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Translation surfaces generated by the spherical indicatrices of Frenet frame of regular
curves of 3-dimensional Euclidean space
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abstract: In this paper, we are interested in translation surfaces generated by the principal normals of two
regular curves provided with their alternative frames, and consequently, we generalize this study to confirm
the results obtained. Moreover, we give the position vector with illustrations for these surfaces, in some special
cases, where the two regular curves are respectively general helices, slant helices and slant-slant helices.
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1. Introduction

The best known translation surface in 3-dimensional Euclidien space is generated by two planar curves
lying in orthogonal planes and parametrized by

ψ(u, v) = (u, 0, f(u)) + (0, v, g(v)).

A generalization of translation surface is the surface obtained by translating a curve α(u) parallel to itself
along another curve β(v). Therfore the parametric representation of such surface is given by

ψ(u, v) = α(u) + β(v).

The theory of translation surfaces is always one of interesting topics in Euclidean space. Translation
surfaces have been investigated by some diferential geometers. Verstraelen et al. have investigated
minimal translation surfaces of plane type in n-dimensional Euclidean spaces [14]. Liu obtained some
characterizations of translation surfaces with constant mean curvature or constant Gauss curvature in
Euclidean 3-space E3 and Minkowski 3-space E3

1 [10]. In [2] Ali et al. gives some results on curvatures of
some special points of the translation surfaces in E3, in the same regard, Muntenau and Nistor has studyed
the second fundamental form of the translation surfaces in Euclidean 3-space and they obtained some
characterizations by using the second Gaussian curvature KII of the translation surfaces [11]. Recently,
in [1] Neriman Acar et al. studied translation surfaces generated by the spherical indicatrices of space
curves in E3, and obtained some characterizations based on the fact that these surfaces are developable
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or minimal. In [6] Cetin et al. have investigated geometric properties of surfaces that are parallel to
translation surfaces in Euclidean 3-space. In [7,8] Cetin et al. studied translation surfaces in Euclidean
3-space generated by two space curves, and using non-planar space curves he expressed some properties
of translation surfaces according to Frenet frames in Minkowski 3-space.

In [1] the authors have studied the translation surface generated by the tangent indicatrices of two
regular curves of E3, provided with their respective Frenet frames. In this paper, we investigated the
translation surfaces generated by the normals indicatrices of two regular curves provided with thier
alternatives frames. We determine some properties concerning the developability and minimality of these
surfaces. Subsequently, we generalize these results to the translation surfaces generated by the spherical
k-indicatrices. Finally, we give the position vector with illustrations for these surfaces, in the some
sepecial cases, where the two regular curves are respectively general helices, slant helices and slant-slant
helices.

2. Preliminaries

Let E3 be a 3-dimensional euclidiean space provided with the metric given by ⟨, ⟩ = dx21+dx
2
2+dx

2
3,

where (x1, x2, x3) is a rectangular coordinate system of E3.
Let I be an interval of R and α : I ⊂ R → E3 (s → α(s)) a regular curve of E3, parametrized by arc
length, otherwise ⟨α′(s), α′(s)⟩ = 1, for all s ∈ I.
The Serret-Ferent frame along the curve α, is the moving frame, direct orthonormal, noted
(T (s), N(s), B(s)) where

T (s) = α′(s), N(s) =
T ′(s)

∥ T ′(s) ∥
and B(s) = T (s) ∧N(s).

The derivative formulas of the Serret-Ferent frame are given as follows:T ′(s)
N ′(s)
B′(s)

 =

 0 κ(s) 0
−κ(s) 0 τ(s)

0 −τ(s) 0

 T (s)N(s)
B(s)

 ,
where κ(s) and τ(s) are respectively the curvature and the torsion of the curve at the point α(s).
A curve α is called general helix if its unit tangent vector field T (s) makes a constant angle with a fixed
straight line. α is a general helix if and only if σ0 = τ

κ is a constant function [13].
Denote by (N(s), C(s),W (s)) the alternative moving frame along the curve α, where

N =
T ′

∥ T ′ ∥
, C =

N ′

∥ N ′ ∥
and W = N ∧ C.

The derivative formulas of the alternative moving frame, are given as follows:N ′(s)
C ′(s)
W ′(s)

 =

 0 f(s) 0
−f(s) 0 g(s)

0 −g(s) 0

 N(s)
C(s)
W (s)

 , (2.1)

where

f =
√
κ2 + τ2 and g =

κ2

(κ2 + τ2)

( τ
κ

)′
. (2.2)

A curve α is called slant helix if its unit principal normal vector field N(s) makes a cosntant angle with
a fixed straight line. α is a slant helix if and only if σ1 = g

f is a constant function [12].

We denote by C0 = α(s) therefore,

Ck(s) =
C ′

k−1(s)

∥ C ′
k−1(s) ∥

, and Wk+1(s) = Ck(s) ∧ Ck+1(s), k ∈ {1, 2, ...},
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accordingly, (Ck, Ck+1,Wk+1) is the Frenet frame of s→ Ck−1(s). Then the derivative formulas of Frenet
frame are given by: C ′

k(s)
C ′

k+1(s)
W ′

k+1(s)

 =

 0 fk−1(s) 0
−fk−1(s) 0 gk−1(s)

0 −gk−1(s) 0

  Ck(s)
Ck+1(s)
Wk+1(s)

 , (2.3)

where fk−1 and gk−1 are the Frenet invariants of s→ Ck−1(s), such as f0 = κ and g0 = τ.

A curve α is called a k-slant helix if the unit vector Ck+1 =
C′

k

∥C′
k(s)∥

makes a constant angle with a fixed

direction. α is a k-slant helix if and only if

σk =
gk
fk

=
σ′
k−1

fk−1

(
1 + σ2

k−1

) 3
2

(2.4)

is a constant function [5].
Let M : X = X(u, v) ⊂ E3 be a regular surface. Then the unit normal vector field of the surface M is
identified by:

N(u, v) =
Xu ∧Xv

∥ Xu ∧Xv ∥
,

where Xu = ∂X(u,v)
∂u , Xv = ∂X(u,v)

∂v .
The compenents of the first fundamental form and the second fundamental form of a regular surface M
are given by

E = ⟨Xu, Xu⟩, F = ⟨Xu, Xv⟩, G = ⟨Xv, Xv⟩,

l = ⟨Xuu, N⟩, m = ⟨Xuv, N⟩, n = ⟨Xvv, N⟩.

The Gaussian curvature K and the mean curvature H of the surface M are expressed as follows:

K =
ln−m2

EG− F 2
, (2.5)

H =
En+Gl − 2Fm

2(EG− F 2)
. (2.6)

Definition 2.1 A regular surface in E3 is called developable if K = 0 and called minimal if H = 0.

Definition 2.2 A constant angle surface in E3 is a surface whose unit normal vector makes a constant
angle with an assigned direction.

3. Translation surfaces generated by principal normal indicatrices of regular curves of E3

Let us denote by u → α(u) and v → β(v) two non degenerate curves of class C3 of E3. Denote by
(Nα, Cα,Wα, fα, gα) and (Nβ , Cβ ,Wβ , fβ , gβ) the alternative frames of the curves α and β, respectively.
The translation surface generated by principal normal indicatrices of the curves α and β is defined by:

MN : X(u, v) = Nα(u) + Nβ(v). (3.1)

By calculating the partial derivatives with respect to u and v of the translation surface (3.1) and using
the derivative formulas (2.1), we get:

Xu = fαCα, Xv = fβCβ .

Then, we obtain the components of the first fundamental form of the surface MN :

E = f2α, (3.2)

F = fαfβ cos[ϕN (u, v)], (3.3)
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G = f2β , (3.4)

where ϕN = ϕN (u, v) is the angle function between Cα and Cβ . The unit normal vector of the translation
surface MN is given by:

N(u, v) =
Cα ∧ Cβ

sin[ϕN (u, v)]
, (3.5)

The vector Cα of the curve α can be expressed in the frame {Nβ , Cβ ,Wβ} as follows:

Cα = µ1Nβ + µ2Cβ + µ3Wβ , (3.6)

where

µ1 = ⟨Cα, Nβ⟩ = sin[ϕN (u, v)] cos[γN (u, v)],

µ2 = ⟨Cα, Cβ⟩ = cos[ϕN (u, v)],

µ3 = ⟨Cα,Wβ⟩ = sin[ϕN (u, v)] sin[γN (u, v)]. (3.7)

Similarly, the vector Cβ of the curve β can be expressed as a linear combination of the vectors Nα, Cα

and Wα as follows:

Cβ = λ1Nα + λ2Cα + λ3Wα, (3.8)

where

λ1 = ⟨Cβ , Nα⟩ = sin[ϕN (u, v)] cos[θN (u, v)],

λ2 = ⟨Cβ , Cα⟩ = cos[ϕN (u, v)],

λ3 = ⟨Cβ ,Wα⟩ = sin[ϕN (u, v)] sin[θN (u, v)]. (3.9)

Therefore, we can express the unit normal vector N of the surface MN in each of the two frames. By
using (3.5) and (3.8), it is determined by

N1(u, v) = sin[θN (u, v)]Nα − cos[θN (u, v)]Wα. (3.10)

Similarly, using (3.5) and (3.6), we obtain

N2(u, v) = − sin[γN (u, v)]Nβ + cos[γN (u, v)]Wβ . (3.11)

The components of the second fundamental form of the MN surface are given by:

l = −f2α
[
cos[θN (u, v)]

gα
fα

+ sin[θN (u, v)]
]
, (3.12)

m = 0, (3.13)

n = f2β
[
cos[γN (u, v)]

gβ
fβ

+ sin[γN (u, v)]
]
. (3.14)

Proposition 3.1 The Gaussian curvature K and the mean curvature H of the translation surface MN

are respectively:

K = −

[
cos[θN (u, v)] gαfα + sin[θN (u, v)]

][
cos[γN (u, v)]

gβ
fβ

+ sin[γN (u, v)]
]

sin2[ϕN (u, v)]
, (3.15)

H =
−

[
cos[θN (u, v)] gαfα + sin[θN (u, v)]

]
+

[
cos[γN (u, v)]

gβ
fβ

+ sin[γN (u, v)]
]

2 sin2[ϕN (u, v)]
. (3.16)
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Proof: By substituting (3.2), (3.3), (3.4), (3.12), (3.13), (3.14) in (2.5) and (2.6), we obtain the result
as desired. 2

Theorem 3.1 The surface MN is developable, if and only if

σ1α = − tan[θN (u, v)] or σ1β = − tan[γN (u, v)]. (3.17)

Corollary 3.1 If the surface MN is developable, then the angle θN [(u, v)] is a function that depends only
on u or the angle γN [(u, v)] is a function that depends only on v.

Corollary 3.2 Let the surface MN be developable, if the curves α and β are planar curves then the
angles θN = kπ or γN = kπ, (k ∈ Z).

Proof: If α and β are planar curves, then τα = τβ = 0, and according to (2.2), σ1α = 0 and σ1β = 0. As
we suppose MN developable, according to (3.17), it comes:

sin[θN (u, v)] = 0 or sin[γN (u, v)] = 0,

hence θN = kπ, (k ∈ Z) or γN = kπ, (k ∈ Z). 2

Corollary 3.3 Let the surface MN be developable, if the curves α and β are slant helices, then one of
the angles θN or γN is constant.

Corollary 3.4 Let the surfaceMN be developable, if the curves α and β are slant helices, then the surface
MN is a constant angle surface.

Proof: We assume that the surface MN is developable and that the curves α and β are slant helices.
According to the corollary (3.1C), γN = γ0 or θN = θ0 are constant angles.
Without loss of generality, we assume that θN is constant.
Since α is a slant helix, there is a constant unit direction uα which makes a constant angle with the unit
principal normal vector Nα of the curve α. Then

⟨Nα, uα⟩ = cos δ0 = constant.

We can therefore define uα as follows

uα = cos δ0Nα + sin δ0Wα. (3.18)

Using (3.10) and (3.18), we obtain

⟨N1, uα⟩ = sin θ0 cos δ0 − cos θ0 sin δ0

= constant,

which completes the proof. 2

Theorem 3.2 If the surface MN is minimal and the curves α and β are planar curves, then the angles
between the vectors Cα and Wβ and the vectors Cβ and Wα coincide.

Proof: According to (3.16) the surface MN is minimal, if and only if

cos[θN (u, v)]
gα
fα

+ sin[θN (u, v)] = cos[γN (u, v)]
gβ
fβ

+ sin[γN (u, v)].

The curves α and β are planar curves, then τα = τβ = 0, and using (2.2), gα = gβ = 0. Since the surface
MN is minimal, we get :

sin[θN (u, v)] = sin[γN (u, v)],

for using (3.7) and (3.9), we get
⟨Cβ ,Wα⟩ = ⟨Cα,Wβ⟩.

2
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Example 3.1 Let α and β be two curves defined by :

α(u) =
(
u,
u2

2
,
u3

6

)
,

β(v) =
(
6v + 2, 5v2,−8v

)
.

The translation surface generated by the principal normal indicatrices of the curves α and β is given by :

MN (u, v) =
(
− 2u

u2 + 2
− 3v

5
√
v2 + 1

,−u
2 − 2

u2 + 2
+

1√
v2 + 1

,
2u

u2 + 2
+

4v

5
√
v2 + 1

)
.

Figure 1: Translation surface MN generated by the principal normal indicatrices

Example 3.2 Let α and β be two planar curves parametrized by arc length and defined by :

α(u) =
(
2 cos(

u

2
), 2 sin(

u

2
), 0

)
,

β(v) =
(
0, 3 cos(

v

3
), 3 sin(

v

3
)
)
.

The translation surface generated by the principal normal indicatrices of the curves α and β is given by :

MN (u, v) =
(
− cos(

u

2
),− sin(

u

2
)− cos(

v

3
),− sin(

v

3
)
)
.
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Figure 2: Translation surface MN generated by the principal normal indicatrices

4. Translation surfaces generated by spherical k-indicatrices of regular curves of E3

Let us denote by u → α(u) and v → β(v) two non-degenerate curves of class Cn (n ≥ k + 1)
of E3. Denote by (Ckα

, Ck+1α ,Wk+1α , fk−1α , gk−1α) and (Ckβ
, Ck+1β ,Wk+1β , fk−1β , gk−1β ) the Serret-

Frenet frames respectively of the curve u → Ck−1α(u) and the curve v → Ck−1β (v) .
The translation surface generated by the curves Ckα and Ckβ

, associated to the curves α and β is defined
by:

MCk
: X(u, v) = Ckα

(u) + Ckβ
(v). (4.1)

By using the derivative formulas (2.3), we obtain the partial derivatives with respect to u and v of the
translation surface given by the parametrization (4.1):

Xu = fk−1αCk+1α , Xv = fk−1βCk+1β .

Thus, the components of the first fundamental form of the surface MCk
are given by:

E = f2k−1α
,

F = fk−1αfk−1β cos[ϕCk
(u, v)],

G = f2k−1β
,

where ϕCk
= ϕCk

(u, v) is the angle function between the vectors Ck+1α and Ck+1β . The unit normal
vector of the translation surface MCk

is given by:

N(u, v) =
Ck+1α ∧ Ck+1β

sin[ϕCk
(u, v)]

. (4.2)

As in the previous paragraph, we express the normal vector N(u, v) in the two frames: (Ckα
, Ck+1α ,

Wk+1α) associated to α and (Ckβ
, Ck+1β ,Wk+1β ) associated to β. To achieve this, we express the vector

Ck+1α (resp. Ck+1β ) in the frame (Ckβ
, Ck+1β ,Wk+1β ) (resp. (Ckα , Ck+1α ,Wk+1α)). We can write

Ck+1α = µ1Ckβ
+ µ2Ck+1β + µ3Wk+1β , (4.3)

where

µ1 = ⟨Ck+1α , Ckβ
⟩ = sin[ϕCk

(u, v)] cos[γCk
(u, v)],
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µ2 = ⟨Ck+1α , Ck+1β ⟩ = cos[ϕCk
(u, v)],

µ3 = ⟨Ck+1α ,Wk+1β ⟩ = sin[ϕCk
(u, v)] sin[γCk

(u, v)]. (4.4)

Similarly, we have

Ck+1β = λ1Ckα + λ2Ck+1α + λ3Wk+1α , (4.5)

with

λ1 = ⟨Ck+1β , Ckα
⟩ = sin[ϕCk

(u, v)] cos[θCk
(u, v)],

λ2 = ⟨Ck+1β , Ck+1α⟩ = cos[ϕCk
(u, v)],

λ3 = ⟨Ck+1β ,Wk+1α⟩ = sin[ϕCk
(u, v)] sin[θCk

(u, v)]. (4.6)

Using (4.2) and (4.5), it comes:

N1(u, v) = sin[θCk
(u, v)]Ckα

− cos[θCk
(u, v)]Wk+1α . (4.7)

Similarly, by using (4.2) and (4.3), we get:

N2(u, v) = − sin[γCk
(u, v)]Ckβ

+ cos[γCk
(u, v)]Wk+1β . (4.8)

It follows, the components of the second fundamental form of the surface MCk
:

l = −f2k−1α

[
cos[θCk

(u, v)]
gk−1α

fk−1α

+ sin[θCk
(u, v)]

]
,

m = 0,

n = f2k−1β

[
cos[γCk

(u, v)]
gk−1β

fk−1β

+ sin[γCk
(u, v)]

]
.

Proposition 4.1 The Gaussian curvature K and the mean curvature H of the translation surface MCk

are respectively:

K = −

[
cos[θCk

(u, v)]
gk−1α

fk−1α
+ sin[θCk

(u, v)]
][

cos[γCk
(u, v)]

gk−1β

fk−1β

+ sin[γCk
(u, v)]

]
sin2[ϕCk

(u, v)]
, (4.9)

H =
−
[
cos[θCk

(u, v)]
gk−1α

fk−1α
+ sin[θCk

(u, v)]
]
+

[
cos[γCk

(u, v)]
gk−1β

fk−1β

+ sin[γCk
(u, v)]

]
2 sin2[ϕCk

(u, v)]
. (4.10)

Theorem 4.1 The surface MCk
is developable, if and only if

σk−1α = − tan[θCk
(u, v)] or σk−1β = − tan[γCk

(u, v)]. (4.11)

Corollary 4.1 If the surface MCk
is developable, then the angle θCk

[(u, v)] is a function that depends
only on u or the angle γCk

[(u, v)] is a function that depends only on v.

Corollary 4.2 If the surface MCk
is developable and if the curves α and β are planar curves then the

angles θCk
= kπ or γCk

= kπ, (k ∈ Z).

Proof: If α and β are planar curves, then τα = τβ = 0, and from (2.2) and (2.4) we have σk−1α = 0 and
σk−1β = 0. As we suppose MCk

is developable, we obtain from (4.11) that :

sin[θCk
(u, v)] = 0 or sin[γCk

(u, v)] = 0,

and therefore θCk
= kπ, (k ∈ Z) or γCk

= kπ, (k ∈ Z). 2
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Corollary 4.3 If the surface MCk
is developable and if the curves α and β are (k-1)-slant helices, then

one of the angles θCk
or γCk

is constant.

Corollary 4.4 If the surface MCk
is developable, and if the curves α and β are (k-1)-slant helices, then

the surface MCk
is a constant angle surface.

Proof: By the corollary (4.1C), γCk
= γ0 or θCk

= θ0 are constant angles. Without loss of generality,
we assume that θCk

= θ0 is constant.
Since α is a (k-1)-slant helix, then there exists a constant vector uα verifying

⟨Ckα , uα⟩ = cos δ0 = constant

We can then define uα as follows

uα = cos δ0Ckα
+ sin δ0Wk+1α . (4.12)

By using (4.7) and (4.12), we obtain

⟨N1, uα⟩ = sin θ0 cos δ0 − cos θ0 sin δ0

= constant.

2

Theorem 4.2 If the surface MCk
is minimal and the curves α and β are planer curves, then the angles

between the vectors Ck+1α and Wk+1β and the vectors Ck+1β and Wk+1α coincide.

Proof: Since α and β are planar curves, we have τα = τβ = 0, and according to (2.2) and (2.4), we
obtain σk−1α = 0 and σk−1β = 0.
As the surface MCk

is assumed to be minimal, we have H = 0, and therefore, according to (4.10), it
comes

sin[θCk
(u, v)] = sin[γCk

(u, v)].

By using (4.4) and (4.6), it follows

⟨Ck+1α ,Wk+1β ⟩ = ⟨Ck+1β ,Wk+1α⟩.

2

5. Applications

In this paragraph, we propose to give the parametric representations of the translation surfacesMCk
=

Ckα(u) + Ckβ
(v), in the case where α and β are (k-1)-slant helices for k = 1, 2 and 3 followed by some

illustratives examples.

5.1. Case k = 1

Theorem 5.1 [3] The position vector of the general helix c, is expressed in the natural representation
form as follows :

c(s) =
1√

1 +m2

∫ (
cos

(√
1 +m2

∫
κ(s)ds

)
, sin

(√
1 +m2

∫
κ(s)ds

)
,m

)
ds,

where m = n√
1−n2

, n = cos(ϕ), ϕ is the angle between the tangent vector of the curve c and a fixed

direction.
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Let α, β be two general helices of E3, with curvatures κα, κβ and admitting the valuesm1,m2 respectively.
The components of the translation surface MT = (MT1 ,MT2 ,MT3) generated by the tangent vectors Tα
and Tβ are given by:

MT1
(u, v) = 1√

1+m2
1

cos
(√

1 +m2
1

∫
κα(u) du

)
+ 1√

1+m2
2

cos
(√

1 +m2
2

∫
κβ(v) dv

)
,

MT2
(u, v) = 1√

1+m2
1

sin
(√

1 +m2
1

∫
κα(u) du

)
+ 1√

1+m2
2

sin
(√

1 +m2
2

∫
κβ(v) dv

)
,

MT3
(u, v) = m1√

1+m2
1

+ m2√
1+m2

2

.

Example 5.1 Let α and β be two circular helices defined by the intrinsic equations :{
κα(u) = κ1, κβ(v) = κ2,
τα(u) = m1κ1, τβ(v) = m2κ2,

The components of the translation surface MT = (MT1
,MT2

,MT3
) generated by the tangent vectors Tα

and Tβ are given by :
MT1(u, v) = 1√

1+m2
1

cos
(√

1 +m2
1κ1u

)
+ 1√

1+m2
2

cos
(√

1 +m2
2κ2v

)
,

MT2(u, v) = 1√
1+m2

1

sin
(√

1 +m2
1κ1u

)
+ 1√

1+m2
2

sin
(√

1 +m2
2κ2v

)
,

MT3(u, v) = m1√
1+m2

1

+ m2√
1+m2

2

.

Figure 3: Translation surface MT , with m1 = κ2 = 1, κ1 = m2 = 2

Example 5.2 Let α be a general helix defined by the intrinsic equations

κα(u) =
a1
u
, τα(u) =

m1a1
u

,

and let β be a spherical helix defined by the intrinsic equations

κβ(v) =
a2√

1−m2
2v

2
, τβ(v) =

a2m2√
1−m2

2v
2
.

The components of the translation surface MT (u, v) = (MT1
,MT2

,MT3
) generated by the tangent vectors
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Tα and Tβ are given by :
MT1

(u, v) = 1√
1+m2

1

cos
(√

1 +m2
1 a1 ln(u)

)
+ 1√

1+m2
2

cos
(

a2

√
1+m2

2

m2
arcsin(m2v)

)
,

MT2
(u, v) = 1√

1+m2
1

sin
(√

1 +m2
1 a1 ln(u)

)
+ 1√

1+m2
2

sin
(

a2

√
1+m2

2

m2
arcsin(m2v)

)
,

MT3(u, v) = m1√
1+m2

1

+ m2√
1+m2

2

.

Figure 4: Translation surface MT , with m1 = a1 = 1, a2 = m2 = 1

5.2. Case k = 2

Theorem 5.2 [4] The position vector of the slant helix c(s) = (c1(s), c2(s), c3(s)) is expressed in the
natural representation form as follows : c1(s) = n

m

∫ [ ∫
κ(s) cos

[
1
n arcsin

(
m

∫
κ(s) ds

)]
ds
]
ds,

c2(s) = n
m

∫ [ ∫
κ(s) sin

[
1
n arcsin

(
m

∫
κ(s) ds

)]
ds
]
ds,

c3(s) = n
∫ [ ∫

κ(s) ds
]
ds,

where m = n√
1−n2

, n = cos(ϕ), ϕ is the angle between the principal normal vector of the curve c and a

fixed direction.

Let α, β be two slant helices of E3, with curvatures κα, κβ and admitting the values n1,m1 and n2,m2

respectively. The components of the translation surface MN = (MN1
,MN2

,MN3
) generated by the

principal normals vectors Nα and Nβ are given by:
MN1(u, v) = n1

m1
cos

[
1
n1

arcsin
(
m1

∫
κα(u) du

)]
+ n2

m2
cos

[
1
n2

arcsin
(
m2

∫
κβ(v) dv

)]
,

MN2(u, v) = n1

m1
sin

[
1
n1

arcsin
(
m1

∫
κα(u) du

)]
+ n2

m2
sin

[
1
n2

arcsin
(
m2

∫
κβ(v) dv

)]
,

MN3
(u, v) = n1 + n2

Example 5.3 Let α and β be two Salkowski curves defined by the intrinsic equations :{
κα(u) = 1, κβ(v) = 1,
τα(u) = m1u√

1−m2
1u

2
, τβ(v) =

m2v√
1−m2

2v
2
.
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The components of the translation surface MN (u, v) = (MN1
,MN2

,MN3
) generated by the principal

normals vectors Nα and Nβ are given by :


MN1(u, v) = n1

m1
cos

[
1
n1

arcsin
(
m1u

)]
+ n2

m2
cos

[
1
n2

arcsin
(
m2v

)]
,

MN2(u, v) = n1

m1
sin

[
1
n1

arcsin
(
m1u

)]
+ n2

m2
sin

[
1
n2

arcsin
(
m2v

)]
,

MN3
(u, v) = n1 + n2.

Figure 5: Translation surface MN , with m1 = 1, m2 = 2

Example 5.4 Let α be an anti-Salkowski curve defined by the intrinsic equations

κα(u) =
m1u√

1−m2
1u

2
, τα(u) = 1,

and let β be a circular slant helix defined by the intrinsic equations

κβ(v) =
µ

m2
cos(µv), τβ(v) =

µ

m2
sin(µv).

The components of the translation surface MN (u, v) = (MN1 ,MN2 ,MN3) generated by the principal
normals vectors Nα and Nβ are given by :


MN1(u, v) = n1

m1
cos

[
1
n1

arcsin
(
−

√
1−m2

1u
2
)]

+ n2

m2
cos

[
1
n2

arcsin
(
sin(µv)

)]
,

MN2
(u, v) = n1

m1
sin

[
1
n1

arcsin
(
−

√
1−m2

1u
2
)]

+ n2

m2
sin

[
1
n2

arcsin
(
sin(µv)

)]
,

MN3(u, v) = n1 + n2.
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Figure 6: Translation surface MN , with m1 = m2 = µ = 1

5.3. Case k = 3

Theorem 5.3 [9] The position vector of the slant-slant helix (or 2-slant helix) c(s) = (c1(s), c2(s), c3(s))
is expressed in the natural representation form as follows : c1(s) = n

m

∫ [ ∫
κ(s)

[ ∫
f(s) cos

[
1
n arcsin

(
m

∫
f(s) ds

)]
ds
]
ds
]
ds,

c2(s) = n
m

∫ [ ∫
κ(s)

[ ∫
f(s) sin

[
1
n arcsin

(
m

∫
f(s) ds

)]
ds
]
ds
]
ds,

c3(s) = n
∫ [ ∫

κ(s)
[ ∫

f(s) ds
]
ds
]
ds,

where f =
√
τ2 + κ2, m = n√

1−n2
, n = cos(ϕ), ϕ is the angle between the vector C of the curve c and

a fixed direction.

Considering the family of curves γ(s) = (γ1(s), γ2(s), γ3(s)) with curvature κ(s) and torsion τ(s) taking
the following values : {

κ(s) = µ
m cos(µs) cos

(
1
m cos(µs)

)
,

τ(s) = − µ
m cos(µs) sin

(
1
m cos(µs)

)
.

Then the position vector of the slant-slant helix γ is given by [9] :
γ1(s) = nµ

2m3

∫ [ ∫
cos(µs) cos

(
1
m cos(µs)

) [
n

n+1 sin
(
n+1
n µs

)
+ n

n−1 sin
(
n−1
n µs

)]
ds
]
ds,

γ2(s) = − nµ
2m3

∫ [ ∫
cos(µs) cos

(
1
m cos(µs)

) [
n

n+1 cos
(
n+1
n µs

)
+ n

1−n cos
(
1−n
n µs

)]
ds
]
ds,

γ3(s) = nµ
m2

∫ [ ∫
cos(µs) cos

(
1
m cos(µs)

)
sin(µs)

]
ds ds.

It follows that the vector T (s) = (T1(s), T2(s), T3(s)) of the curve γ is given by:
T1(s) = nµ

2m3

∫
cos(µs) cos

(
1
m cos(µs)

) [
n

n+1 sin
(
n+1
n µs

)
+ n

n−1 sin
(
n−1
n µs

)]
ds,

T2(s) = −n2µ
2m3

∫
cos(µs) cos

(
1
m cos(µs)

) [
n

n+1 cos
(
n+1
n µs

)
+ n

1−n cos
(
1−n
n µs

)]
ds,

T3(s) = nµ
m2

∫
cos(µs) cos

(
1
m cos(µs)

)
sin(µs) ds,

then the vectors N(s) = (N1(s), N2(s), N3(s)) of γ is given by:
N1(s) = n

2m2

[
n

n+1 sin
(
n+1
n µs

)
+ n

n−1 sin
(
n−1
n µs

)]
,

N2(s) = − n
2m2

[
n

n+1 cos
(
n+1
n µs

)
+ n

1−n cos
(
1−n
n µs

)]
,

N3(s) = n
m sin(µs),
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it follows the parametric representation of the vector C(s) = N ′(s)
∥N ′(s)∥ of the curve γ: C1(s) = n

m cos(µns),
C2(s) = n

m sin(µns),
C3(s) = n.

Example 5.5 Let α = α(u) and β = β(v) be two curves of preceding family of slant-slant helices with
curvatures κα(u), κβ(v) and torsions τα(u), τβ(v) having the following values :{

κα(u) = µ1

m1
cos(µ1u) cos

(
1

m1
cos(µ1u)

)
κβ(v) =

µ2

m2
cos(µ2v) cos

(
1

m2
cos(µ2v)

)
,

τα(u) = − µ1

m1
cos(µ1u) sin

(
1

m1
cos(µ1u)

)
τβ(v) = − µ2

m2
cos(µ2v) sin

(
1

m2
cos(µ2v)

)
.

The components of the translation surface MC = (MC1 ,MC2 ,MC3) generated by the vectors Cα and Cβ

are given by : 
MC1

(u, v) = n1

m1
cos(µ1

n1
u) + n2

m2
cos(µ2

n2
v)

MC2(u, v) = n1

m1
sin(µ1

n1
u) + n2

m2
sin(µ2

n2
v)

MC3
(u, v) = n1 + n2

Figure 7: Translation surface MC , with m1 = µ2 = 1, m2 = µ1 = 2
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