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Bihyperbolic numbers of the Fibonacci type as tridiagonal matrix determinants

Dorota Bréd and Anetta Szynal-Liana™

ABSTRACT: Bihyperbolic numbers are extension of hyperbolic numbers to four dimensions. In this paper,
we construct a family of tridiagonal matrices which determinants (continuants) and permanents can represent
the sequences of bihyperbolic numbers of the Fibonacci type.
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1. Introduction

Let n > 0 be an integer. The nth Fibonacci number F, is defined by Fy = 0, F}; = 1 and F,, =
F,_1+ F,_o, for n > 2. There are many numbers given by the second order linear recurrence relations.
Recall some of them:

Lucas numbers L,,:
Ln = Ln,1 + Ln,Q, for n Z 2 with LO = 2, L1 = ].,

Pell numbers P,,:
PnZQPn,1+Pn,2, fOI'TLZQWithP():O, P1 :1,

Jacobsthal numbers J,,:
Jn = Jn—-1 + 2Jn,2, for n Z 2 with J() = 0, Jl =1.

Numbers of the Fibonacci type are used as the coefficients of quaternions, split quaternions, hyperbolic
numbers and bihyperbolic numbers. Hyperbolic numbers are two dimensional number system. Hyperbolic
imaginary unit, so-called unipotent, introduced in 1848 by James Cockle (see [10,11,12,13]), is an element
h # +1 such that h? = 1. Some algebraic properties of hyperbolic numbers were given among others in
[25,26].

Bihyperbolic numbers are a generalization of hyperbolic numbers. Let Hy be the set of bihyperbolic
numbers (¢ of the form

¢ =zo+ j171 + jax2 + j3us,
where g, 21, 22,23 € R and ji, jo, js ¢ R are operators such that
Ji =3J5 =j3 =1, jija = jojr = s, Jijs = jsjr = Jo. Jojs = jsja = Jr- (1.1)

From the above rules the multiplication of bihyperbolic numbers can be made analogously to the multi-
plication of algebraic expressions. The addition and the subtraction of bihyperbolic numbers is done by
adding and subtracting corresponding terms and hence their coefficients. The addition and multiplication
on H, are commutative and associative. Moreover, (Hs, +,-) is a commutative ring. For the algebraic
properties of bihyperbolic numbers, see [1].
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A special kind of bihyperbolic numbers was introduced in [2] as follows.
Let n > 0 be an integer. The nth bihyperbolic Fibonacci number BhF,, the nth bihyperbolic Pell
number BhP, and the nth bihyperbolic Jacobsthal number BhJ,, are defined as

Bth - Fn +j1Fn+1 +j2Fn+2 +j3Fn+3a

Bhpn - Pn +j1pn+1 +j2pn+2 +j3pn+37
Bhdy = Jn + J1dnt1 + J2Jdna2 + 33013,

respectively.

Some combinatorial properties of bihyperbolic numbers of the Fibonacci type one can find in [3]. The
bihyperbolic Fibonacci, Pell and Jacobsthal numbers satisfy the following recurrence relations. Let n > 2
be an integer. Then

BhF, = BhF,_1 + BhF,_,,

with
BhFy = j1 + j2 + 253, BhFy =1+ 71+ 2j2 + 33,

BhP, =2BhP,,_1 + BhP,_>,

with
BhPy = j1 +2j2 +5j3, BhPr =1+ 271 +5j2 + 1253

and

BhJ,, = BhJ,_1 + 2BhJ,,_2
with

BhJy = j1 + j2 +3j3, BhJy =14 ji + 352 + 5j3.

In the literature one can find some connections between determinants or permanents of tridiagonal
matrices and the numbers of the Fibonacci type. Strang in [27] gave, probably the first example of
determinant of order n, which is equal to the (n + 1)th Fibonacci number. Cahill et al. in [5] considered
matrices with entries being complex numbers. Many authors derived the real or complex matrices which
determinants are related to Fibonacci numbers (see e.g. [4,6,17,30]) or numbers of the Fibonacci type,
among others Pell numbers ([31]), Jacobsthal numbers ( [18]), Horadam numbers ([8]) and different kinds
of their generalizations ([19]). For example, Catarino in [7] considered the bicomplex k-Pell quaternions
and presented the nth term of this sequence using the determinant of a tridiagonal matrix whose entries
are bicomplex k-Pell quaternions. In this paper, we compute determinants and permanents of some
tridiagonal matrices which give bihyperbolic numbers of the Fibonacci type.

2. Some matrix representations of bihyperbolic numbers of the Fibonacci type

For an integer n > 1 let

aq bl 0 0 0
C1 ag b2 0 0
0 ¢ az -+ 0 0
M, = . (2.1)
0 0 0 QAp—1 bn—l
L0 0 0 - enr an |,

be any tridiagonal matrix of order n with entries being bihyperbolic numbers. Recall that tridiagional
matrix is called a continuant matrix, and its determinant a continuant, see [23]. The continuant of the
matrix M,, satisfies the recurrence relations

det M1 = aq,
det M2 = aijag — Clbl,
detM,, = a,det M,,_1 — ¢p_1bp_1det M,,_o, for n > 3.
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In the next part of this paper zero elements in tridiagonal matrix will be omitted.
In [19], the authors obtained determinants and permanents of some tridiagonal matrices which give
the terms of Fibonacci sequence, Pell sequence and Jacobsthal sequence. Let

nxn

The following results were proved.

If c1 = 1, Co = 1 then detBn = Lp41-

If ¢4 =2, co =1 then det B,, = P, ;1.

If ey =1, co =2 then det By, = Jy41-

By applying some modifications to the elements of the matrix B,,, we can obtain bihyperbolic numbers
as determinants of the resulting matrices.

Theorem 2.1 Letn > 1 be an integer and

Co —c
Ci a

1 cl nxn

If CQ = BhFQ, Cl = BhF’l7 Cc1 = 1, Coy = 1 then det Bn = Bth+1.
If CQ = BhPQ, Cl = Bhpl, C1 = 27 Cy = 1 then det Bn = Bth+1.
If 02 = BhJQ, Cl = Bth Cc1 = 1, Cy = 2 then detBn = Bth+1.

In the following theorems, we will present bihyperbolic Fibonacci type numbers as the determinants
of some tridiagonal matrices.
Theorem 2.2 Letn > 1 be an integer and

[ J1+72+2j3 o
—l-j1i—Jj2 1 1

L 4 nXn

Then BhF,_1 = det A,,.

Proof: (by induction on n)

If n =1 then detA1 = det [jl +]2 -+ 2]3] = j1 +]2 + 2]3 = BhFO

Let n = 2. Then by (1.1) we get

it J2+ 243 Jo
—“1-j1i—Jj2 1
=j1+Jj2+2j3 — (=1 —j1—j2) - j2
=n+ti2+23+j2+j3+1

=1+ j1+2j2+ 3j3 = BhI.

det Ay = det
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Now assume that for any n > 1 BhF,,_1 = det A,, and BhF,, = det A, 1. We shall show that BhF, 1 =

det A, 2. By induction hypothesis we have

[ Ji4J2+2j3 go
“1-ji—j2 1 1
-1 1 1
det A, 1o = det
1 1
L -1 1] (n+2)x (n+2)
=1-detA,y1—1-(-1)-detA,
= BhF,, + BhF,_1 = BhF, 1,
which ends the proof. O
In the same way one can prove the next theorems.
Theorem 2.3 Let n > 1 be an integer and
[ it +2j5 g ]
—Ji—J2—Js 1 «a
—C1 1 C1
F, =
1 C1
= _Cl 1 4 nXn
If ¢y = j1 or ¢y = jo or ¢ = j3, then BhF,,_1 = detF,,.
Theorem 2.4 Let n > 1 be an integer and
[ J1+2j2+555 =3+ 1+ 3j2+ 353 1
—1—=J1-J 1 1
-1 2 1
P,=
2 1
-1 2
L 4 nXn
Then BhP,,_1 = detP,,.
Theorem 2.5 Let n > 1 be an integer and
[ J14d2+353 —j1— 443 1
1 it
-2
J. =
1 1
- _2 1 4 nXn
Then BhJ,_1 = detJ,.
Let S, be the symmetric group which consists of all permutations of {1,2,3,...,n} and o be an
element of this group where ¢ = {01, 09,...,0,}. Then, the permanent of a square matrix A = [a;;] of

order n is defined by

per A = Z Haw(i)

c€S, i=1
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where the summation extends over all permutations ¢ in the symmetric group S, see [22].

The permanent of a matrix is analogous to the determinant of the matrix, where all of the signs used
in the Laplace’s expansion of minors are positive. In particular, for matrix M,, defined by (2.1) we have
(see [21])

perM; = aq,
per My = ajas + c1b1,
perM,, = a, perM,,_1 + ch_1b,_1perM,,_o, for n > 3.

Now, we can give a connection between permanent of the matrix and bihyperbolic Fibonacci number.
Theorem 2.6 Let n > 1 be an integer. Then

Ji+J2+243 Jo
1471+ 72 1 1
1 1 1
BhF,,_1 = per

11
11

L - nXn

Note that the matrix in Theorem 2.6 was obtained from A,, (Theorem 2.2) by changing the elements
lying in the sub-diagonal directly below the principal diagonal to opposite numbers. Recall that the
Hadamard product of two matrices is the matrix such that each entry is the product of the corresponding
entries of the input matrices. In the literature it is also used the term Schur product instead of Hadamard
product, see [14].

Let K, be any tridiagonal matrix of order n, O,, be a matrix of order n defined by

11 - 11
-1 1 - 11

Op=| 1+ -1 - 11 (2.2)
11 11

and O,, o K,, denotes the Hadamard product of O,, and K,,. Then per(O,, o K,,) = det K,,, see [15].

Remark 2.1 Let n > 1 be an integer, the matrices F, P, J are defined in Theorems 2.3-2.5 and the
matrix O, is defined by (2.2). Then

BhF,,_1 = per(O, o F,),
BhP,_1 = per(O, o P,),
Bth_l = per(On o Jn)-

3. Concluding remarks

One of the generalization of the Fibonacci type numbers are Fibonacci type polynomials. In [24], the
authors presented closed formulas for the Fibonacci type polynomials in terms of tridiagonal determinants.
The determinantal and permanental representations of Fibonacci type numbers and polynomials can be
found also in [20]. The bihypernomials as generalizations of bihyperbolic numbers of the Fibonacci type
were introduced quite recently, see [28,29].

The topic of this article may provide motivation for future research in matrix theory. In [9,16],
the Fibonacci numbers, generalized Fibonacci numbers and generalized Lucas numbers were presented
as determinants of some pentadiagonal matrices. The future work may concern three- or five-diagonal
matrices with determinants or permanents being the bihyperbolic Fibonacci type numbers or Fibonacci
type bihypernomials.
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