(3s.) **v. 2025 (43)** : 1–15. ISSN-0037-8712 doi:10.5269/bspm.68555

Translation surfaces generated by the spherical indicatrices of Frenet frame of regular curves of 3-dimensional Euclidean space

Salma Khan*, Malika Izid, Soukaina Ouarab and Amina Ouazzani Chahdi

ABSTRACT: In this paper, we are interested in translation surfaces generated by the principal normals of two regular curves provided with their alternative frames, and consequently, we generalize this study to confirm the results obtained. Moreover, we give the position vector with illustrations for these surfaces, in some special cases, where the two regular curves are respectively general helices, slant helices and slant-slant helices.

Key Words: Translation surfaces, Spherical indicatrices, Gaussian curvature, Mean curvature, Frenet frame, Alternative frame, Euclidean 3-space.

Contents

Introduction 1 **Preliminaries** 2 Translation surfaces generated by principal normal indicatrices of regular curves of 3 4 Translation surfaces generated by spherical k-indicatrices of regular curves of \mathbb{E}^3 7 9 **Applications** 5.1 Case k = 19 11 13 1. Introduction

The best known translation surface in 3-dimensional Euclidien space is generated by two planar curves lying in orthogonal planes and parametrized by

$$\psi(u, v) = (u, 0, f(u)) + (0, v, g(v)).$$

A generalization of translation surface is the surface obtained by translating a curve $\alpha(u)$ parallel to itself along another curve $\beta(v)$. Therfore the parametric representation of such surface is given by

$$\psi(u, v) = \alpha(u) + \beta(v).$$

The theory of translation surfaces is always one of interesting topics in Euclidean space. Translation surfaces have been investigated by some differential geometers. Verstraelen et al. have investigated minimal translation surfaces of plane type in n-dimensional Euclidean spaces [14]. Liu obtained some characterizations of translation surfaces with constant mean curvature or constant Gauss curvature in Euclidean 3-space \mathbb{E}^3 and Minkowski 3-space \mathbb{E}^3_1 [10]. In [2] Ali et al. gives some results on curvatures of some special points of the translation surfaces in \mathbb{E}^3 , in the same regard, Muntenau and Nistor has studyed the second fundamental form of the translation surfaces in Euclidean 3-space and they obtained some characterizations by using the second Gaussian curvature K_{II} of the translation surfaces [11]. Recently, in [1] Neriman Acar et al. studied translation surfaces generated by the spherical indicatrices of space curves in \mathbb{E}^3 , and obtained some characterizations based on the fact that these surfaces are developable

Submitted June 15, 2023. Published October 11, 2023 2010 Mathematics Subject Classification: 53A05, 53A10.

 $^{^{*}}$ Corresponding author

or minimal. In [6] Cetin et al. have investigated geometric properties of surfaces that are parallel to translation surfaces in Euclidean 3-space. In [7,8] Cetin et al. studied translation surfaces in Euclidean 3-space generated by two space curves, and using non-planar space curves he expressed some properties of translation surfaces according to Frenet frames in Minkowski 3-space.

In [1] the authors have studied the translation surface generated by the tangent indicatrices of two regular curves of \mathbb{E}^3 , provided with their respective Frenet frames. In this paper, we investigated the translation surfaces generated by the normals indicatrices of two regular curves provided with thier alternatives frames. We determine some properties concerning the developability and minimality of these surfaces. Subsequently, we generalize these results to the translation surfaces generated by the spherical k-indicatrices. Finally, we give the position vector with illustrations for these surfaces, in the some sepecial cases, where the two regular curves are respectively general helices, slant helices and slant-slant helices.

2. Preliminaries

Let \mathbb{E}^3 be a 3-dimensional euclidean space provided with the metric given by $\langle , \rangle = dx_1^2 + dx_2^2 + dx_3^2$, where (x_1, x_2, x_3) is a rectangular coordinate system of \mathbb{E}^3 .

Let I be an interval of \mathbb{R} and $\alpha: I \subset \mathbb{R} \to \mathbb{E}^3$ $(s \to \alpha(s))$ a regular curve of \mathbb{E}^3 , parametrized by arc length, otherwise $\langle \alpha'(s), \alpha'(s) \rangle = 1$, for all $s \in I$.

The Serret-Ferent frame along the curve α , is the moving frame, direct orthonormal, noted (T(s), N(s), B(s)) where

$$T(s) = \alpha'(s), \qquad N(s) = \frac{T'(s)}{\parallel T'(s) \parallel} \quad \text{and} \quad B(s) = T(s) \wedge N(s).$$

The derivative formulas of the Serret-Ferent frame are given as follows:

$$\begin{bmatrix} T'(s) \\ N'(s) \\ B'(s) \end{bmatrix} = \begin{bmatrix} 0 & \kappa(s) & 0 \\ -\kappa(s) & 0 & \tau(s) \\ 0 & -\tau(s) & 0 \end{bmatrix} \begin{bmatrix} T(s) \\ N(s) \\ B(s) \end{bmatrix},$$

where $\kappa(s)$ and $\tau(s)$ are respectively the curvature and the torsion of the curve at the point $\alpha(s)$. A curve α is called general helix if its unit tangent vector field T(s) makes a constant angle with a fixed straight line. α is a general helix if and only if $\sigma_0 = \frac{\tau}{\kappa}$ is a constant function [13]. Denote by (N(s), C(s), W(s)) the alternative moving frame along the curve α , where

$$N = \frac{T'}{\parallel T' \parallel}, \quad C = \frac{N'}{\parallel N' \parallel} \quad \text{and} \quad W = N \wedge C.$$

The derivative formulas of the alternative moving frame, are given as follows:

$$\begin{bmatrix} N'(s) \\ C'(s) \\ W'(s) \end{bmatrix} = \begin{bmatrix} 0 & f(s) & 0 \\ -f(s) & 0 & g(s) \\ 0 & -g(s) & 0 \end{bmatrix} \begin{bmatrix} N(s) \\ C(s) \\ W(s) \end{bmatrix}, \tag{2.1}$$

where

$$f = \sqrt{\kappa^2 + \tau^2}$$
 and $g = \frac{\kappa^2}{(\kappa^2 + \tau^2)} \left(\frac{\tau}{\kappa}\right)'$. (2.2)

A curve α is called slant helix if its unit principal normal vector field N(s) makes a cosntant angle with a fixed straight line. α is a slant helix if and only if $\sigma_1 = \frac{g}{f}$ is a constant function [12]. We denote by $C_0 = \alpha(s)$ therefore,

$$C_k(s) = \frac{C_{k-1}'(s)}{\parallel C_{k-1}'(s) \parallel}, \text{ and } W_{k+1}(s) = C_k(s) \wedge C_{k+1}(s), \quad k \in \{1, 2, \ldots\},$$

accordingly, (C_k, C_{k+1}, W_{k+1}) is the Frenet frame of $s \to C_{k-1}(s)$. Then the derivative formulas of Frenet frame are given by:

$$\begin{pmatrix} C'_{k}(s) \\ C'_{k+1}(s) \\ W'_{k+1}(s) \end{pmatrix} = \begin{pmatrix} 0 & f_{k-1}(s) & 0 \\ -f_{k-1}(s) & 0 & g_{k-1}(s) \\ 0 & -g_{k-1}(s) & 0 \end{pmatrix} \begin{pmatrix} C_{k}(s) \\ C_{k+1}(s) \\ W_{k+1}(s) \end{pmatrix}, \tag{2.3}$$

where f_{k-1} and g_{k-1} are the Frenet invariants of $s \to C_{k-1}(s)$, such as $f_0 = \kappa$ and $g_0 = \tau$.

A curve α is called a k-slant helix if the unit vector $C_{k+1} = \frac{C'_k}{\|C'_k(s)\|}$ makes a constant angle with a fixed direction. α is a k-slant helix if and only if

$$\sigma_k = \frac{g_k}{f_k} = \frac{\sigma'_{k-1}}{f_{k-1} (1 + \sigma^2_{k-1})^{\frac{3}{2}}}$$
(2.4)

is a constant function [5].

Let $M:X=X(u,v)\subset\mathbb{E}^3$ be a regular surface. Then the unit normal vector field of the surface M is identified by:

$$N(u,v) = \frac{X_u \wedge X_v}{\parallel X_u \wedge X_v \parallel},$$

where $X_u = \frac{\partial X(u,v)}{\partial u}$, $X_v = \frac{\partial X(u,v)}{\partial v}$. The compenents of the first fundamental form and the second fundamental form of a regular surface Mare given by

$$E = \langle X_u, X_u \rangle, \quad F = \langle X_u, X_v \rangle, \quad G = \langle X_v, X_v \rangle,$$
$$l = \langle X_{uu}, N \rangle, \quad m = \langle X_{uv}, N \rangle, \quad n = \langle X_{vv}, N \rangle.$$

The Gaussian curvature K and the mean curvature H of the surface M are expressed as follows:

$$K = \frac{ln - m^2}{EG - F^2},\tag{2.5}$$

$$H = \frac{En + Gl - 2Fm}{2(EG - F^2)}. (2.6)$$

Definition 2.1 A regular surface in \mathbb{E}^3 is called developable if K=0 and called minimal if H=0.

Definition 2.2 A constant angle surface in \mathbb{E}^3 is a surface whose unit normal vector makes a constant angle with an assigned direction.

3. Translation surfaces generated by principal normal indicatrices of regular curves of \mathbb{E}^3

Let us denote by $u \to \alpha(u)$ and $v \to \beta(v)$ two non degenerate curves of class C^3 of \mathbb{E}^3 . Denote by $(N_{\alpha}, C_{\alpha}, W_{\alpha}, f_{\alpha}, g_{\alpha})$ and $(N_{\beta}, C_{\beta}, W_{\beta}, f_{\beta}, g_{\beta})$ the alternative frames of the curves α and β , respectively. The translation surface generated by principal normal indicatrices of the curves α and β is defined by:

$$M_N: X(u,v) = N_{\alpha}(u) + N_{\beta}(v). \tag{3.1}$$

By calculating the partial derivatives with respect to u and v of the translation surface (3.1) and using the derivative formulas (2.1), we get:

$$X_u = f_{\alpha}C_{\alpha}, \quad X_v = f_{\beta}C_{\beta}.$$

Then, we obtain the components of the first fundamental form of the surface M_N :

$$E = f_{\alpha}^2, \tag{3.2}$$

$$F = f_{\alpha} f_{\beta} \cos[\phi_N(u, v)], \tag{3.3}$$

$$G = f_{\beta}^2, \tag{3.4}$$

where $\phi_N = \phi_N(u, v)$ is the angle function between C_α and C_β . The unit normal vector of the translation surface M_N is given by:

$$N(u,v) = \frac{C_{\alpha} \wedge C_{\beta}}{\sin[\phi_N(u,v)]},\tag{3.5}$$

The vector C_{α} of the curve α can be expressed in the frame $\{N_{\beta}, C_{\beta}, W_{\beta}\}$ as follows:

$$C_{\alpha} = \mu_1 N_{\beta} + \mu_2 C_{\beta} + \mu_3 W_{\beta}, \tag{3.6}$$

where

$$\mu_{1} = \langle C_{\alpha}, N_{\beta} \rangle = \sin[\phi_{N}(u, v)] \cos[\gamma_{N}(u, v)],$$

$$\mu_{2} = \langle C_{\alpha}, C_{\beta} \rangle = \cos[\phi_{N}(u, v)],$$

$$\mu_{3} = \langle C_{\alpha}, W_{\beta} \rangle = \sin[\phi_{N}(u, v)] \sin[\gamma_{N}(u, v)].$$
(3.7)

Similarly, the vector C_{β} of the curve β can be expressed as a linear combination of the vectors N_{α} , C_{α} and W_{α} as follows:

$$C_{\beta} = \lambda_1 N_{\alpha} + \lambda_2 C_{\alpha} + \lambda_3 W_{\alpha}, \tag{3.8}$$

where

$$\lambda_{1} = \langle C_{\beta}, N_{\alpha} \rangle = \sin[\phi_{N}(u, v)] \cos[\theta_{N}(u, v)],$$

$$\lambda_{2} = \langle C_{\beta}, C_{\alpha} \rangle = \cos[\phi_{N}(u, v)],$$

$$\lambda_{3} = \langle C_{\beta}, W_{\alpha} \rangle = \sin[\phi_{N}(u, v)] \sin[\theta_{N}(u, v)].$$
(3.9)

Therefore, we can express the unit normal vector N of the surface M_N in each of the two frames. By using (3.5) and (3.8), it is determined by

$$N_1(u,v) = \sin[\theta_N(u,v)]N_\alpha - \cos[\theta_N(u,v)]W_\alpha. \tag{3.10}$$

Similarly, using (3.5) and (3.6), we obtain

$$N_2(u,v) = -\sin[\gamma_N(u,v)]N_\beta + \cos[\gamma_N(u,v)]W_\beta. \tag{3.11}$$

The components of the second fundamental form of the M_N surface are given by:

$$l = -f_{\alpha}^{2} \left[\cos[\theta_{N}(u, v)] \frac{g_{\alpha}}{f_{\alpha}} + \sin[\theta_{N}(u, v)] \right], \tag{3.12}$$

$$m = 0, (3.13)$$

$$n = f_{\beta}^{2} \left[\cos[\gamma_{N}(u, v)] \frac{g_{\beta}}{f_{\beta}} + \sin[\gamma_{N}(u, v)] \right]. \tag{3.14}$$

Proposition 3.1 The Gaussian curvature K and the mean curvature H of the translation surface M_N are respectively:

$$K = -\frac{\left[\cos[\theta_N(u,v)]\frac{g_\alpha}{f_\alpha} + \sin[\theta_N(u,v)]\right] \left[\cos[\gamma_N(u,v)]\frac{g_\beta}{f_\beta} + \sin[\gamma_N(u,v)]\right]}{\sin^2[\phi_N(u,v)]},$$
(3.15)

$$H = \frac{-\left[\cos[\theta_N(u,v)]\frac{g_\alpha}{f_\alpha} + \sin[\theta_N(u,v)]\right] + \left[\cos[\gamma_N(u,v)]\frac{g_\beta}{f_\beta} + \sin[\gamma_N(u,v)]\right]}{2\sin^2[\phi_N(u,v)]}.$$
 (3.16)

Proof: By substituting (3.2), (3.3), (3.4), (3.12), (3.13), (3.14) in (2.5) and (2.6), we obtain the result as desired.

Theorem 3.1 The surface M_N is developable, if and only if

$$\sigma_{1_{\alpha}} = -\tan[\theta_N(u, v)] \quad \text{or} \quad \sigma_{1_{\beta}} = -\tan[\gamma_N(u, v)]. \tag{3.17}$$

Corollary 3.1 If the surface M_N is developable, then the angle $\theta_N[(u,v)]$ is a function that depends only on u or the angle $\gamma_N[(u,v)]$ is a function that depends only on v.

Corollary 3.2 Let the surface M_N be developable, if the curves α and β are planar curves then the angles $\theta_N = k\pi$ or $\gamma_N = k\pi$, $(k \in \mathbb{Z})$.

Proof: If α and β are planar curves, then $\tau_{\alpha} = \tau_{\beta} = 0$, and according to (2.2), $\sigma_{1_{\alpha}} = 0$ and $\sigma_{1_{\beta}} = 0$. As we suppose M_N developable, according to (3.17), it comes:

$$\sin[\theta_N(u, v)] = 0$$
 or $\sin[\gamma_N(u, v)] = 0$,

hence
$$\theta_N = k\pi$$
, $(k \in \mathbb{Z})$ or $\gamma_N = k\pi$, $(k \in \mathbb{Z})$.

Corollary 3.3 Let the surface M_N be developable, if the curves α and β are slant helices, then one of the angles θ_N or γ_N is constant.

Corollary 3.4 Let the surface M_N be developable, if the curves α and β are slant helices, then the surface M_N is a constant angle surface.

Proof: We assume that the surface M_N is developable and that the curves α and β are slant helices. According to the corollary (3.1C), $\gamma_N = \gamma_0$ or $\theta_N = \theta_0$ are constant angles.

Without loss of generality, we assume that θ_N is constant.

Since α is a slant helix, there is a constant unit direction u_{α} which makes a constant angle with the unit principal normal vector N_{α} of the curve α . Then

$$\langle N_{\alpha}, u_{\alpha} \rangle = \cos \delta_0 = constant.$$

We can therefore define u_{α} as follows

$$u_{\alpha} = \cos \delta_0 N_{\alpha} + \sin \delta_0 W_{\alpha}. \tag{3.18}$$

Using (3.10) and (3.18), we obtain

$$\langle N_1, u_{\alpha} \rangle = \sin \theta_0 \cos \delta_0 - \cos \theta_0 \sin \delta_0$$

$$= constant,$$

which completes the proof.

Theorem 3.2 If the surface M_N is minimal and the curves α and β are planar curves, then the angles between the vectors C_{α} and W_{β} and the vectors C_{β} and W_{α} coincide.

Proof: According to (3.16) the surface M_N is minimal, if and only if

$$\cos[\theta_N(u,v)] \frac{g_\alpha}{f_\alpha} + \sin[\theta_N(u,v)] = \cos[\gamma_N(u,v)] \frac{g_\beta}{f_\beta} + \sin[\gamma_N(u,v)].$$

The curves α and β are planar curves, then $\tau_{\alpha} = \tau_{\beta} = 0$, and using (2.2), $g_{\alpha} = g_{\beta} = 0$. Since the surface M_N is minimal, we get:

$$\sin[\theta_N(u,v)] = \sin[\gamma_N(u,v)],$$

for using (3.7) and (3.9), we get

$$\langle C_{\beta}, W_{\alpha} \rangle = \langle C_{\alpha}, W_{\beta} \rangle.$$

Example 3.1 Let α and β be two curves defined by:

$$\alpha(u) = \left(u, \frac{u^2}{2}, \frac{u^3}{6}\right),\,$$

$$\beta(v) = (6v + 2, 5v^2, -8v).$$

The translation surface generated by the principal normal indicatrices of the curves α and β is given by:

$$M_N(u,v) = \left(-\frac{2u}{u^2+2} - \frac{3v}{5\sqrt{v^2+1}}, -\frac{u^2-2}{u^2+2} + \frac{1}{\sqrt{v^2+1}}, \frac{2u}{u^2+2} + \frac{4v}{5\sqrt{v^2+1}}\right).$$

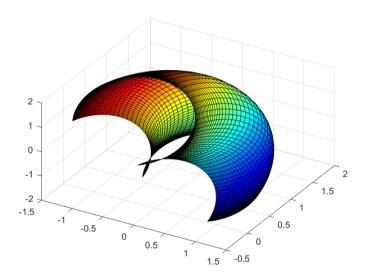


Figure 1: Translation surface M_N generated by the principal normal indicatrices

Example 3.2 Let α and β be two planar curves parametrized by arc length and defined by:

$$\alpha(u) = \left(2\cos(\frac{u}{2}), 2\sin(\frac{u}{2}), 0\right),\,$$

$$\beta(v) = \left(0, 3\cos(\frac{v}{3}), 3\sin(\frac{v}{3})\right).$$

The translation surface generated by the principal normal indicatrices of the curves α and β is given by:

$$M_N(u,v) = \left(-\cos(\frac{u}{2}), -\sin(\frac{u}{2}) - \cos(\frac{v}{3}), -\sin(\frac{v}{3})\right).$$

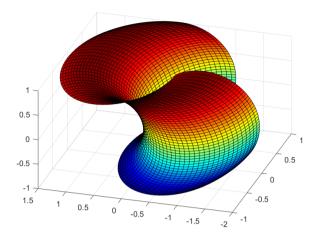


Figure 2: Translation surface M_N generated by the principal normal indicatrices

4. Translation surfaces generated by spherical k-indicatrices of regular curves of \mathbb{E}^3

Let us denote by $u \to \alpha(u)$ and $v \to \beta(v)$ two non-degenerate curves of class C^n $(n \ge k+1)$ of \mathbb{E}^3 . Denote by $(C_{k_\alpha}, C_{k+1_\alpha}, W_{k+1_\alpha}, f_{k-1_\alpha}, g_{k-1_\alpha})$ and $(C_{k_\beta}, C_{k+1_\beta}, W_{k+1_\beta}, f_{k-1_\beta}, g_{k-1_\beta})$ the Serret-Frenet frames respectively of the curve $u \to C_{k-1_\alpha}(u)$ and the curve $v \to C_{k-1_\beta}(v)$. The translation surface generated by the curves C_{k_α} and C_{k_β} , associated to the curves α and β is defined by:

$$M_{C_k}: X(u,v) = C_{k_0}(u) + C_{k_0}(v).$$
 (4.1)

By using the derivative formulas (2.3), we obtain the partial derivatives with respect to u and v of the translation surface given by the parametrization (4.1):

$$X_u = f_{k-1} C_{k+1}, \quad X_v = f_{k-1} C_{k+1}.$$

Thus, the components of the first fundamental form of the surface M_{C_k} are given by:

$$E = f_{k-1_{\alpha}}^{2},$$

$$F = f_{k-1_{\alpha}} f_{k-1_{\beta}} \cos[\phi_{C_{k}}(u, v)],$$

$$G = f_{k-1_{\alpha}}^{2},$$

where $\phi_{C_k} = \phi_{C_k}(u, v)$ is the angle function between the vectors C_{k+1_α} and C_{k+1_β} . The unit normal vector of the translation surface M_{C_k} is given by:

$$N(u,v) = \frac{C_{k+1_{\alpha}} \wedge C_{k+1_{\beta}}}{\sin[\phi_{C_k}(u,v)]}.$$
(4.2)

As in the previous paragraph, we express the normal vector N(u,v) in the two frames: $(C_{k_{\alpha}}, C_{k+1_{\alpha}}, W_{k+1_{\alpha}})$ associated to α and $(C_{k_{\beta}}, C_{k+1_{\beta}}, W_{k+1_{\beta}})$ associated to β . To achieve this, we express the vector $C_{k+1_{\alpha}}$ (resp. $C_{k+1_{\beta}}$) in the frame $(C_{k_{\beta}}, C_{k+1_{\beta}}, W_{k+1_{\beta}})$ (resp. $(C_{k_{\alpha}}, C_{k+1_{\alpha}}, W_{k+1_{\alpha}})$). We can write

$$C_{k+1_{\alpha}} = \mu_1 C_{k_{\beta}} + \mu_2 C_{k+1_{\beta}} + \mu_3 W_{k+1_{\beta}}, \tag{4.3}$$

where

$$\mu_1 = \langle C_{k+1_\alpha}, C_{k_\beta} \rangle \ = \ \sin[\phi_{C_k}(u,v)] \cos[\gamma_{C_k}(u,v)],$$

$$\mu_{2} = \langle C_{k+1_{\alpha}}, C_{k+1_{\beta}} \rangle = \cos[\phi_{C_{k}}(u, v)],$$

$$\mu_{3} = \langle C_{k+1_{\alpha}}, W_{k+1_{\beta}} \rangle = \sin[\phi_{C_{k}}(u, v)] \sin[\gamma_{C_{k}}(u, v)]. \tag{4.4}$$

Similarly, we have

$$C_{k+1_{\beta}} = \lambda_1 C_{k_{\alpha}} + \lambda_2 C_{k+1_{\alpha}} + \lambda_3 W_{k+1_{\alpha}}, \tag{4.5}$$

with

$$\lambda_1 = \langle C_{k+1_{\beta}}, C_{k_{\alpha}} \rangle = \sin[\phi_{C_k}(u, v)] \cos[\theta_{C_k}(u, v)],$$

$$\lambda_2 = \langle C_{k+1_\beta}, C_{k+1_\alpha} \rangle = \cos[\phi_{C_k}(u, v)],$$

$$\lambda_3 = \langle C_{k+1_{\beta}}, W_{k+1_{\alpha}} \rangle = \sin[\phi_{C_k}(u, v)] \sin[\theta_{C_k}(u, v)]. \tag{4.6}$$

Using (4.2) and (4.5), it comes:

$$N_1(u, v) = \sin[\theta_{C_k}(u, v)]C_{k_\alpha} - \cos[\theta_{C_k}(u, v)]W_{k+1_\alpha}.$$
(4.7)

Similarly, by using (4.2) and (4.3), we get:

$$N_2(u,v) = -\sin[\gamma_{C_k}(u,v)]C_{k_\beta} + \cos[\gamma_{C_k}(u,v)]W_{k+1_\beta}.$$
(4.8)

It follows, the components of the second fundamental form of the surface M_{C_k} :

$$l = -f_{k-1_{\alpha}}^{2} \left[\cos[\theta_{C_{k}}(u, v)] \frac{g_{k-1_{\alpha}}}{f_{k-1_{\alpha}}} + \sin[\theta_{C_{k}}(u, v)] \right],$$

m=0,

$$n = f_{k-1_{\beta}}^{2} \left[\cos[\gamma_{C_{k}}(u, v)] \frac{g_{k-1_{\beta}}}{f_{k-1_{\beta}}} + \sin[\gamma_{C_{k}}(u, v)] \right].$$

Proposition 4.1 The Gaussian curvature K and the mean curvature H of the translation surface M_{C_k} are respectively:

$$K = -\frac{\left[\cos[\theta_{C_k}(u,v)]\frac{g_{k-1_{\alpha}}}{f_{k-1_{\alpha}}} + \sin[\theta_{C_k}(u,v)]\right] \left[\cos[\gamma_{C_k}(u,v)]\frac{g_{k-1_{\beta}}}{f_{k-1_{\beta}}} + \sin[\gamma_{C_k}(u,v)]\right]}{\sin^2[\phi_{C_k}(u,v)]},$$
(4.9)

$$H = \frac{-\left[\cos[\theta_{C_k}(u,v)]\frac{g_{k-1_{\alpha}}}{f_{k-1_{\alpha}}} + \sin[\theta_{C_k}(u,v)]\right] + \left[\cos[\gamma_{C_k}(u,v)]\frac{g_{k-1_{\beta}}}{f_{k-1_{\beta}}} + \sin[\gamma_{C_k}(u,v)]\right]}{2\sin^2[\phi_{C_k}(u,v)]}.$$
 (4.10)

Theorem 4.1 The surface M_{C_k} is developable, if and only if

$$\sigma_{k-1_{\alpha}} = -\tan[\theta_{C_k}(u, v)] \quad \text{or} \quad \sigma_{k-1_{\beta}} = -\tan[\gamma_{C_k}(u, v)]. \tag{4.11}$$

Corollary 4.1 If the surface M_{C_k} is developable, then the angle $\theta_{C_k}[(u,v)]$ is a function that depends only on u or the angle $\gamma_{C_k}[(u,v)]$ is a function that depends only on v.

Corollary 4.2 If the surface M_{C_k} is developable and if the curves α and β are planar curves then the angles $\theta_{C_k} = k\pi$ or $\gamma_{C_k} = k\pi$, $(k \in \mathbb{Z})$.

Proof: If α and β are planar curves, then $\tau_{\alpha} = \tau_{\beta} = 0$, and from (2.2) and (2.4) we have $\sigma_{k-1_{\alpha}} = 0$ and $\sigma_{k-1_{\beta}} = 0$. As we suppose M_{C_k} is developable, we obtain from (4.11) that:

$$\sin[\theta_{C_k}(u,v)] = 0 \quad or \quad \sin[\gamma_{C_k}(u,v)] = 0,$$

and therefore $\theta_{C_k} = k\pi$, $(k \in \mathbb{Z})$ or $\gamma_{C_k} = k\pi$, $(k \in \mathbb{Z})$.

Corollary 4.3 If the surface M_{C_k} is developable and if the curves α and β are (k-1)-slant helices, then one of the angles θ_{C_k} or γ_{C_k} is constant.

Corollary 4.4 If the surface M_{C_k} is developable, and if the curves α and β are (k-1)-slant helices, then the surface M_{C_k} is a constant angle surface.

Proof: By the corollary (4.1C), $\gamma_{C_k} = \gamma_0$ or $\theta_{C_k} = \theta_0$ are constant angles. Without loss of generality, we assume that $\theta_{C_k} = \theta_0$ is constant.

Since α is a (k-1)-slant helix, then there exists a constant vector u_{α} verifying

$$\langle C_{k_{\alpha}}, u_{\alpha} \rangle = \cos \delta_0 = constant$$

We can then define u_{α} as follows

$$u_{\alpha} = \cos \delta_0 C_{k_{\alpha}} + \sin \delta_0 W_{k+1_{\alpha}}. \tag{4.12}$$

By using (4.7) and (4.12), we obtain

$$\langle N_1, u_{\alpha} \rangle = \sin \theta_0 \cos \delta_0 - \cos \theta_0 \sin \delta_0$$

= $constant$.

Theorem 4.2 If the surface M_{C_k} is minimal and the curves α and β are planer curves, then the angles between the vectors $C_{k+1_{\alpha}}$ and $W_{k+1_{\beta}}$ and the vectors $C_{k+1_{\beta}}$ and $W_{k+1_{\alpha}}$ coincide.

Proof: Since α and β are planar curves, we have $\tau_{\alpha} = \tau_{\beta} = 0$, and according to (2.2) and (2.4), we obtain $\sigma_{k-1_{\alpha}} = 0$ and $\sigma_{k-1_{\beta}} = 0$.

As the surface M_{C_k} is assumed to be minimal, we have H=0, and therefore, according to (4.10), it comes

$$\sin[\theta_{C_L}(u,v)] = \sin[\gamma_{C_L}(u,v)].$$

By using (4.4) and (4.6), it follows

$$\langle C_{k+1}, W_{k+1} \rangle = \langle C_{k+1}, W_{k+1} \rangle.$$

5. Applications

In this paragraph, we propose to give the parametric representations of the translation surfaces $M_{C_k} = C_{k_{\alpha}}(u) + C_{k_{\beta}}(v)$, in the case where α and β are (k-1)-slant helices for k = 1, 2 and 3 followed by some illustratives examples.

5.1. Case k = 1

Theorem 5.1 [3] The position vector of the general helix c, is expressed in the natural representation form as follows:

$$c(s) \ = \ \frac{1}{\sqrt{1+m^2}} \int \Big(\cos \left(\sqrt{1+m^2} \int \kappa(s) ds \right), \sin \left(\sqrt{1+m^2} \int \kappa(s) ds \right), m \Big) \ ds,$$

where $m = \frac{n}{\sqrt{1-n^2}}$, $n = \cos(\phi)$, ϕ is the angle between the tangent vector of the curve c and a fixed direction.

Let α , β be two general helices of \mathbb{E}^3 , with curvatures κ_{α} , κ_{β} and admitting the values m_1, m_2 respectively. The components of the translation surface $M_T = (M_{T_1}, M_{T_2}, M_{T_3})$ generated by the tangent vectors T_{α} and T_{β} are given by:

$$\begin{cases} M_{T_1}(u,v) &= \frac{1}{\sqrt{1+m_1^2}} \cos\left(\sqrt{1+m_1^2} \int \kappa_{\alpha}(u) \ du\right) + \frac{1}{\sqrt{1+m_2^2}} \cos\left(\sqrt{1+m_2^2} \int \kappa_{\beta}(v) \ dv\right), \\ M_{T_2}(u,v) &= \frac{1}{\sqrt{1+m_1^2}} \sin\left(\sqrt{1+m_1^2} \int \kappa_{\alpha}(u) \ du\right) + \frac{1}{\sqrt{1+m_2^2}} \sin\left(\sqrt{1+m_2^2} \int \kappa_{\beta}(v) \ dv\right), \\ M_{T_3}(u,v) &= \frac{m_1}{\sqrt{1+m_1^2}} + \frac{m_2}{\sqrt{1+m_2^2}}. \end{cases}$$

Example 5.1 Let α and β be two circular helices defined by the intrinsic equations:

$$\begin{cases} \kappa_{\alpha}(u) = \kappa_1, & \kappa_{\beta}(v) = \kappa_2, \\ \tau_{\alpha}(u) = m_1 \kappa_1, & \tau_{\beta}(v) = m_2 \kappa_2, \end{cases}$$

The components of the translation surface $M_T = (M_{T_1}, M_{T_2}, M_{T_3})$ generated by the tangent vectors T_{α} and T_{β} are given by:

$$\begin{cases} M_{T_1}(u,v) &= \frac{1}{\sqrt{1+m_1^2}}\cos\left(\sqrt{1+m_1^2}\kappa_1 u\right) + \frac{1}{\sqrt{1+m_2^2}}\cos\left(\sqrt{1+m_2^2}\kappa_2 v\right), \\ M_{T_2}(u,v) &= \frac{1}{\sqrt{1+m_1^2}}\sin\left(\sqrt{1+m_1^2}\kappa_1 u\right) + \frac{1}{\sqrt{1+m_2^2}}\sin\left(\sqrt{1+m_2^2}\kappa_2 v\right), \\ M_{T_3}(u,v) &= \frac{m_1}{\sqrt{1+m_1^2}} + \frac{m_2}{\sqrt{1+m_2^2}}. \end{cases}$$

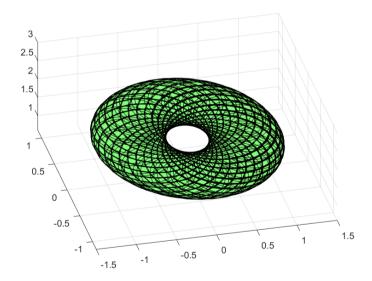


Figure 3: Translation surface M_T , with $m_1 = \kappa_2 = 1$, $\kappa_1 = m_2 = 2$

Example 5.2 Let α be a general helix defined by the intrinsic equations

$$\kappa_{\alpha}(u) = \frac{a_1}{u}, \quad \tau_{\alpha}(u) = \frac{m_1 a_1}{u},$$

and let β be a spherical helix defined by the intrinsic equations

$$\kappa_{\beta}(v) = \frac{a_2}{\sqrt{1 - m_2^2 v^2}}, \quad \tau_{\beta}(v) = \frac{a_2 m_2}{\sqrt{1 - m_2^2 v^2}}.$$

The components of the translation surface $M_T(u,v) = (M_{T_1}, M_{T_2}, M_{T_3})$ generated by the tangent vectors

 T_{α} and T_{β} are given by:

$$\begin{cases}
M_{T_1}(u,v) = \frac{1}{\sqrt{1+m_1^2}}\cos\left(\sqrt{1+m_1^2}\ a_1\ln(u)\right) + \frac{1}{\sqrt{1+m_2^2}}\cos\left(\frac{a_2\ \sqrt{1+m_2^2}}{m_2}\ \arcsin(m_2v)\right), \\
M_{T_2}(u,v) = \frac{1}{\sqrt{1+m_1^2}}\sin\left(\sqrt{1+m_1^2}\ a_1\ln(u)\right) + \frac{1}{\sqrt{1+m_2^2}}\sin\left(\frac{a_2\ \sqrt{1+m_2^2}}{m_2}\ \arcsin(m_2v)\right), \\
M_{T_3}(u,v) = \frac{m_1}{\sqrt{1+m_1^2}} + \frac{m_2}{\sqrt{1+m_2^2}}.
\end{cases}$$

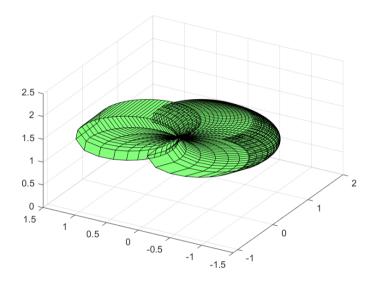


Figure 4: Translation surface M_T , with $m_1 = a_1 = 1$, $a_2 = m_2 = 1$

5.2. Case k = 2

Theorem 5.2 [4] The position vector of the slant helix $c(s) = (c_1(s), c_2(s), c_3(s))$ is expressed in the natural representation form as follows:

$$\begin{cases} c_1(s) = \frac{n}{m} \int \left[\int \kappa(s) \cos \left[\frac{1}{n} \arcsin \left(m \int \kappa(s) \, ds \right) \right] \, ds \right] \, ds, \\ c_2(s) = \frac{n}{m} \int \left[\int \kappa(s) \sin \left[\frac{1}{n} \arcsin \left(m \int \kappa(s) \, ds \right) \right] \, ds \right] \, ds, \\ c_3(s) = n \int \left[\int \kappa(s) \, ds \right] \, ds, \end{cases}$$

where $m = \frac{n}{\sqrt{1-n^2}}$, $n = \cos(\phi)$, ϕ is the angle between the principal normal vector of the curve c and a fixed direction.

Let α , β be two slant helices of \mathbb{E}^3 , with curvatures κ_{α} , κ_{β} and admitting the values n_1, m_1 and n_2, m_2 respectively. The components of the translation surface $M_N = (M_{N_1}, M_{N_2}, M_{N_3})$ generated by the principal normals vectors N_{α} and N_{β} are given by:

$$\left\{ \begin{array}{ll} M_{N_1}(u,v) &=& \frac{n_1}{m_1} \, \cos \left[\frac{1}{n_1} \arcsin \left(m_1 \int \kappa_\alpha(u) \, du \right) \right] + \frac{n_2}{m_2} \, \cos \left[\frac{1}{n_2} \arcsin \left(m_2 \int \kappa_\beta(v) \, dv \right) \right], \\ M_{N_2}(u,v) &=& \frac{n_1}{m_1} \, \sin \left[\frac{1}{n_1} \arcsin \left(m_1 \int \kappa_\alpha(u) \, du \right) \right] + \frac{n_2}{m_2} \, \sin \left[\frac{1}{n_2} \arcsin \left(m_2 \int \kappa_\beta(v) \, dv \right) \right], \\ M_{N_2}(u,v) &=& n_1 + n_2 \end{array} \right.$$

Example 5.3 Let α and β be two Salkowski curves defined by the intrinsic equations:

$$\begin{cases} \kappa_{\alpha}(u) &= 1, & \kappa_{\beta}(v) = 1, \\ \tau_{\alpha}(u) &= \frac{m_1 u}{\sqrt{1 - m_1^2 u^2}}, & \tau_{\beta}(v) = \frac{m_2 v}{\sqrt{1 - m_2^2 v^2}}. \end{cases}$$

The components of the translation surface $M_N(u,v)=(M_{N_1},M_{N_2},M_{N_3})$ generated by the principal normals vectors N_{α} and N_{β} are given by:

$$\begin{cases} M_{N_1}(u,v) &= \frac{n_1}{m_1} \cos\left[\frac{1}{n_1} \arcsin\left(m_1 u\right)\right] + \frac{n_2}{m_2} \cos\left[\frac{1}{n_2} \arcsin\left(m_2 v\right)\right], \\ M_{N_2}(u,v) &= \frac{n_1}{m_1} \sin\left[\frac{1}{n_1} \arcsin\left(m_1 u\right)\right] + \frac{n_2}{m_2} \sin\left[\frac{1}{n_2} \arcsin\left(m_2 v\right)\right], \\ M_{N_3}(u,v) &= n_1 + n_2. \end{cases}$$

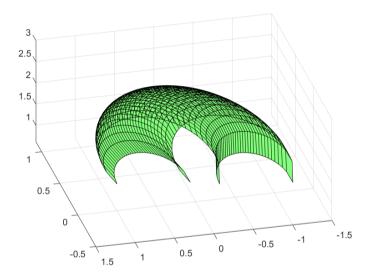


Figure 5: Translation surface M_N , with $m_1 = 1$, $m_2 = 2$

Example 5.4 Let α be an anti-Salkowski curve defined by the intrinsic equations

$$\kappa_{\alpha}(u) = \frac{m_1 u}{\sqrt{1 - m_1^2 u^2}}, \quad \tau_{\alpha}(u) = 1,$$

and let β be a circular slant helix defined by the intrinsic equations

$$\kappa_{\beta}(v) = \frac{\mu}{m_2}\cos(\mu v), \quad \tau_{\beta}(v) = \frac{\mu}{m_2}\sin(\mu v).$$

The components of the translation surface $M_N(u,v)=(M_{N_1},M_{N_2},M_{N_3})$ generated by the principal normals vectors N_{α} and N_{β} are given by:

$$\begin{cases} M_{N_1}(u,v) &= \frac{n_1}{m_1} \cos\left[\frac{1}{n_1} \arcsin\left(-\sqrt{1-m_1^2 u^2}\right)\right] + \frac{n_2}{m_2} \cos\left[\frac{1}{n_2} \arcsin\left(\sin(\mu v)\right)\right], \\ M_{N_2}(u,v) &= \frac{n_1}{m_1} \sin\left[\frac{1}{n_1} \arcsin\left(-\sqrt{1-m_1^2 u^2}\right)\right] + \frac{n_2}{m_2} \sin\left[\frac{1}{n_2} \arcsin\left(\sin(\mu v)\right)\right], \\ M_{N_3}(u,v) &= n_1 + n_2. \end{cases}$$

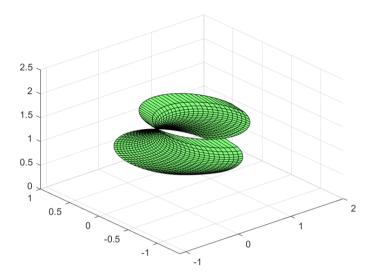


Figure 6: Translation surface M_N , with $m_1 = m_2 = \mu = 1$

5.3. Case k = 3

Theorem 5.3 [9] The position vector of the slant-slant helix (or 2-slant helix) $c(s) = (c_1(s), c_2(s), c_3(s))$ is expressed in the natural representation form as follows:

$$\begin{cases} c_1(s) = \frac{n}{m} \int \left[\int \kappa(s) \left[\int f(s) \cos \left[\frac{1}{n} \arcsin \left(m \int f(s) \ ds \right) \right] \ ds \right] \ ds \right] \ ds, \\ c_2(s) = \frac{n}{m} \int \left[\int \kappa(s) \left[\int f(s) \sin \left[\frac{1}{n} \arcsin \left(m \int f(s) \ ds \right) \right] \ ds \right] \ ds, \\ c_3(s) = n \int \left[\int \kappa(s) \left[\int f(s) \ ds \right] \ ds \right] \ ds, \end{cases}$$

where $f = \sqrt{\tau^2 + \kappa^2}$, $m = \frac{n}{\sqrt{1-n^2}}$, $n = \cos(\phi)$, ϕ is the angle between the vector C of the curve c and a fixed direction.

Considering the family of curves $\gamma(s) = (\gamma_1(s), \gamma_2(s), \gamma_3(s))$ with curvature $\kappa(s)$ and torsion $\tau(s)$ taking the following values:

$$\begin{cases} \kappa(s) &= \frac{\mu}{m}\cos(\mu s)\cos\left(\frac{1}{m}\cos(\mu s)\right), \\ \tau(s) &= -\frac{\mu}{m}\cos(\mu s)\sin\left(\frac{1}{m}\cos(\mu s)\right). \end{cases}$$

Then the position vector of the slant-slant helix γ is given by [9]:

$$\left\{ \begin{array}{ll} \gamma_1(s) &=& \frac{n\mu}{2m^3} \int \left[\int \cos(\mu s) \cos\left(\frac{1}{m}\cos(\mu s)\right) \left[\frac{n}{n+1}\sin\left(\frac{n+1}{n}\mu s\right) + \frac{n}{n-1}\sin\left(\frac{n-1}{n}\mu s\right)\right] \, ds \right] \, ds, \\ \gamma_2(s) &=& -\frac{n\mu}{2m^3} \int \left[\int \cos(\mu s) \cos\left(\frac{1}{m}\cos(\mu s)\right) \left[\frac{n}{n+1}\cos\left(\frac{n+1}{n}\mu s\right) + \frac{n}{1-n}\cos\left(\frac{1-n}{n}\mu s\right)\right] \, ds \right] \, ds, \\ \gamma_3(s) &=& \frac{n\mu}{m^2} \int \left[\int \cos(\mu s) \cos\left(\frac{1}{m}\cos(\mu s)\right) \sin(\mu s)\right] \, ds \, ds. \end{array} \right.$$

It follows that the vector $T(s) = (T_1(s), T_2(s), T_3(s))$ of the curve γ is given by:

$$\left\{ \begin{array}{ll} T_1(s) & = & \frac{n\mu}{2m^3} \int \cos(\mu s) \cos\left(\frac{1}{m}\cos(\mu s)\right) \left[\frac{n}{n+1}\sin\left(\frac{n+1}{n}\mu s\right) + \frac{n}{n-1}\sin\left(\frac{n-1}{n}\mu s\right)\right] ds, \\ T_2(s) & = & \frac{-n^2\mu}{2m^3} \int \cos(\mu s) \cos\left(\frac{1}{m}\cos(\mu s)\right) \left[\frac{n}{n+1}\cos\left(\frac{n+1}{n}\mu s\right) + \frac{n}{1-n}\cos\left(\frac{1-n}{n}\mu s\right)\right] ds, \\ T_3(s) & = & \frac{n\mu}{m^2} \int \cos(\mu s) \cos\left(\frac{1}{m}\cos(\mu s)\right) \sin(\mu s) ds, \end{array} \right.$$

then the vectors $N(s) = (N_1(s), N_2(s), N_3(s))$ of γ is given by:

$$\left\{ \begin{array}{ll} N_1(s) & = & \frac{n}{2m^2} \left[\frac{n}{n+1} \sin \left(\frac{n+1}{n} \mu s \right) + \frac{n}{n-1} \sin \left(\frac{n-1}{n} \mu s \right) \right], \\ N_2(s) & = & -\frac{n}{2m^2} \left[\frac{n}{n+1} \cos \left(\frac{n+1}{n} \mu s \right) + \frac{n}{1-n} \cos \left(\frac{1-n}{n} \mu s \right) \right], \\ N_3(s) & = & \frac{n}{m} \sin(\mu s), \end{array} \right.$$

it follows the parametric representation of the vector $C(s) = \frac{N'(s)}{\|N'(s)\|}$ of the curve γ :

$$\begin{cases} C_1(s) = \frac{n}{m} \cos(\frac{\mu}{n}s), \\ C_2(s) = \frac{n}{m} \sin(\frac{\mu}{n}s), \\ C_3(s) = n. \end{cases}$$

Example 5.5 Let $\alpha = \alpha(u)$ and $\beta = \beta(v)$ be two curves of preceding family of slant-slant helices with curvatures $\kappa_{\alpha}(u)$, $\kappa_{\beta}(v)$ and torsions $\tau_{\alpha}(u)$, $\tau_{\beta}(v)$ having the following values:

$$\begin{cases} \kappa_\alpha(u) &= \frac{\mu_1}{m_1}\cos(\mu_1 u)\cos\left(\frac{1}{m_1}\cos(\mu_1 u)\right) & \kappa_\beta(v) = \frac{\mu_2}{m_2}\cos(\mu_2 v)\cos\left(\frac{1}{m_2}\cos(\mu_2 v)\right), \\ \tau_\alpha(u) &= -\frac{\mu_1}{m_1}\cos(\mu_1 u)\sin\left(\frac{1}{m_1}\cos(\mu_1 u)\right) & \tau_\beta(v) = -\frac{\mu_2}{m_2}\cos(\mu_2 v)\sin\left(\frac{1}{m_2}\cos(\mu_2 v)\right). \end{cases}$$

The components of the translation surface $M_C = (M_{C_1}, M_{C_2}, M_{C_3})$ generated by the vectors C_{α} and C_{β} are given by:

$$\left\{ \begin{array}{ll} M_{C_1}(u,v) & = & \frac{n_1}{m_1} \, \cos(\frac{\mu_1}{n_1}u) + \frac{n_2}{m_2} \, \cos(\frac{\mu_2}{n_2}v) \\ M_{C_2}(u,v) & = & \frac{n_1}{m_1} \, \sin(\frac{\mu_1}{n_1}u) + \frac{n_2}{m_2} \, \sin(\frac{\mu_2}{n_2}v) \\ M_{C_3}(u,v) & = & n_1 + n_2 \end{array} \right.$$

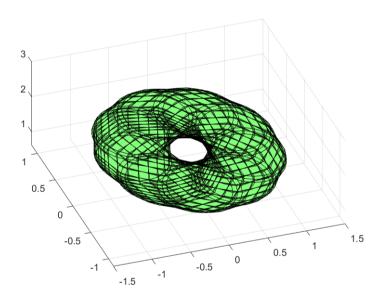


Figure 7: Translation surface M_C , with $m_1 = \mu_2 = 1$, $m_2 = \mu_1 = 2$

Acknowledgement

The authors would like to express their sincere thanks to the referee and the anonymous reviewers for their helpful comments and suggestions.

References

- 1. Neriman Acar, Ferdag Kahraman Aksoyak, "Some characterizations of translation surfaces generated by spherical indicatrices of space curve", Palestine Journal of Mathematics. Vol. 11(1)(2022), 456–468.
- 2. Ahmad T. Ali, H. S. Abdel Aziz and H. Sorour Adel, On curvatures and points of the translation surfaces in Euclidean 3-space, J. Egyptian Math. Soc., 23, 167–172, (2015).
- 3. Ahmad T. Ali, Position vector of general helices in Euclidean 3-space, Bull. Math. Anal. Appl. 3(2011), 1-8.
- 4. Ahmad T. Ali, Position vector of slant helices in Euclidean 3-space, Journal of Egyptian Mathematical Society (2012).
- 5. Ahmad T.Ali, Generalization of general helices and slant helices, Journal of Mahani Mathematical. 1-2 (2017) 25-41.

- M. Cetin and Y. Tuncer, Parallel surfaces to translation surfaces in Euclidean 3-space, Commun Fac. Sci. Univ. Ank. Series A1 Math. Stat., 64(2), 47-54, (2015).
- M. Cetin, H. Kocayigit and M. Onder, Translation surfaces according to Frenet frame in Minkowski 3-space, Int. J. Phys. Sci., 7(47), 6135–6143, (2012).
- 8. M. Cetin, Y. Tuncer and N. Ekmekci, Translation surfaces in Euclidean 3-space, Int. J. Phys. Math. Sci., 2, 49-56, (2013).
- 9. Abderrazak El Haimi, Malika Izid and Amina Ouazzani Chahdi, Position Vectors of Curves Generalizing General Helicesand Slant Helices in Euclidean 3-Space, Tamkang Journal of Mathematics (2021).
- 10. H. Liu, Translation surfaces with constant mean curvature in 3-dimensional spaces, J. Geom. 64 (1999) 141-149.
- 11. I. M. Munteanu and A. I. Nistor, On the geometry of the second fundamental form of translation surfaces in Euclidean 3-space, Houston J. Math., 37, 1087–1102, (2011).
- 12. Izumiya, S., Takeuchi, N. 2002. Generic properties of helices and Bertrand curves. Journalof Goemetry, 74, 97-109.
- 13. Struik, D.J. Lectures on Classical Differential Geometry Dover, New-York, 1988.
- L. Verstraelen, J. Walrave and S. Yaprak, The minimal translation surfaces in Euclidean space, Soochow J. Math., 20(1), 77-82, (1994).

Salma Khan,

Department of Mathematics and Computer Sciences,

University of Hassan II-Casablanca,

Morrocco.

E-mail address: selmakhan2016@gmail.com

and

Malika Izid,

Department of Mathematics and Computer Sciences,

University of Hassan II-Casablanca,

Morrocco.

E-mail address: izid.malika@gmail.com

and

Soukaina Ouarab,

Department of Applied Mathematics and Computer Science,

University of Hassan I-Settat,

Morrocco.

E-mail address: soukaina.ouarab.sma@gmail.com

and

Amina Ouazzani Chahdi,

Department of Mathematics and Computer Sciences,

University of Hassan II-Casablanca,

Morrocco.

E-mail address: ouazzaniamina@hotmail.com