(3s.) v. 2025 (43) : 1-7. ISSN-0037-8712 doi:10.5269/bspm.68530

Additive mapping acting as generalized (μ, ν) -derivation on semi-prime rings

Abu Zaid Ansari, Muzibur Rahman Mozumder* and Md Arshad Madni

ABSTRACT: The objective of this paper is to study the following: Let \mathcal{A} be a (m+n-1)!-torsion free semiprime ring. Suppose that $\mathcal{G}, g: \mathcal{A} \to \mathcal{A}$ are two additive mappings satisfying the algebraic identity $\mathcal{G}(r^{m+n}) = \mathcal{G}(r^m)\mu(r^n) + \nu(r^m)g(r^n)$ for all $r \in \mathcal{A}$. Then \mathcal{G} will be a generalized (μ, ν) -derivation with associated (μ, ν) -derivation g on \mathcal{A} . On the other hand, it is proved that \mathcal{G}_1 is a generalized left (μ, ν) -derivation associated with left (μ, ν) -derivation g_1 on \mathcal{A} if they satisfy the algebraic identity $\mathcal{G}_1(r^{m+n}) = \mu(r^n)\mathcal{G}_1(r^m) + \nu(r^m)g_1(r^n)$ for all $r \in \mathcal{A}$. We will also examine criticism and provide example.

Key Words: Semiprime rings, generalized (μ, ν) -derivation, generalized left (μ, ν) -derivation and additive mappings.

Contents

1 Introduction 1

2 Main Theorems 2

1. Introduction

 \mathcal{A} will be used to represent an associative ring with identity throughout this research. $Z(\mathcal{A})$ denotes the centre of \mathcal{A} , $Q_I(\mathcal{A}_C)$ is left Martindale ring of quotients and \mathcal{C} its extended centroid. A ring \mathcal{A} is termed as p-torsion free ring, if pr = 0, $r \in \mathcal{A}$ implies r = 0, where p > 1 is an integer. Usually the commutator rs - sr is denoted by [r, s]. Recollect that a ring \mathcal{A} is known as a prime if $r\mathcal{A}s = \{0\}$ implies either r = 0or s=0, and is semi-prime if $r\mathcal{A}r=\{0\}$ implies r=0. A mapping $q:\mathcal{A}\to\mathcal{A}$ is known as a derivation if it is additive and satisfies q(rs) = q(r)s + rq(s) for all $r, s \in \mathcal{A}$ and is recognised as a Jordan derivation if $g(r^2) = g(r)r + rg(r)$ holds for all $r \in \mathcal{A}$. Every derivation will be a Jordan derivation, however general terms, the converse need not be true. A Jordan derivation on a prime ring with characteristic other than two is a derivation, according to a Herstein's classical result [8, Theorem 3.3]. This conclusion has been extended for the 2-torsion free semi-prime ring by Cusack [7]. Suppose that a derivation q on A exists, then an additive mapping $\mathcal{G}: \mathcal{A} \to \mathcal{A}$ is referred to as a generalized derivation if $\mathcal{G}(rs) = \mathcal{G}(r)s + rg(s)$, and \mathcal{G} is termed as a generalized Jordan derivation if there exists a Jordan derivation g on \mathcal{A} such that $\mathcal{G}(r^2) = \mathcal{G}(r)r + rg(r)$ for all $r, s \in \mathcal{A}$. Every generalized derivation can be easily confirmed to be a generalized Jordan derivation, while the converse is often not true. Assume that μ and ν are two endomorphisms on \mathcal{A} . An additive mapping $g:\mathcal{A}\to\mathcal{A}$ is recognised as a (μ,ν) -derivation (respectively Jordan (μ, ν) -derivation) if $g(rs) = g(r)\mu(s) + \nu(r)g(s)$ (respectively $g(r^2) = g(r)\mu(r) + \nu(r)g(r)$) for all $r, s \in \mathcal{A}$. Every (μ, ν) -derivation will be a Jordan (μ, ν) -derivation, although generally the converse is not true. Both are identical on a 2-torsion free semi-prime ring (For details see [9]). An additive mapping $\mathcal{G}: \mathcal{A} \to \mathcal{A}$ is known as a generalized (μ, ν) -derivation (respectively generalized Jordan (μ, ν) -derivation) if there exists a (μ, ν) -deviation (respectively Jordan (μ, ν) -deviation) q on \mathcal{A} such that $\mathcal{G}(rs) = \mathcal{G}(r)\mu(s) + \nu(r)g(s)$ (respectively $\mathcal{G}(r^2) = \mathcal{G}(r)\mu(r) + \nu(r)g(r)$) for all $r, s \in \mathcal{A}$. Every generalized (μ, ν) -derivation will be a generalized Jordan (μ, ν) -derivation but the converse does not hold in general. If \mathcal{A} is 2-torsion free semi-prime ring then the converse is valid (See [2]). Now, if \mathcal{G} is a generalized (μ, ν) -derivation (respectively generalized Jordan (μ, ν) -derivation) associated with (μ, ν) -derivation (respectively Jordan (μ, ν) -derivation) g on \mathcal{A} , then the identity $\mathcal{G}(r^{2n}) = \mathcal{G}(r^n)\mu(r^n) + \nu(r^n)g(r^n)$ holds for all $r \in \mathcal{A}$ but what about the converse? Author has studied the converse of the this statement in [3]. The investigation of a generalization of the aforementioned conclusion is the focus of the current work. Specifically, we proved under some conditions on \mathcal{A}, \mathcal{G} will be a generalized (μ, ν) -derivation associated with

Submitted June 11, 2023. Published July 02, 2025 2010 Mathematics Subject Classification: 16N60, 16B99, 16W25.

^{*} Corresponding author

a (μ, ν) -derivation q if it satisfies the algebraic identity $\mathcal{G}(r^{m+n}) = \mathcal{G}(r^m)\mu(r^n) + \nu(r^m)q(r^n)$ for all $r \in \mathcal{A}$.

Next section accords with the investigation of an extension of a derivation known as a left derivation, which is defined as: an additive mapping $g_1: \mathcal{A} \to \mathcal{A}$ is recognised as a left (μ, ν) -derivation (respectively Jordan left (μ, ν) -derivation) if $g_1(rs) = \mu(r)g_1(s) + \nu(s)g_1(r)$ (respectively $g_1(r^2) = \mu(r)g_1(r) + \nu(r)g_1(r)$) for all $r, s \in \mathcal{A}$. An additive mapping $\mathcal{G}_1: \mathcal{A} \to \mathcal{A}$ is termed as generalized left (μ, ν) -derivation (respectively generalized Jordan left (μ, ν) -derivation) if there exists a Jordan left (μ, ν) -deviation q_1 on \mathcal{A} such that $\mathcal{G}_1(rs) = \mu(r)\mathcal{G}_1(s) + \nu(s)q_1(r)$ (respectively $\mathcal{G}_1(r^2) = \mu(r)\mathcal{G}_1(r) + \nu(r)q_1(r)$) for all $r, s \in \mathcal{A}$. An additive mapping $\mathcal{J}: \mathcal{A} \to \mathcal{A}$ is known as a right (respectively left) μ -centralizer of \mathcal{A} if $\mathcal{J}(rs) = \mu(r)\mathcal{J}(s)$ (respectively $\mathcal{J}(rs) = \mathcal{J}(r)\mu(s)$), for all $r, s \in \mathcal{A}$. An additive mapping $\mathcal{J}: \mathcal{A} \to \mathcal{A}$ is termed as a Jordan left (respectively Jordan right) μ -centralizer of \mathcal{A} if $\mathcal{J}(r^2) = \mathcal{J}(r)\mu(r)$ (respectively $\mathcal{J}(r^2) = \mu(r)\mathcal{J}(r)$) for all $r \in \mathcal{A}$. Trivially, every left (respectively right) μ -centralizer will be a Jordan left (respectively right) μ -centralizer on \mathcal{A} . Obviously, \mathcal{G}_1 will be a generalized left (μ, ν) -derivation iff $\mathcal{G}_1 = g_1 + \mathcal{J}$, where \mathcal{J} right μ -centralizer and g_1 is a left (μ, ν) -derivation of \mathcal{A} . The theory of generalized left (μ, ν) -derivations encompass the theory of left (μ, ν) -derivation. Furthermore, if $g_1 = 0$, then it is a right μ -centralizer. $\mathcal{G}_1(r) = \mu(r)a + g_1(r)$ will be a generalized left (μ, ν) -derivation, where g_1 is a left (μ, ν) -derivation of \mathcal{A} for a fixed $a \in \mathcal{A}$. Note that the mapping $g: \mathcal{A} \to \mathcal{A}$ such that $g(r) = \mathcal{G}_1(r) + \mu(r)a$ or $g(r) = \mathcal{G}_1(r) - \mu(r)a$ will also be a generalized left (μ, ν) -derivation on \mathcal{A} , where $a \in \mathcal{A}$ is a fixed element for any generalized left (μ, ν) -derivation \mathcal{G}_1 . If \mathcal{G}_1 , \mathcal{G}_1 are a generalized Jordan left (μ, ν) -derivation and associated Jordan left (μ, ν) -derivation on \mathcal{A} , then $\mathcal{G}_1(r^{2n}) = \mu(r^n)\mathcal{G}_1(r^n) + \nu(r^n)g_1(r^n)$ holds for all $r \in \mathcal{A}$ but in general, the converse is not true. Author studied the converse of this statement in [3]. More precisely, \mathcal{G}_1 is a generalized Jordan left (μ, ν) -derivation associated with Jordan left (μ, ν) -derivation q_1 on \mathcal{A} if $\mathcal{G}_1(r^{2n}) = \mu(r^n)\mathcal{G}_1(r^n) + \nu(r^n)g_1(r^n)$ holds for all $r \in \mathcal{A}$ with some restrictions on \mathcal{A} . A generalization of the above mentioned result is given in the present paper.

We begin by asserting the preceding theorem:

2. Main Theorems

Theorem 2.1 Let $m, n \geq 1$ be two fixed integers and \mathcal{A} be a (m+n-1)!-torsion free semi-prime ring with a multiplicative identity e. Suppose that $\mathcal{G}, g : \mathcal{A} \to \mathcal{A}$ are two additive mappings which satisfy the algebraic identity $\mathcal{G}(r^{m+n}) = \mathcal{G}(r^m)\mu(r^n) + \nu(r^m)g(r^n)$ for all $r \in \mathcal{A}$, where μ, ν are automorphisms and endomorphism respectively on \mathcal{A} . Then \mathcal{G} is a generalized (μ, ν) -derivation with associated (μ, ν) -derivation g on \mathcal{A} .

Proof: We have given that

$$\mathcal{G}(r^{m+n}) = \mathcal{G}(r^m)\mu(r^n) + \nu(r^m)q(r^n) \text{ for all } r \in \mathcal{A}.$$
(2.1)

Replacing r by e, we get g(e) = 0. If we substitute r by r + ks in the above equation, then we find

$$\begin{split} &\mathcal{G}\Big(r^{m+n} + {}^{m+n}C_1r^{(m+n-1)}ks + {}^{m+n}C_2r^{m+n-2}k^2s^2 + \ldots + k^{m+n}s^{m+n}\Big) = \\ &\mathcal{G}\Big(r^m + {}^mC_1r^{m-1}ks + {}^mC_2r^{m-2}k^2s^2 + \ldots + k^ms^m\Big)\Big(\mu(r^n) + {}^nC_1\mu(r^{n-1}ks) + {}^nC_2\mu(r^{n-2}k^2s^2) + \ldots + \mu(k^ns^n)\Big) + \Big(\nu(r^m) + {}^mC_1\nu(r^{m-1}ks) + {}^mC_2\nu(r^{m-2}k^2s^2) + \ldots + \nu(k^ms^m)\Big)g\Big(r^n + {}^nC_1r^{n-1}ks + {}^nC_2r^{n-2}k^2s^2 + \ldots + k^ns^n\Big), \text{ where } k \in \mathbb{Z}^+. \end{split}$$

Rewrite the above expression by using (2.1) as

$$kf_1(r,s) + k^2 f_2(r,s) + \dots + k^{(m+n-1)} f_{(m+n-1)}(r,s) = 0,$$

where $f_i(r,s)$ stand for the coefficients of k^i 's for all i=1,2,...,(m+n-1). If we replace k by 1,2,...,(m+n-1), then we find a system of (m+n-1) homogeneous equations. It gives us a Vander

Monde matrix

Which yields that $f_i(r,s) = 0$ for all $r,s \in \mathcal{A}$ and for i = 1,2,...,(m+n-1). In particular, We have

$$\begin{array}{lcl} f_1(r,s) & = & ^{m+n}C_1\mathcal{G}(r^{(m+n-1)}s) - ^nC_1\mathcal{G}(r^m)\mu(r^{n-1}s) - ^mC_1\mathcal{G}(r^{m-1}s)\mu(r^n) \\ & & -^nC_1\nu(r^m)g(r^{n-1}s) - ^mC_1\nu(r^{m-1}s)g(r^n) = 0 \text{ for all } r,s \in \mathcal{A}. \end{array}$$

Let us put r=e and making use of g(e)=0 and $\mu(e)=e$ to appear $(m+n)\mathcal{G}(s)=n\mathcal{G}(e)\mu(s)+m\mathcal{G}(s)+ng(s)$. Since \mathcal{A} is n-torsion free, we have

$$G(s) = G(e)\mu(s) + g(s) \text{ for all } s \in A.$$
 (2.2)

Next observe that

$$\begin{array}{lcl} f_2(r,s) & = & {}^{m+n}C_2\mathcal{G}(r^{m+n-2}s^2) - {}^{n}C_2\mathcal{G}(r^m)\mu(r^{n-2}s^2) - {}^{m}C_1{}^{n}C_1\mathcal{G}(r^{m-1}s)\mu(r^{n-1}s) \\ & & - {}^{m}C_2\mathcal{G}(r^{m-2}s^2)\mu(r^n) - {}^{n}C_2\nu(r^m)g(r^{n-2}s^2) - {}^{m}C_1{}^{n}C_1\nu(r^{m-1}s)g(r^{n-1}s) \\ & - {}^{m}C_2\nu(r^{m-2}s^2)g(r^n) = 0 \text{ for all } r,s \in \mathcal{A}. \end{array}$$

Rewrite the above expression by substituting e for r to obtain

$$\begin{array}{lcl} ^{m+n}C_2\mathcal{G}(s^2) & = & ^{n}C_2\mathcal{G}(e)\mu(s^2) + ^{m}C_1{}^{n}C_1\mathcal{G}(s)\mu(s) \\ & + ^{m}C_2\mathcal{G}(s^2) + ^{n}C_2g(s^2) + ^{m}C_1{}^{n}C_1\nu(s)g(s) \text{ for all } s \in \mathcal{A}. \end{array}$$

This implies that

$$\begin{array}{rcl} \frac{(m+n)(m+n-1)}{2} \mathcal{G}(s^2) & = & \frac{n(n-1)}{2} \mathcal{G}(e) \mu(s^2) + m n \mathcal{G}(s) \mu(s) + \frac{m(m-1)}{2} \mathcal{G}(s^2) \\ & & + \frac{n(n-1)}{2} g(s^2) + m n \nu(s) g(s). \end{array}$$

A simple manipulation give us

$$n(2m+n-1)\mathcal{G}(s^2) = n(n-1)\mathcal{G}(e)\mu(s^2) + 2mn\mathcal{G}(s)\mu(s) + n(n-1)g(s^2) + 2mn\nu(s)g(s).$$

Since A is *n*-torsion free, then we get

$$(2m+n-1)\mathcal{G}(s^2) = (n-1)\mathcal{G}(e)\mu(s^2) + 2m\mathcal{G}(s)\mu(s) + (n-1)q(s^2) + 2m\nu(s)q(s).$$

An application of (2.2) yields that

$$(2m+n-1)\Big[\mathcal{G}(e)\mu(s^2) + g(s^2)\Big] = (n-1)\mathcal{G}(e)\mu(s^2) + 2m\Big[\mathcal{G}(e)\mu(s) + g(s)\Big]\mu(s) + (n-1)g(s^2) + 2m\nu(s)g(s).$$

On simplifying the above expression, we obtain

$$(2m+n-1-n+1-2m)\mathcal{G}(e)\mu(s^2) + (2m+n-1-n+1)g(s^2) = 2mg(s)\mu(s) + 2m\nu(s)g(s).$$

This implicit that for all $s \in \mathcal{A}$,

$$2mg(s^2) = 2mg(s)\mu(s) + 2m\nu(s)g(s).$$

2m-torsion freeness of \mathcal{A} allow us to write last expression as $g(s^2) = g(s)\mu(s) + \nu(s)g(s)$. That is a Jordan (μ, ν) -derivation. Since \mathcal{A} is a 2-torsion free semi-prime ring, then use [9] to get that g is an (μ, ν) -derivation on \mathcal{A} . Consider (2.2) once again, so that

$$\begin{array}{ll} \mathcal{G}(s^2) & = & \mathcal{G}(e)\mu(s^2) + g(s^2) \\ & = & \left[\mathcal{G}(e)\mu(s) + g(s)\right]\mu(s) + \nu(s)g(s) \\ & = & \mathcal{G}(s)\mu(s) + \nu(s)g(s) \end{array}$$

Hence \mathcal{G} is generalized Jordan (μ, ν) -derivation on \mathcal{A} associated with the derivation g. Using theorem from [2], we get that \mathcal{G} is generalized (μ, ν) -derivation on \mathcal{A} associated with (μ, ν) -derivation g.

The aforementioned outcome has the following repercussions:

Corollary 2.1 Let $m, n \geq 1$ be two fixed integers and \mathcal{A} be a (m+n-1)!-torsion free semi-prime ring. Suppose that $\mathcal{G}: \mathcal{A} \to \mathcal{A}$ is an additive mapping which satisfies the algebraic identity $\mathcal{G}(r^{m+n}) = \mathcal{G}(r^m)\mu(r^n)$ for all $r \in \mathcal{A}$, then \mathcal{G} will be a μ -centralizer on \mathcal{A} , where μ is an automorphism on \mathcal{A} .

Proof: Taking g = 0 in the above theorem, we get the required result.

Corollary 2.2 Let $m, n \geq 1$ be two fixed integers and \mathcal{A} be a (m+n-1)!-torsion free semi-prime ring. Suppose that $g: \mathcal{A} \to \mathcal{A}$ is an additive mapping which satisfies the algebraic identity $g(r^{m+n}) = g(r^m)\mu(r^n) + \nu(r^m)g(r^n)$ for all $r \in \mathcal{A}$, where μ, ν are automorphisms and endomorphism respectively on \mathcal{A} . Then g is a (μ, ν) -derivation on \mathcal{A} .

Proof: Considering g as \mathcal{G} and using same steps as we did in Theorem 2.1, we come to the same result as required.

Corollary 2.3 Let $m, n \ge 1$ be two fixed integers and \mathcal{A} be any (m+n-1)!-torsion free semi-prime ring, where μ, ν are endomorphism and automorphisms respectively on \mathcal{A} . If an additive mapping $\mathcal{G}: \mathcal{A} \to \mathcal{A}$ is satisfying $\mathcal{G}(r^{m+n}) = \mathcal{G}(r^m)r^n$ for all $r \in \mathcal{A}$. Then, \mathcal{G} is a centralizer on \mathcal{A} .

Proof: We find the desired result by taking $\mu = I$ in Corollary 2.1.

Corollary 2.4 Let $m, n \ge 1$ be two fixed integers and \mathcal{A} be a (m+n-1)!-torsion free semi-prime ring, where μ, ν are automorphisms and endomorphism respectively on \mathcal{A} . Suppose that $g: \mathcal{A} \to \mathcal{A}$ is an additive mapping which satisfies the identity $g(r^{m+n}) = g(r^m)r^n + r^mg(r^n)$ for all $r \in \mathcal{A}$. Then g is a derivation on \mathcal{A} .

Proof: Considering $\mu = \nu = I$ in Corollary 2.2, we get the required result.

Proceed to the following primary assertion of this article:

Theorem 2.2 Let $m, n \ge 1$ be two fixed integers and \mathcal{A} be (m+n-1)!-torsion free ring. If $\mathcal{G}_1, g_1 : \mathcal{A} \to \mathcal{A}$ are two additive mappings which satisfy the algebraic identity $\mathcal{G}_1(r^{m+n}) = \mu(r^n)\mathcal{G}_1(r^m) + \nu(r^m)g_1(r^n)$ for all $r \in \mathcal{A}$, where μ, ν are automorphisms and endomorphism respectively on \mathcal{A} , then \mathcal{G}_1 is generalized Jordan left (μ, ν) -derivation associated with Jordan left (μ, ν) -derivation g_1 on \mathcal{A} .

Proof: Since we have

$$\mathcal{G}_1(r^{m+n}) = \mu(r^n)\mathcal{G}_1(r^m) + \nu(r^m)g_1(r^n) \text{ for all } r \in \mathcal{A},$$
(2.3)

then, replacing r by r + qs, we get

$$\begin{split} &\mathcal{G}_1\Big(r^{m+n}+{}^{m+n}C_1r^{(m+n-1)}qs+{}^{m+n}C_2r^{m+n-2}q^2s^2+\ldots+q^{m+n}s^{m+n}\Big)=\Big(\mu(r^n)+{}^{n}C_1\mu(r^{n-1}qs)+{}^{n}C_2\mu(r^{n-2}q^2s^2)+\ldots+\mu(q^ns^n)\Big)f\Big(r^m+{}^{m}C_1r^{m-1}qs+{}^{m}C_2r^{m-2}q^2s^2+\ldots+q^ms^m\Big)+\\ &\Big(\nu(r^m)+{}^{m}C_1\nu(r^{m-1}qs)+{}^{m}C_2\nu(r^{m-2}q^2s^2)+\ldots+\nu(q^ms^m)\Big)g_1\Big(r^n+{}^{n}C_1r^{n-1}qs+{}^{n}C_2r^{n-2}q^2s^2+\ldots+q^ns^n\Big). \end{split}$$

Use (2.3) to rewrite the previously mentioned expression as

$$qP_1(r,s) + q^2P_2(r,s) + \dots + q^{(m+n-1)}P_{(m+n-1)}(r,s) = 0,$$

where $P_i(r,s)$ stand for the coefficients of q^i 's for all i=1,2,...,(m+n-1). If we replace q by 1,2,...,(m+n-1), then we find a system of (m+n-1) homogeneous system of linear equations. It gives us a Vander Monde matrix

$$\begin{bmatrix} 1 & 1 & \dots & 1 \\ 2 & 2^2 & \dots & 2^{(m+n-1)} \\ \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots \\ (m+n-1) & (m+n-1)^2 & \dots & (m+n-1)^{(m+n-1)} \end{bmatrix}.$$

Which yields that $P_i(r,s) = 0$ for all $r,s \in \mathcal{A}$ and for i = 1, 2, ..., (m+n-1). Particularly for i = 1, We have

$$P_{1}(r,s) = {}^{m+n}C_{1}\mathcal{G}_{1}(r^{(m+n-1)}s) - {}^{n}C_{1}\mu(r^{n-1}s)\mathcal{G}_{1}(r^{m}) - {}^{m}C_{1}\mu(r^{n})\mathcal{G}_{1}(r^{m-1}s) - {}^{n}C_{1}\nu(r^{m-1}s)\mathcal{G}_{1}(r^{n}) = 0 \text{ for all } r,s \in \mathcal{A}.$$

Putting r = e and making use of $g_1(e) = 0$, $\mu(e) = \nu(e) = e$ and n-torsion freeness of \mathcal{A} , we have

$$\mathcal{G}_1(s) = \mu(s)\mathcal{G}_1(e) + g_1(s) \text{ for all } s \in \mathcal{A}.$$
(2.4)

Next,

$$\begin{array}{lcl} P_2(r,s) & = & ^{m+n}C_2\mathcal{G}_1(r^{m+n-2}s^2) - ^mC_2\mu(r^n)\mathcal{G}_1(r^{m-2}s^2) - ^mC_1{}^nC_1\mu(r^{n-1}s)\mathcal{G}_1(r^{m-1}s) \\ & & -^nC_2\mu(r^{n-2}s^2)\mathcal{G}_1(r^m) - ^nC_2\nu(r^m)g_1(r^{n-2}s^2) - ^mC_1{}^nC_1\nu(r^{m-1}s)g_1(r^{n-1}s) \\ & -^mC_2\nu(r^{m-2}s^2)g_1(r^n) = 0 \text{ for all } r,s \in \mathcal{A}. \end{array}$$

To get the desired result, rewrite the preceding statement using e instead of r.

$$\frac{(m+n)(m+n-1)}{2}\mathcal{G}_{1}(s^{2}) = \frac{n(n-1)}{2}\mu(s^{2})\mathcal{G}_{1}(e) + mn\mu(s)\mathcal{G}_{1}(s) + \frac{m(m-1)}{2}\mathcal{G}_{1}(s^{2}) + \frac{n(n-1)}{2}g_{1}(s^{2}) + mn\nu(s)g_{1}(s).$$

That is,

$$(m+n)(m+n-1)\mathcal{G}_1(s^2) = n(n-1)\mu(s^2)\mathcal{G}_1(e) + 2mn\mu(s)\mathcal{G}_1(s) + m(m-1)\mathcal{G}_1(s^2) + n(n-1)g_1(s^2) + 2mn\nu(s)g_1(s).$$

After simple manipulation, we arrive at

$$(2mn + n^2 - n)\mathcal{G}_1(s^2) = n(n-1)\mu(s^2)\mathcal{G}_1(e) + 2mn\mu(s)\mathcal{G}_1(s) + n(n-1)g_1(s^2) + 2mn\nu(s)g_1(s).$$

Using (2.4) to get the following

$$(2mn + n^2 - n) \Big[\mu(s^2) \mathcal{G}_1(e) + g_1(s^2) \Big] = n(n-1)\mu(s^2) \mathcal{G}_1(e) + 2mn\mu(s) \Big[\mu(s) \mathcal{G}_1(e) + g_1(s) \Big] + n(n-1)g_1(s^2) + 2mn\nu(s)g_1(s).$$

Simplify the above expression and making use of 2mn-torsion freeness of \mathcal{A} , we have

$$g_1(s^2) = \mu(s)g_1(s) + \nu(s)g_1(s)$$
 for all $s \in A$.

Hence g will be a Jordan left (μ, ν) -derivation on \mathcal{A} . Now, from (2.4), we get

$$\mathcal{G}_{1}(s^{2}) = \mu(s^{2})\mathcal{G}_{1}(e) + g_{1}(s^{2})
= \mu(s) [\mu(s)\mathcal{G}_{1}(e) + g_{1}(s)] + \nu(s)g_{1}(s)
= \mu(s)\mathcal{G}_{1}(s) + \nu(s)g_{1}(s),$$

so \mathcal{G} will be a generalized Jordan left (μ, ν) -derivation associated with Jordan left (μ, ν) -derivation g_1 on \mathcal{A} .

By making the assumption that $\mu = \nu = I$, the following theorem emerges from the previous one:

Theorem 2.3 ([4], Theorem 2.5) Let $m, n \ge 1$ be two fixed integers and \mathcal{A} be a (m+n-1)!-torsion free semi-prime ring. If $\mathcal{G}_1, g_1 : \mathcal{A} \to \mathcal{A}$ are additive mappings satisfying $\mathcal{G}_1(r^{m+n}) = r^n \mathcal{G}_1(r^m) + r^m g_1(r^n)$ for all $r \in \mathcal{A}$. Then

- 1. $[g_1(r), s] = 0$ for all $r, s \in A$, where g_1 acts a derivation,
- 2. g_1 maps \mathcal{A} into $Z(\mathcal{A})$,
- 3. g_1 is zero or A is commutative,
- 4. For some $q \in Q_l(\mathcal{A}_C)$, $\mathcal{G}_1(r) = rq$ for all $r \in \mathcal{A}$,
- 5. G_1 will be a generalized derivation on A.

The following illustration shows that the theorems presented in this paper are legitimate.

Example 2.1 Define a ring $\mathcal{A} = \left\{ \begin{pmatrix} \bar{i} & 0 \\ 0 & \bar{k} \end{pmatrix} \mid \bar{i}, \bar{k} \in 2\mathbb{Z}_8 \right\}$, \mathbb{Z}_8 has its usual meaning. Define mappings $\mathcal{G}, g, \mathcal{G}_1, g_1, \mu, \nu : \mathcal{A} \to \mathcal{A}$ by $\mathcal{G} \begin{pmatrix} \bar{i} & 0 \\ 0 & \bar{k} \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & \bar{k} \end{pmatrix}$, $g \begin{pmatrix} \bar{i} & 0 \\ 0 & \bar{k} \end{pmatrix} = \begin{pmatrix} \bar{i} & 0 \\ 0 & \bar{k} \end{pmatrix}$, $g \begin{pmatrix} \bar{i} & 0 \\ 0 & \bar{k} \end{pmatrix} = \begin{pmatrix} \bar{i}$

Acknowledgement: The authors are highly grateful to the reviewer for his/her sincere comments and suggestions which improved our paper very much. The second author is supported by DST-SERB project MATRICS whose file No. is MTR/2022/000153.

References

- 1. S.Ali, On generalized left derivations in rings and Banach algebras, Aequat. Math. 81, 209-226 (2011).
- 2. S.Ali, and C.Haetinger, Jordan α-centralizer in rings and some applications, Bol. Soc. Paran. Mat. 26, 71-80 (2008).
- 3. A.Z. Ansari, Additive mappings satisfying algebraic identities in semi-prime rings, Discussiones Mathematicae General Algebra and Applications, 43 (2), 327-337 (2023).
- 4. A.Z. Ansari, and N. Rehman, *Identities on additive mappings in semi-prime rings*, Matematychni Studii, 58(2), 133-141 (2022).
- 5. A.Z. Ansari, and F. Shujat, Jordan *-derivations on standard operator algebras, Filomat 37:1, 37-41 (2023).
- 6. M. Ashraf, and S. Ali, On generalized Jordan left derivations in rings, Bull. Korean Math. Soc. 45(2), 253-261 (2008).
- 7. J. M. Cusack, Jordan derivations in rings, Proc. Amer. Math. Soc. 53(2), 321-324 (1975).
- 8. I.N. Herstein, Derivations in prime rings, Proc. Amer. Math. Soc. 8, 1104-1110 (1957).
- 9. C. Lanski, Generalized derivations and n-th power maps in rings, Comm. Algebra 35, 3660-3672 (2007).
- 10. E.C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc., 1093-1100 (1957).
- 11. F. Shujat, A. Z. Ansari, and F. Salama, Additive mappings act as a generalized left (α, β) -derivation in rings, Bollettino dell'Unione Matematica Italiana, 12, 425–430 (2019).
- 12. F. Shujat, and A. Z. Ansari, Additive mappings covering generalized (α_1, α_2) -derivations in semiprime rings, Gulf Journal of Mathematics, 11(2), 19-26 (2021).

- 13. J. Vukman, On left Jordan derivations on rings and Banach algebras, Aequationes Math. 75, 260-266 (2008).
- 14. S.M.A. Zaidi, M. Ashraf, and S. Ali, On Jordan ideals and left (θ, θ) -derivation in prime rings, Int. J. Math. and Math. Sci. 37, 1957-1965 (2004).
- 15. B. Zalar, On centralizers of semi-prime rings, Comment. Math. Univ. Carol., 32, 609-614 (1991).
- 16. J. Zhu, and C. Xiong, Generalized derivations on rings and mappings of P-preserving kernel into range on Von Neumann algebras, Acta Math. Sinica 41, 795-800 (1998).

Abu Zaid Ansari, Department of Mathematics, Islamic University of Madinah, K.S.A.

E-mail address: ansari.abuzaid@gmail.com

and

Muzibur Rahman Mozumder, Department of Mathematics, Faculty of Science Aligarh Muslim University, India.

 $E ext{-}mail\ address: muzibamu81@gmail.com}$

and

Md Arshad Madni, Department of Mathematics, Aligarh Muslim University, India.

 $E ext{-}mail\ address: arshadmadni7613@gmail.com}$