,β∥v∥1,α,β <∞.

(3.15)
Thus from the relations (3.12),(3.13),(3.14),(3.15) and the Lebesgue dominated convergence theorem

we deduce that limn→+∞ ∥Lu,v(σ) (fn)∥1,α,β = 0 and the proof is complete. 2

In the following we show that the localization operator Lu,v is in the trace class S1.

Theorem 3.5 Let σ ∈ L1
θ

(
R2
)
then the localization operator

Lu,v(σ) : L
2
α,β(R) −→ L2

α,β(R)

is in the trace class operators S1 and we have

∥σ̃∥1,θ ≤ ∥Lu,v(σ)∥S1
≤ ∥σ∥1,θ (3.16)

where σ̃ is given by

σ̃(x, λ) =
〈
Lu,v(σ)

(
ψα,β
λ (.)T x

α,β(u)
)
| ψα,β

λ (.)T x
α,β(v)

〉
µa,β

.

Proof: Let σ ∈ L1
θ

(
R2
)
by using theorem 3.4 we have L (σ) is a compact operator,using [21], there

exists an orthonormal basis ϕj for j = 1, 2, . . . for the orthogonal complement of the kernel of the operator
Lu,v(σ) consisting of eigenvectors of |Lu,v(σ)| and hjj = 1, 2, . . ., an orthonormal set in L2

α,β(R) such
that the localization operators Lu,v(σ) can be diagonalized as

Lu,v(σ)(f) =

+∞∑
j=1

sj ⟨f | ϕj⟩µa,β
hj , (3.17)

where sj for j = 1, 2, . . . are the positive singular values of Lu,v(σ) corresponding to ϕj , then we get :

∥Lu,v(σ)∥S1 =

+∞∑
j=1

sj =

+∞∑
j=1

⟨Lu,v(σ) (ϕj) | hj⟩µα,β
,
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by using the relations (3.1) and (3.2) we find that

⟨Lu,v(σ) (ϕj) | hj⟩µα,β
=

∫
R2

∣∣∣∣σ(x, λ)∥∥∥∥〈ψα,β
λ (.)T x

α,β(u) | ϕj
〉
µα,β

∥∥∥∥〈ψα,β
λ (.)T̃ x

α,β(v) | hj
〉
µα,β

∣∣∣∣dθα,β(x, λ),
So we find that

∥Lu,v(σ)∥S1 ≤ 1

2

∫
R2

|σ(x, λ)|

+∞∑
j=1

∣∣∣∣〈ψα,β
λ (.)T x

α,β(u) | ϕj
〉
µa,β

∣∣∣∣2 | +

+∞∑
j=1

∣∣∣∣〈ψα,β
λ (.)T x

α,β(v) | hj
〉
µα,β

∣∣∣∣2
dθα,β(x, λ)

by using parseval’s identity we get

∥Lu,v(σ)∥S1 ≤ 1

2

∫
R2

|σ(x, λ)|
[
∥ψα,β

λ (.)
)
T x
α,β(u)

∥∥2
2,α,β+

∥∥ψα,β
λ (.)T x

α,β(v)∥22,α,β
]
dθα,β(x, λ).

By using the relation (2.5),(2.13) and the fact that ∥u∥2,α,β = ∥v∥2,α,β = 1 we get

∥Lu,v(σ)∥S1
≤ ∥σ∥1,θ.

Now we prove that Lu,v(σ) satisfies the first member of (3.16), it is easy to see that σ̃ ∈ L1
θ

(
R2
)
and

by using the relation (3.17) and Fubini’s theorem we find that∫
R2

|σ̃(x, λ)|dθα,β(x, λ) ≤
1

2

+∞∑
j=1

sj

[∫
R2

(∣∣∣∣〈ψα,β
λ (.)T x

α,β(u) | ϕj
〉
µα,β

∣∣∣∣2 +

∣∣∣∣〈hj | ψα,β
λ (.)T x

α,β(v)
〉
µα,β

∣∣∣∣2
)

dθα,β(x, λ)

]

=
1

2

+∞∑
j=1

sj

[∫
R2

|W (ϕj , u) (x, λ)|2 + |W (hj , v) (x, λ)|2
]
dθα,β(x, λ),

by using the relation (2.23) and the fact that ∥u∥2,α,β = ∥v∥2,α,β = 1 we get∫
R2

|σ̃(x, λ)|dθα,β(x, λ) ≤
1

2

+∞∑
j=1

sj
(
∥u∥22,α,β + ∥v∥22,α,β

)
=

+∞∑
j=1

sj = ∥Lu,v(σ)∥S1
,

the proof is complete. 2

In the following we give a trace formula for the localization operators Lu,v(σ).

Theorem 3.6 Let σ ∈ L1
θ

(
R2
)
we have the following trace formula

Tr (Lu,v(σ)) =

∫
R2

σ(x, λ)
〈
ψα,β
λ (.)T̃ x

α,β(u) | ψ
α,β
λ (.)T̃ x

α,β(v)
〉
µα,β

dθα,β(x, λ)

Proof: Let {ϕj , j = 1, 2, . . .} be an orthonormal basis for L2
α,β(R). From Theorem 3.5, the localization

operator Lu,v(σ) belongs to S1, then by the definition of the trace given by the relation (2.17), Fubini’s
theorem and Parseval’s identity, we get

Tr (Lu,v(σ)) =

∞∑
j=1

⟨Lu,v(σ) (ϕj) , ϕj⟩µα,β

=

∫
R2

σ(x, λ)

∞∑
j=1

〈
ϕj , ψ

α,β
λ (.), T̃ x

α,β(u).

〉
µα,β

〈
T̃ x
α,β(v)ψ

α,β
λ (.), ϕj

〉
µα,β

dθα,β(x, λ)

=

∫
R2

σ(x, λ)
〈
ψα,β
λ (.)T̃ x

α,β(u) | ψ
α,β
λ (.)T̃ x

α,β(v)
〉
µα,β

dθα,β(x, λ),

and the proof is complete. 2
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Corollary 3.1 If u = v and if σ is a real valued, and nonegative function in L1
θ

(
R2
)
then the localization

operator
Lu(σ) : L

2
α,β(R) −→ L2

α,β(R)

is a positive operator and by using the relations (2.18) and (3.18) we find that

∥Lu(σ)∥S1
=

∫
R2

σ(x, λ)
∥∥∥ψα,β

λ (.)T̃ x
α,β(u)

∥∥∥2
2,α,β

dθα,β(x, λ)

here Lu(σ) denote the operator Lu,u.

In the following we give the main result of this section.

Corollary 3.2 Let σ in Lp
θ

(
R2
)
, 1 ≤ p ≤ +∞ then, the localization operator

Lu,v(σ) : L
2
α,β(R) −→ L2

α,β(R)

is in Sp and we have
∥Lu,v(σ)∥Sp

≤ ∥σ∥p,θ.

Proof: The result follows from (3.5) and (3.16) and by interpolation theory see [21]. 2
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