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Translation surfaces generated by the spherical indicatrices of Frenet frame of regular
curves of 3-dimensional Euclidean space
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ABSTRACT: In this paper, we are interested in translation surfaces generated by the principal normals of two
regular curves provided with their alternative frames, and consequently, we generalize this study to confirm

the results obtained. Moreover, we give the position vector with illustrations for these surfaces, in some special
cases, where the two regular curves are respectively general helices, slant helices and slant-slant helices.
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1. Introduction

The best known translation surface in 3-dimensional Euclidien space is generated by two planar curves
lying in orthogonal planes and parametrized by

1]/}(’(1,, U) = (’U,7O, f(u)) + (O,’U,g(’l})).

A generalization of translation surface is the surface obtained by translating a curve «(u) parallel to itself
along another curve 8(v). Therfore the parametric representation of such surface is given by

P(u,v) = a(u) + (v).

The theory of translation surfaces is always one of interesting topics in Euclidean space. Translation
surfaces have been investigated by some diferential geometers. Verstraelen et al. have investigated
minimal translation surfaces of plane type in n-dimensional Euclidean spaces [14]. Liu obtained some
characterizations of translation surfaces with constant mean curvature or constant Gauss curvature in
Euclidean 3-space E? and Minkowski 3-space E3 [10]. In [2] Ali et al. gives some results on curvatures of
some special points of the translation surfaces in E3, in the same regard, Muntenau and Nistor has studyed
the second fundamental form of the translation surfaces in Euclidean 3-space and they obtained some
characterizations by using the second Gaussian curvature Ky of the translation surfaces [11]. Recently,
in [1] Neriman Acar et al. studied translation surfaces generated by the spherical indicatrices of space
curves in E3, and obtained some characterizations based on the fact that these surfaces are developable
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or minimal. In [6] Cetin et al. have investigated geometric properties of surfaces that are parallel to
translation surfaces in Euclidean 3-space. In [7,8] Cetin et al. studied translation surfaces in Euclidean
3-space generated by two space curves, and using non-planar space curves he expressed some properties
of translation surfaces according to Frenet frames in Minkowski 3-space.

In [1] the authors have studied the translation surface generated by the tangent indicatrices of two
regular curves of E3, provided with their respective Frenet frames. In this paper, we investigated the
translation surfaces generated by the normals indicatrices of two regular curves provided with thier
alternatives frames. We determine some properties concerning the developability and minimality of these
surfaces. Subsequently, we generalize these results to the translation surfaces generated by the spherical
k-indicatrices. Finally, we give the position vector with illustrations for these surfaces, in the some
sepecial cases, where the two regular curves are respectively general helices, slant helices and slant-slant
helices.

2. Preliminaries

Let E3 be a 3-dimensional euclidiean space provided with the metric given by (,) = dx? +dx3+dz2,
where (1,2, 73) is a rectangular coordinate system of E3.
Let I be an interval of R and o : I C R — E? (s — a(s)) a regular curve of E3, parametrized by arc
length, otherwise (&/(s),a/(s)) =1, for all s € I.
The Serret-Ferent frame along the curve «, is the moving frame, direct orthonormal, noted
(T'(s),N(s),B(s)) where

T(s)=d'(s), N(s)= |§:E:3|| and B(s) =T(s) AN(s).

The derivative formulas of the Serret-Ferent frame are given as follows:

T'(s) 0 K(s) 0 T(s)
N'(s)| = |—k(s) 0 7(s)| |N(s)|,
B'(s) 0 —7(s) O B(s)

where k(s) and 7(s) are respectively the curvature and the torsion of the curve at the point a(s).
A curve « is called general helix if its unit tangent vector field T'(s) makes a constant angle with a fixed
straight line. « is a general helix if and only if 09 = T is a constant function [13].

Denote by (N(s),C(s), W (s)) the alternative moving frame along the curve «, where

T N’

N = , C= and W=NAC.
17" N ]

The derivative formulas of the alternative moving frame, are given as follows:

N'(s) 0 f(s) 0 N(s)
C'(s)| = [=f(s) 0 g(s) [Cls)]|, (2.1)
W'(s) 0 —g(s) O W(s)

where

VEREwa e (D), 22

K24+ 72) ‘K

A curve « is called slant helix if its unit principal normal vector field N(s) makes a cosntant angle with
a fixed straight line. « is a slant helix if and only if oy = £ is a constant function [12].

f
We denote by Cy = a(s) therefore,

Ch_1(s)

O = e o1

, and Wii1(s) = Cr(s) A Crya(s), ke {l,2,..},
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accordingly, (Ci, Cr41, Wgy1) is the Frenet frame of s — Ci_1(s). Then the derivative formulas of Frenet
frame are given by:

Ci(s) 0 fr—1(s) 0 Cr(s)
Cry1(8) = | —fi=1(s) 0 Gr—1(s) Crr1(s) | » (2.3)
W) 0 a0 ) \wn)

where fr_1 and gr_;1 are the Frenet invariants of s — Cj_1(s), such as fy = x and gy = 7.

A curve « is called a k-slant helix if the unit vector Cy11 = HC?W makes a constant angle with a fixed
k

direction. « is a k-slant helix if and only if

Ik _ Tkt (2.4)

oL = =
' I foer(L+ 07 y)

Wl

is a constant function [5].

Let M : X = X(u,v) C E? be a regular surface. Then the unit normal vector field of the surface M is
identified by :

XuNX,

N - ulu
W) = XA,

where X, = axa(Z’v), X, = BXB(LL’”)

The compenents of the first fundamental form and the second fundamental form of a regular surface M
are given by

E = <XU7X’LL>> F = <X’LL7X’U>7 G = <X’U7X’U>7
I = (Xuw, N), m = (Xup, N), n = (Xpo, N).

The Gaussian curvature K and the mean curvature H of the surface M are expressed as follows:

In —m?

K= ge—r 25)
En+ Gl —-2Fm

b= =me—rm (26)

Definition 2.1 A regular surface in E? is called developable if K =0 and called minimal if H = 0.

Definition 2.2 A constant angle surface in E3 is a surface whose unit normal vector makes a constant
angle with an assigned direction.

3. Translation surfaces generated by principal normal indicatrices of regular curves of E3

Let us denote by u — a(u) and v — B(v) two non degenerate curves of class C? of E3. Denote by
(No, Cos W, for o) and (Ng, Cg, Wp, fs,gs) the alternative frames of the curves v and j3, respectively.
The translation surface generated by principal normal indicatrices of the curves o and § is defined by:

My : X(u,v) = Nq(u) + Na(v). (3.1)

By calculating the partial derivatives with respect to u and v of the translation surface (3.1) and using
the derivative formulas (2.1), we get:

Xu = fQCOu Xv = fﬁcﬁ'
Then, we obtain the components of the first fundamental form of the surface My:

E = f? (3.2)

[e2]

F fafscos[on (u,v)], (3.3)
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G = f[g’ (3.4)

where ¢ = ¢n(u,v) is the angle function between C, and Cz. The unit normal vector of the translation
surface My is given by:

Nl = el 5.5)
The vector C,, of the curve a can be expressed in the frame {Ng, Cg, Wg} as follows:
Co = p11Ng + p2Cp + psWp, (3.6)
where
= (Ca, Ng) = sin[pn (u, v)] cos[yn (u,v)],
p2 = (Ca,Cp) = cos[on(u,v)],
ps = (Co, Wg) = sin[¢n(u,v)]sin[yy(u,v)]. (3.7)

Similarly, the vector Cs of the curve § can be expressed as a linear combination of the vectors Ny, C,
and W, as follows:

Cp = A No + 22C0 + AsWa, (3.8)
where

A= (Cg, No) = sin[on(u,v)] cos[fy (u,v)],

A2 = (Cg,Cq) = coslon(u,v)],

As = (Cy, Wa) = sinfen (u,v)] sinfy (u, v)]. (3.9)

Therefore, we can express the unit normal vector N of the surface My in each of the two frames. By
using (3.5) and (3.8), it is determined by

Ni(u,v) = sin[@n(u,v)] Ny — cos[0n (u, v)|W,. (3.10)
Similarly, using (3.5) and (3.6), we obtain
No(u,v) = —sin[yn (u, v)]|Ng + cos[yn (u, v)|Wpg. (3.11)

The components of the second fundamental form of the My surface are given by:

= —f2 [cos[On(u, v)]% +sinfO (u,)]], (3.12)
m =0, (3.13)
n= fé [cos[’yN(u,v)]?—Z + sin['yN(u,v)H. (3.14)

Proposition 3.1 The Gaussian curvature K and the mean curvature H of the translation surface My
are respectively:
[ cos[On (u,v)] 4> + sin[fy (u, v)]] [cos[ny(u,v)}fc—Z + sin[yn (u, v)]]

h=- [ (0, )] ’

(3.15)

_ [cos[ﬁN(u,v)]?—z + sin[fy (u,v)]] + [cos['yN(u,v)]fc—Z + sin[yn (u, v)]]

H= 2sin?[py (u, v)]

(3.16)
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Proof: By substituting (3.2), (3.3), (3.4), (3.12), (3.13), (3.14) in (2.5) and (2.6), we obtain the result
as desired. O

Theorem 3.1 The surface My is developable, if and only if

o1, = — tan[fn(u,v)] or o1, = — tan[yn(u,v)]. (3.17)

Corollary 3.1 If the surface My is developable, then the angle Ox[(u,v)] is a function that depends only
on u or the angle yn[(u,v)] is a function that depends only on v.

Corollary 3.2 Let the surface My be developable, if the curves a and [ are planar curves then the
angles O = km or yy = km, (k € Z).

Proof: If a and /3 are planar curves, then 7, = 75 = 0, and according to (2.2), o1, =0 and o1, = 0. As
we suppose My developable, according to (3.17), it comes:

sin[fx(u,v)] = 0 or sin[yn(u,v)] =0,

hence Oy = km, (k€ Z)or yv = km, (k€ Z). O

Corollary 3.3 Let the surface My be developable, if the curves a and B are slant helices, then one of
the angles O or yN is constant.

Corollary 3.4 Let the surface My be developable, if the curves o and B are slant helices, then the surface
My is a constant angle surface.

Proof: We assume that the surface My is developable and that the curves o and 3 are slant helices.
According to the corollary (3.1C), vy = 7o or Oy = 6y are constant angles.

Without loss of generality, we assume that 6y is constant.

Since « is a slant helix, there is a constant unit direction u, which makes a constant angle with the unit
principal normal vector N, of the curve . Then

(Ng,uq) = cosdy = constant.
We can therefore define u,, as follows
Ug = €08 0Ny + sin 6 W, (3.18)
Using (3.10) and (3.18), we obtain

(N1, uq) = sinfycosdy — cos by sin by

= constant,

which completes the proof. O

Theorem 3.2 If the surface My is minimal and the curves a and 8 are planar curves, then the angles
between the vectors C, and Wy and the vectors Cg and W, coincide.

Proof: According to (3.16) the surface My is minimal, if and only if

cos[@N(u,v)]fc—a + sin[fn (u,v)] = coshN(u,v)]?—ﬁ + sin[yn (u, v)].
a B
The curves o and 8 are planar curves, then 7, = 73 = 0, and using (2.2), go = gg = 0. Since the surface
Mp is minimal, we get:
sin[fn (u,v)] = sin[yn(u,v)],
for using (3.7) and (3.9), we get
<CﬁaWa> = <Ca7Wﬁ>'
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Example 3.1 Let « and 8 be two curves defined by:

u? ud

a(u) = (u7777)5
B(v) = (6v+2,50% —8v).
The translation surface generated by the principal normal indicatrices of the curves o and 3 is given by:

2u 3v u? —2 1 2u 4v )

My (u,0) = (— i~ - ,
()= (=3 WEil 212 Vgl 12 sverid

Figure 1: Translation surface My generated by the principal normal indicatrices

Example 3.2 Let a and B be two planar curves parametrized by arc length and defined by:

alu) = (2 cos(g)7 2sin(g), 0),

Bv) = (0,3005(%),38111(%)).
The translation surface generated by the principal normal indicatrices of the curves a and 8 is given by:

My (u,v) = (- coS(g), —sin(g) — cos(%), —sin(g)).
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Figure 2: Translation surface My generated by the principal normal indicatrices

4. Translation surfaces generated by spherical k-indicatrices of regular curves of E3

Let us denote by v — «(u) and v — B(v) two non-degenerate curves of class C™ (n > k + 1)
of EB. Denote by (Okoc’Ck+1a7Wk+1u7fk_1a7gk_1a) and (Ok57ck+157Wk+157fk—157gk—15) the Serret-
Frenet frames respectively of the curve u — Cx_;, (u) and the curve v — Cy_1,(v) .

The translation surface generated by the curves Cy, and Cy,, associated to the curves a and 3 is defined
by:

Mc, : X(u,v) = Cg, (u) + Cry(v). (4.1)

By using the derivative formulas (2.3), we obtain the partial derivatives with respect to u and v of the
translation surface given by the parametrization (4.1):

Xu = fe-1,Ckt1,0 Xo = fo-1,Ck+1,-

Thus, the components of the first fundamental form of the surface M, are given by:

E = fl?—laa
F = fr1,fx—1,cos[oc, (u,v)],
G = f/?—lﬁv

where ¢c, = ¢¢, (u,v) is the angle function between the vectors Cjy1, and Cgi1,. The unit normal
vector of the translation surface M¢, is given by:

Cry1, N Cry1,

Newe) = oot

(4.2)

As in the previous paragraph, we express the normal vector N(u,v) in the two frames: (Cj,,Cri1,,
Wit1,, ) associated to « and (Ckﬂ,CkHkaHﬁ) associated to 5. To achieve this, we express the vector
Chy1, (resp. Ciy1,) in the frame (Cy,, Cry1y, Wiy1,) (vesp. (Ch,, Cryr,, Wiy, ). We can write

Crt1, = m1Cry + p2Crir, + p3Wii1,, (4.3)
where

= (Chi1,, Cry) = sinfoe, (u,v)] coslye, (u, )],
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p2 = (Cri1,,Cry1,) = cos[oo, (u,v)],
ps = (Cry1,, Wit,) = sinfde, (v, v)] sin[ye, (u, v)]. (4.4)
Similarly, we have
Crt1, = MCr, + A2Chi1, + A3sWii1, (4.5)
with
A1 = (Cry14,Ck,) = sin[éc, (u,v)] cos[bc, (u, v)],

A2 = (Cri1,, Crtr,) = coslde, (u,v)],
A3 = (Chi1y, Wipr,) = sinféc, (u,v)]sin[0c, (u,v)]. (4.6)
Using (4.2) and (4.5), it comes:
Ni(u,v) = sinlfc, (u, v)]Cy,, — cosfc,, (u, )| W1, . (4.7)
Similarly, by using (4.2) and (4.3), we get:
Na(u,v) = =sin[ye, (u, v)]Cry + coslye, (u, v)[Wi, - (4.8)

It follows, the components of the second fundamental form of the surface M¢,:

l= —f,ilQ [cos[@ck (u,v)]ng“ + sinf[fc, (u,v)}],

m =0,

|

Proposition 4.1 The Gaussian curvature K and the mean curvature H of the translation surface Mc,
are respectively:

n=fi_1, [cos[vo,(u,v)]

9k—14

[COS[eck (u7 U)] + Sin[eck (u’ U)H [COS[’)/Ck (U, U)] o + sin[’y(;k (uv U)]]

fr—1 fr—1
K=- = - 2 , (4.9)
sin®[¢c, (u, v)]
_ [cos[@ck (u,v)]f{% + sin[fc, (u,fu)H + [Cos[’yck (u,v)]j:’iﬁ + sin[ye, (u, v)]]
H = I . — 8 (4.10)
2sin?[pc, (u, v)]
Theorem 4.1 The surface Mc, is developable, if and only if
op—1, = — tan[fc, (u,v)] or op_1, = — tan[yc,(u,v)]. (4.11)

Corollary 4.1 If the surface M¢, is developable, then the angle 0¢, [(u,v)] is a function that depends
only on u or the angle vy, [(u,v)] is a function that depends only on v.

Corollary 4.2 If the surface Mc, is developable and if the curves oo and B are planar curves then the
angles Oc,, = km or yo, = km, (k€ Z).

Proof: If o and § are planar curves, then 7, = 753 = 0, and from (2.2) and (2.4) we have oy_1_, = 0 and
ok-1, = 0. As we suppose Mc, is developable, we obtain from (4.11) that:

sin[f¢, (u,v)] = 0 or sin[ye, (u,v)] =0,

and therefore 0, = km, (k€ Z) or vo, = km, (k€ Z). O
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Corollary 4.3 If the surface Mc, is developable and if the curves o and (B are (k-1)-slant helices, then
one of the angles O¢, or ¢, is constant.

Corollary 4.4 If the surface Mg, is developable, and if the curves a and 8 are (k-1)-slant helices, then
the surface Mc, is a constant angle surface.

Proof: By the corollary (4.1C), ~¢, = o or 0c, = 0y are constant angles. Without loss of generality,
we assume that 0c, = 0y is constant.
Since « is a (k-1)-slant heliz, then there exists a constant vector u,, verifying

(Ck,, s ua) = cosdy = constant
We can then define u,, as follows

U = €08 09Cl,, +sindoWit1,, . (4.12)
By using (4.7) and (4.12), we obtain

(N1,uq) = sinby cosdp — cos b sin

= constant.

Theorem 4.2 If the surface Mc, is minimal and the curves oo and B are planer curves, then the angles
between the vectors Cy41, and Wk+1ﬁ and the vectors Ck+1,3 and Wi41,, coincide.

Proof: Since o and § are planar curves, we have 7, = 73 = 0, and according to (2.2) and (2.4), w
obtain o;_;_, = 0 and Ok—15 = 0.

As the surface M, is assumed to be minimal, we have H = 0, and therefore, according to (4.10), it
comes

sin[fc, (u,v)] = sin[ye, (u,v)].

By using (4.4) and (4.6), it follows

(Crt10, Wh1,) = (Cr1,, Wit,)-

5. Applications

In this paragraph, we propose to give the parametric representations of the translation surfaces Mg, =
Ch, (u) + Cg,(v), in the case where o and 3 are (k-1)-slant helices for k = 1,2 and 3 followed by some
illustratives examples.

5.1. Case k =1

Theorem 5.1 [3] The position vector of the general helix c, is expressed in the natural representation
form as follows:

c(s) = \/T/ cos \/r/ s)ds), sin \/T/ s)ds), ds

where m = \/17i7, n = cos(¢), ¢ is the angle between the tangent vector of the curve ¢ and a fixed
direction.
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Let o, B be two general helices of E3, with curvatures kq, k3 and admitting the values m1, my respectively.
The components of the translation surface My = (Mr,, Mr,, M1,) generated by the tangent vectors Ty,
and Tg are given by:

Mrp, (u,v) = \/ﬁcos (V1+m3 [ka(u) du) + \/%QCOS (V1+m3 [ka(v) dv),

1+m3
Mr, (u,v) = \/ﬁsin (V14+m? [ ka(u) du) + %m% sin (v/1+m3 [ ka(v) dv),
MT3 (u,'l}) = \/IT-]:'HL% + \/ﬁing .

Example 5.1 Let a and 8 be two circular helices defined by the intrinsic equations:

ka(u) =k1, Kg(v) = Ko,
To(u) =mik1, 73(V) = maka,

The components of the translation surface My = (Mp,, M1,, MT,) generated by the tangent vectors T,
and T are given by:

R
; F
S =
I Il
J:H —
§l\) »N
Z8
52
N
= —
+ +
§M§w
23
£ =
+ o+
i
+,_.
MSM

Q

o

@0

Figure 3: Translation surface My, with m; = ko =1, kK1 = mg =2

Example 5.2 Let « be a general helix defined by the intrinsic equations

aq miay
ma(u) = ' Ta(u) = u

and let B be a spherical heliz defined by the intrinsic equations
as a21m2

kp(v) = ———, 1(v) = ——.
s(v) =i 5(v) i

The components of the translation surface My (u,v) = (M1,, Mr,, MT,) generated by the tangent vectors
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T, and T are given by:

2
Mr, (u,v) = \/1_1‘_7? cos (v/1+m? aiIn(u)) + \/1-1|-m§ cos (az m12+m2 arcsin(mzv)),
a m2 .
Mr, (u,v) = 11 sin (v/1+m? a1 In(u)) + \/11m§ sin( 2 \/ml;r 3 arcsm(mgv)),

+
Q
+

mq ma
\/1+m§ \/1+m§ ’

2.5
v &
' =

Figure 4: Translation surface My, with m; =a; =1, a3 =mgo =1

5.2. Case k = 2

Theorem 5.2 [4] The position vector of the slant heliz c(s) = (c1(s),c2(8),c3(s)) is expressed in the
natural representation form as follows:

ci(s) = 2 [|[k(s)cos [[1 arcsin (m [ k(s) ds)}] ds]] ds,
ca(s) = 2 [|[k(s)sin [+ arcsin (m [ k(s) ds)]| ds] ds,
cs(s) = n[[[r(s)ds] ds,

where m = n = cos(p), ¢ is the angle between the principal normal vector of the curve ¢ and a

n
V1—-n2’
fized direction.

Let o, B be two slant helices of E3, with curvatures kq, kg and admitting the values ni,m; and nay, ms
respectively. The components of the translation surface My = (Mny,, Mn,, Mn,) generated by the
principal normals vectors N, and Ng are given by:

My, (u,v) = Jib cos [n% arcsin (my [ ko (u) du)] + 72 cos [n—lz arcsin (my [ k(v) dv)],
My, (u,v) = & sin [ arcsin (my [ ka(u) du)] + 22 sin [-L arcsin (my [ rg(v) dv)],

My, (u,v) = nj+ng
Example 5.3 Let a and B be two Salkowski curves defined by the intrinsic equations:

{ ka(u) =1, kglv)=1,

miu moav

Ta(u) = \/va 75(v) = \/ﬁ
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The components of the translation surface My (u,v) = (Mp,, MN,, Mn,) generated by the principal
normals vectors N, and Ng are given by:

My, (u,v) = JH-cos [n% arcsin (myu)] + 72 cos [n% arcsin (mav)],
Mn,(u,v) = tsin [n% arcsin (mqu)] + 2 sin [n% arcsin (mov)],

My, (u,v) = nyg+na.

N

\\

W \11
l

0.5

Figure 5: Translation surface My, with m; =1, my = 2

Example 5.4 Let o be an anti-Salkowski curve defined by the intrinsic equations

/sa(u) = 4m1u Ta(u) = ]-7

)
V1—miu?

and let B be a circular slant heliz defined by the intrinsic equations

The components of the translation surface My (u,v) = (Mp,, MN,, Mn,) generated by the principal
normals vectors N, and Ng are given by:

My, (u,v) = 2% cos [n% arcsin ( — /1 — miu?)] + > COS [n% arcsin (sin(uv))],
My, (u,v) = sin [n% arcsin ( — /1 — miu?)] + 72 sin [n% arcsin (sin(uw))],

Mp,(u,v) = nyg+na.
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Figure 6: Translation surface My, with m; =my=p =1

5.3. Case k = 3

Theorem 5.3 [9] The position vector of the slant-slant helixz (or 2-slant heliz) c¢(s) = (c1(s), ca(s), c3(s))
1s expressed in the natural representation form as follows:

c1(s) L [T [k(s) [ [ f(s)cos[L arcsin (m [ f(s) ds)} ds]] ds]] ds,
ca(s) = 2 [ [[&(s) [ [ f(s)sin [+ arcsin (m [ f(s) ds)] ds] ds] ds,
cs(s) = nf [[ k(s) [ [[f(s)ds] ds] ds,

where f =12+ K2, m= \/%77 n = cos(¢), ¢ is the angle between the vector C of the curve ¢ and

a fized direction.

Considering the family of curves v(s) = (71(s),72(s),v3(s)) with curvature £(s) and torsion 7(s) taking
the following values:

K(s) = L cos(us) cos (& cos(us)),

7(s) = —£ cos(us)sin (= cos(us)).

Then the position vector of the slant-slant helix + is given by [9]:

Y1(s) = 2% [ [ [cos(us)cos (L cos(us)) [nil sin (2 ps) + 2 sin (2L pus)] ds] ds,
Y2(s) = —gis [ [ [ cos(us)cos (4 cos(us)) [ cos (2t ps) + 125 cos (=2 us)] ds] ds,
v3(s) = 2L [[[cos(us)cos (L cos(us)) sin(us)] ds ds.

It follows that the vector T'(s) = (T1(s),T=2(s), T5(s)) of the curve -y is given by:

Ti(s) = 325 [ cos(us)cos (= cos(us)) [7#1 sin (2 ps) + 2 sin (2L ps)] ds,
To(s) = *27;:3# [ cos(ps) cos (£ cos(us)) [nLH cos (2H jis) + 2 cos (L2 pus)]| ds,
Ts(s) = 24 [cos(us)cos (= cos(us)) sin(us) ds,

then the vectors N(s) = (N1(s), Na(s), N5(s)) of v is given by:

Ni(s) = gz [l sin (% s) + 52 sin (% ps) ],
No(s) = —g [ cos (% Hns) + 725 cos (152 us) |,

Na(s) = 2 sin(us),
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N'(s)

it follows the parametric representation of the vector C(s) = T of the curve ~:
Ci(s) = 2 cos(Ls),
Co(s) = 2 sin(Ls),
C3(s) = n.

Example 5.5 Let a = a(u) and 8 = B(v) be two curves of preceding family of slant-slant helices with
curvatures ko (u), Kg(v) and torsions 74(u), T73(v) having the following values:

Ka(u) = Lt cos(puiu) cos (n%1 cos(pu))  kp(v) = L2 cos(pu2v) cos (-1 cos(pav)),
Ta(u) = —L cos(piu)sin (ﬂ%1 cos(piu))  Ta(v) = —£2 cos(p2v) sin miz cos(pi2v)).

The components of the translation surface Mo = (Mc,, Mc,, Mc,) generated by the vectors Co and Cg
are given by:

Mey(u,0) = 2 cos(ftu) + 22 cos(£20)
Me, (u,v) = - sm(n—iu)er—?2 sm(n—zv)
MCS(“)”) = ni-+n9

Figure 7: Translation surface M¢, with my = po =1, mo = 1 = 2
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