(3s.) v. 2025 (43): 1-8. ÌSSN-0037-8712 doi:10.5269/bspm.68785

Nörlund and Riesz Mean of Sequences of Bi-complex Numbers

Subhajit Bera* and Binod Chandra Tripathy

ABSTRACT: In this article we have investigated some properties of the Nörlund and Riesz mean of sequences of bi-complex numbers. We establish necessary and sufficient conditions for the Nörlund and Riesz means to transform convergent sequences of bi-complex numbers into convergent sequences of bi-complex numbers.

Key Words: Bi-complex, Nörlund mean, Riesz mean.

Contents

Introduction 1 **Preliminaries** 1 1 3 Nörlund Mean of Sequences of Bi-complex Numbers 3 Riesz Mean of Sequences of Bi-complex numbers 6 7 Conclusion

1. Introduction

The concept of bi-complex numbers has been investigated from different aspects by Segre [9], Wagh [15], Sager and Sağir [7]. The concept of bi-complex numbers have been applied in various field of mathematics like topology, functional analysis, sequence space etc. Many researchers [1,2,3,4,6,10,12] investigated the concept of bi-complex numbers and applied it to different fields of mathematics.

The Nörlund mean and Riesz mean play a important role in the field of sequence spaces. It has been studied from different aspects. Tripathy and Baruah [11] have studied Nörlund and Riesz mean for sequences of fuzzy numbers. Tripathy and Dowari [14] have studied Nörlund and Riesz mean for sequences of Complex Uncertain Variables. Saha et. al [8] studied on Riesz mean of complex uncertain sequences. Motivated by these researchers in this article we have investigate Nörlund and Riesz mean for sequences of bi-complex numbers.

Throughout C_0 and C_1 denote the set of real and complex numbers respectively.

2. Preliminaries

2.1. Bi-complex Numbers

The concept of bi-complex numbers was introduced by Segre [9]. The bi-complex numbers is defined by

$$\xi = z_1 + i_2 z_2 = x_1 + i_1 x_2 + i_2 x_3 + i_1 i_2 x_4,$$

where $x_1, x_2, x_3, x_4 \in C_0, z_1, z_2 \in C_1$ and the independent units i_1, i_2 are such that $i_1^2 = i_2^2 = -1$ and $i_1 i_2 = i_2^2 = -1$ i_2i_1 , we denote the set of bi-complex numbers $\hat{C_2}$ is defined as:

$$C_2 = \{ \xi : \xi = x_1 + i_1 x_2 + i_2 x_3 + i_1 i_2 x_4; x_1, x_2, x_3, x_4 \in C_0 \}$$
$$i.e., C_2 = \{ \xi : \xi = z_1 + i_2 z_2; z_1, z_2 \in C_1 \}.$$

2010 Mathematics Subject Classification: 40C05, 40G05. Submitted July 02, 2023. Published December 04, 2025

Corresponding author.

There are four idempotent elements in C_2 , these are $0, 1, e_1 = \frac{1+i_1i_2}{2}$ and $e_2 = \frac{1-i_1i_2}{2}$ out of which e_1 and e_2 are nontrivial such that $e_1 + e_2 = 1$ and $e_1e_2 = 0$.

Every bi-complex number $\xi = z_1 + i_2 z_2$ can be uniquely expressed as the combination of e_1 and e_2 , namely

$$\xi = z_1 + i_2 z_2 = (z_1 - i_1 z_2)e_1 + (z_1 + i_1 z_2)e_2 = \mu_1 e_1 + \mu_2 e_2,$$

where $\mu_1 = (z_1 - i_1 z_2)$ and $\mu_2 = (z_1 + i_1 z_2)$.

The Euclidean norm $\|\cdot\|$ on C_2 is defined by

$$\|\xi\|_{C_2} = \sqrt{x_1^2 + x_2^2 + x_3^2 + x_4^2}$$
$$= \sqrt{|z_1|^2 + |z_2|^2}$$
$$= \sqrt{\frac{|\mu_1|^2 + |\mu_2|^2}{2}},$$

where $\xi = x_1 + i_1x_2 + i_2x_3 + i_1i_2x_4 = z_1 + i_2z_2 = \mu_1e_1 + \mu_2e_2$ and $\mu_1 = z_1 - i_1z_2, \mu_2 = z_1 + i_1z_2, e_1 = \frac{1+i_1i_2}{2}, e_2 = \frac{1-i_1i_2}{2}$. With this norm C_2 is a Banach space, also C_2 is a commutative algebra. Product of two bi-complex numbers are connected by the following inequality:

$$\|\xi.\eta\|_{C_2} \le \sqrt{2} \|\xi\|_{C_2}. \|\eta\|_{C_2}.$$

We shall use the notation $C(i_1)$ and $C(i_2)$ for the following sets:

$$C(i_1) = \{x_1 + i_1 x_2 : x_1, x_2 \in C_0\},\$$

$$C(i_2) = \{x_1 + i_2 x_2 : x_1, x_2 \in C_0\}.$$

Definition 2.1 A bi-complex numbers $\xi = z_1 + i_2 z_2$ is said to be singular if $|z_1^2 + z_2^2| = 0$ and otherwise it is called non-singular.

Three types of conjugations for the bi-complex numbers as follows:

Definition 2.2 The i_1 -conjugation of a bi-complex number $\xi = z_1 + i_2 z_2$ is denoted by ξ^* and is defined by $\xi^* = \bar{z_1} + i_2 \bar{z_2}$, for all $z_1, z_2 \in C(i_1)$ and $\bar{z_1}, \bar{z_2}$ are the complex conjugates of z_1, z_2 respectively, where

 $\xi^* = \bar{z_1} + i_2\bar{z_2}$, for all $z_1, z_2 \in C(i_1)$ and $\bar{z_1}, \bar{z_2}$ are the complex conjugates of z_1, z_2 respectively, where $i_1^2 = i_2^2 = -1$.

Definition 2.3 The i_2 -conjugation of a bi-complex number $\xi = z_1 + i_2 z_2$ is denoted by $\bar{\xi}$ and is defined by $\bar{\xi} = z_1 - i_2 z_2$, for all $z_1, z_2 \in C(i_1)$, where $i_1^2 = i_2^2 = -1$.

Definition 2.4 The i_3 -conjugation of a bi-complex number $\xi = z_1 + i_2 z_2$ is denoted by ξ' and is defined by $\xi' = \bar{z_1} + i_2 \bar{z_2}$, for all $z_1, z_2 \in C(i_1)$ and $\bar{z_1}, \bar{z_2}$ are the complex conjugates of z_1, z_2 respectively, where $i_1^2 = i_2^2 = -1$.

Based on the above three types of conjugations, there are three moduli as given below. Each of the three conjugations three moduli are given by

$$\begin{split} |\xi|_{i_1} &= \sqrt{\xi \cdot \bar{\xi}} = \sqrt{z_1^2 + z_2^2}, \\ |\xi|_{i_2} &= \sqrt{\xi \cdot \xi^*} = \sqrt{|z_1|^2 - |z_2|^2 + 2Re(z_1\bar{z_2})i_2}, \\ |\xi|_{i_3} &= \sqrt{\xi \cdot \xi'} = \sqrt{|z_1|^2 + |z_2|^2 - 2Im(z_1\bar{z_2})i_1i_2}. \end{split}$$

A bi-complex numbers ξ with $|\xi|_{i_1} \neq 0$ is invertible and its inverse is given by

$$\xi^{-1} = \frac{\bar{\xi}}{|\xi|_{i}^{2}}.$$

Definition 2.5 A sequence of bi-complex number (ξ_k) is said to be convergent to $\xi \in C_2$ with respect to the Euclidean norm on C_2 if for every $\varepsilon > 0$ there exists an $n_0 \in \mathbb{N}$ such that

$$\|\xi_k - \xi\|_{C_2} < \varepsilon$$
, for all $n \ge n_0(\varepsilon)$.

We written as $\lim \xi_k = \xi$.

2.2. Matrix Map

Let $A = (a_{nk})$ be an infinite matrix mapping from a sequence space E into a sequence space F, then for $\xi = (\xi_n) \in E$, the A-transform of ξ_n is the sequence $(A_n(\xi))$, where $A_n \xi = \sum_{k=1}^{\infty} a_{nk}$ for each $n \in \mathbb{N}$, provided the summation exists for each $n \in \mathbb{N}$.

The following well known result contains the necessary and sufficient conditions for the regularity of a matrix map known as Silverman-Toeplitz conditions (one may refer to Petersen [5]).

Lemma 2.1 The matrix $A = (a_{nk})$ is regular or limit preserving if and only if it satisfies the following conditions:

i. there exists a constant M such that
$$\sup_{n} \sum_{k=1}^{\infty} |a_{nk}| < M$$
;

ii. for every
$$k$$
, $\lim_{n\to\infty} a_{nk} = 0$;

$$iii. \lim_{n \to \infty} \sum_{k=1}^{\infty} a_{nk} = 1.$$

3. Nörlund Mean of Sequences of Bi-complex Numbers

Let (ξ_n) be a sequence of bi-complex numbers with

$$|P_n|_{i_1} \neq 0$$
, where $P_n = \xi_1 + ... + \xi_n$, for all $n \in \mathbb{N}$.

Remark 3.1 In the case for the sequence (p_n) of non-negative real numbers with $p_1 > 0$, we have $P_n \neq 0$, for all $n \in \mathbb{N}$. In this article we consider the sequence (ξ_n) to be the sequence of bi-complex numbers. Thus in this case the sequence (ξ_n) of bi-complex numbers is such that $|P_n|_{i_1} \neq 0$, for all $n \in \mathbb{N}$, so that P_n will be inevitable for each $n \in \mathbb{N}$.

Definition 3.1 Let (ξ_n) be sequence of bi-complex numbers with

$$P_n = \sum_{k=1}^{n} \xi_k, |P_n|_{i_1} \neq 0, \text{ for all } n \in \mathbb{N}.$$

Then the transformation (t_n) of the sequence (η_k) is given by

$$t_{n} = \frac{\xi_{n}\eta_{1} + \xi_{n-1}\eta_{2} + \dots + \xi_{1}\eta_{n}}{P_{n}}$$

is called bi-complex Nörlund mean (N, ξ_n) or simply the (N, ξ_n) mean of the bi-complex sequence (η_k) .

Remark 3.2 The matrix of the Nörlund mean (N, ξ_n) is given by

$$a_{nk} = \begin{cases} \frac{\xi_{n-k+1}}{P_n}, & \text{for } k \le n; \\ 0, & \text{for } k > n. \end{cases}$$

Theorem 3.1 The Nörlund mean (N, ξ_n) , where $\xi_n = \mu_{1n}e_1 + \mu_{2n}e_2$ is expressed as $(N, \mu_{1n})e_1 + (N, \mu_{2n})e_2$, where (N, μ_{jn}) are the Nörlund mean of the complex sequences (μ_{jn}) , j = 1, 2.

Proof: Let (ξ_n) be a sequence of bi-complex numbers with

$$P_n = \sum_{k=1}^n \xi_k = \sum_{k=1}^n (\mu_{1k}e_1 + \mu_{2k}e_2) = e_1 \sum_{k=1}^n \mu_{1k} + e_2 \sum_{k=1}^n \mu_{2k},$$

and $|P_n|_{i_1} \neq 0$. Then P_n^{-1} exists and Now.

$$\bar{P}_n = e_2 \sum_{k=1}^n \mu_{1k} + e_1 \sum_{k=1}^n \mu_{2k}$$

and

$$|P_n|_{i_1}^2 = P_n \cdot \bar{P}_n$$

$$= \left(\sum_{k=1}^n \mu_{1k}\right) \left(\sum_{k=1}^n \mu_{2k}\right) \neq 0$$

$$\implies \left(\sum_{k=1}^n \mu_{1k}\right) \neq 0 \text{ and } \left(\sum_{k=1}^n \mu_{2k}\right) \neq 0.$$

Hence,

$$P_n^{-1} = \frac{\bar{P}_n}{|P_n|_{i_1}^2} = \frac{1}{\sum_{k=1}^n \mu_{1k}} e_1 + \frac{1}{\sum_{k=1}^n \mu_{2k}} e_2.$$
(3.1)

Now the transformation (t_n) of the sequence (η_n) , where $\eta_n = \mu'_{1n}e_1 + \mu'_{2n}e_2$ is given by

$$\begin{split} t_n &= \frac{\xi_n \eta_1 + \xi_{n-1} \eta_2 + \dots + \xi_1 \eta_n}{P_n} \\ &= P_n^{-1} \sum_{k=1}^n \xi_k \cdot \eta_{n-k+1} \\ &= \left(\frac{1}{\sum_{k=1}^n \mu_{1k}} e_1 + \frac{1}{\sum_{k=1}^n \mu_{2k}} e_2 \right) \cdot \left(e_1 \sum_{k=1}^n \mu_{1k} \mu'_{1n-k+1} + e_2 \sum_{k=1}^n \mu_{2k} \mu'_{2n-k+1} \right) \\ &= e_1 \frac{\sum_{k=1}^n \mu_{1k} \mu'_{1n-k+1}}{\sum_{k=1}^n \mu_{1k}} + e_2 \frac{\sum_{k=1}^n \mu_{2k} \mu'_{2n-k+1}}{\sum_{k=1}^n \mu_{2k}} \\ &= e_1 (N, \mu_{1k}) + e_2 (N, \mu_{2k}), \end{split}$$

where (N, μ_{jk}) are the Nörlund mean of the complex sequences $(\mu_{jk}), j = 1, 2$.

Theorem 3.2 The Nörlund mean (N, ξ_n) is regular if and only if

$$\frac{\xi_n}{P_n} \to 0$$
, as $n \to \infty$.

Proof: Let the sequence (η_n) be convergent to η , then there exists a constant M > 0 such that $\|\eta_n\|_{C_2} \le M$ for all $n \in \mathbb{N}$. Since (η_n) is convergent, so for a given $0 < \varepsilon$, there exists an integer n_0 such that

$$\|\eta_n - \eta\|_{C_2} < \varepsilon$$
, for $n > n_0$.

Let $\frac{\xi_n}{P_n} \to 0$, as $n \to \infty$. We choose n such that $\left\| \frac{\xi_n}{P_n} \right\|_{C_2} < \frac{\varepsilon}{2n_0 M}$, for $n > n_0$. We have,

$$\begin{split} \|t_n - \eta\|_{C_2} &= \left\| \frac{\xi_n \eta_1 + \xi_{n-1} \eta_2 + \ldots + \xi_1 \eta_n}{P_n} - \eta \right\|_{C_2} \\ &= \left\| \frac{\xi_n \eta_1 + \xi_{n-1} \eta_2 + \ldots + \xi_1 \eta_n - \eta(\xi_1 + \xi_2 + \ldots + \xi_n)}{P_n} \right\|_{C_2} \\ &= \left\| \frac{\xi_1 (\eta_n - \eta) + \xi_2 (\eta_{n-1} - \eta) + \ldots + \xi_n (\eta_1 - \eta)}{P_n} \right\|_{C_2} \\ &\leq \left\| \frac{\xi_1 (\eta_n - \eta) + \xi_2 (\eta_{n-1} - \eta) + \ldots + \xi_{n-n_0+1} (\eta_{n_0} - \eta)}{P_n} \right\|_{C_2} + \\ &\left\| \frac{\xi_{n-n_0} (\eta_{n_0+1} - \eta) + \ldots + \xi_n (\eta_1 - \eta)}{P_n} \right\|_{C_2} \\ &\leq \left\| \frac{\xi_n}{P_n} \right\|_{C_2} \|\eta_1 - \eta\|_{C_2} + \left\| \frac{\xi_{n-1}}{P_n} \right\|_{C_2} \|\eta_2 - \eta\|_{C_2} + \ldots + \left\| \frac{\xi_{n-n_0+1}}{P_n} \right\|_{C_2} \|\eta_{n_n_0} - \eta\|_{C_2} + \\ &\left\| \frac{\xi_{n-n_0}}{P_n} \right\|_{C_2} \|\eta_{n_0+1} - \eta\|_{C_2} + \ldots + \left\| \frac{\xi_1}{P_n} \right\|_{C_2} \|\eta_n - \eta\|_{C_2} \\ &\leq \left(\left\| \frac{\xi_n}{P_n} \right\|_{C_2} + \ldots + \left\| \frac{\xi_{n-n_0+1}}{P_n} \right\|_{C_2} \right) M + \left(\left\| \frac{\xi_{n-n_0}}{P_n} \right\|_{C_2} + \ldots + \left\| \frac{\xi_1}{P_n} \right\|_{C_2} \right) \frac{\varepsilon}{2} \\ &< \frac{\varepsilon}{2n_0 M} n_0 M + \frac{\varepsilon}{2} = \varepsilon. \end{split}$$

Hence, (N, ξ_n) is regular method.

Conversely, let (N, ξ_n) is regular method. Consider a sequence of bi-complex numbers $(\zeta_k) = (\frac{1+i_1+i_2+i_1i_2}{2}, 0, 0, 0, \dots)$.

Now,
$$||t_n - \zeta_k||_{C_2} = \left\|\frac{\xi_n}{P_n}\right\|_{C_2} \to 0$$
, as $n \to \infty$.
 $\implies \frac{\xi_n}{P_n} \to 0$, as $n \to \infty$.

Lemma 3.1 The Nörlund mean (N, ξ_n) is regular if and only if (N, μ_{1n}) and (N, μ_{2n}) are both regular.

Proof: Let (N, ξ_n) be regular. Then

$$\frac{\xi_n}{P_n} \to 0$$
, as $n \to \infty$.

$$\Rightarrow (\mu_{1n}e_1 + \mu_{2n}e_2) \left(\frac{1}{\sum\limits_{k=1}^n \mu_{1k}} e_1 + \frac{1}{\sum\limits_{k=1}^n \mu_{2k}} e_2 \right) \to 0, \text{ as } n \to \infty [\text{from (3.1)}]$$

$$\Rightarrow \frac{\mu_{1n}}{\sum\limits_{k=1}^n \mu_{1k}} e_1 + \frac{\mu_{2n}}{\sum\limits_{k=1}^n \mu_{2k}} e_2 \to 0e_1 + 0e_2, \text{ as } n \to \infty$$

$$\Rightarrow \frac{\mu_{1n}}{\sum\limits_{k=1}^n \mu_{1k}} \to 0, \text{ as } n \to \infty \text{ and } \frac{\mu_{2n}}{\sum\limits_{k=1}^n \mu_{2k}} \to 0, \text{ as } n \to \infty.$$

$$\sum_{k=1}^n \mu_{1k} \to 0, \text{ as } n \to \infty \text{ and } \frac{\mu_{2n}}{\sum\limits_{k=1}^n \mu_{2k}} \to 0, \text{ as } n \to \infty.$$

Since.

$$\sum_{k=1}^{n} \mu_{jk} \neq 0, j = 1, 2,$$

we have

$$\frac{\mu_{jn}}{\sum\limits_{k=1}^{n}\mu_{jk}}$$
 are the regularity conditions for $(N,\mu_{jk}), j=1,2.$

The converse part can be established using standard technique.

4. Riesz Mean of Sequences of Bi-complex numbers

Definition 4.1 Let (ξ_n) be a sequence of bi-complex numbers with

$$P_n = \sum_{k=1}^n \xi_k$$
 and $|P_n|_{i_1} \neq 0$, for all $n \in \mathbb{N}$.

Then the transformation (t_n) of the sequence (η_k) is given by

$$t_n = \frac{\xi_1 \eta_1 + \xi_2 \eta_2 + \dots + \xi_n \eta_n}{P_n}$$

is called bi-complex Riesz mean (R, ξ_n) or simply the (R, ξ_n) mean of the sequence (η_k) .

Remark 4.1 The matrix of the Riesz mean (R, ξ_n) is given by

$$a_{nk} = \begin{cases} \frac{\xi_k}{P_n}, & \text{for } k \le n; \\ 0, & \text{for } k > n. \end{cases}$$

In view of Theorem 3.1, we formulate the following theorem.

Theorem 4.1 The Riesz mean (R, ξ_n) , where $\xi_n = \mu_{1n}e_1 + \mu_{2n}e_2$ is expressed as $(R, \mu_{1n})e_1 + (R, \mu_{2n})e_2$, where (R, μ_{jn}) are the Riesz mean of the complex sequences (μ_{jn}) , j = 1, 2.

Theorem 4.2 The Riesz mean (R, ξ_n) is regular if and only if P_n is unbounded.

Proof: Let the sequence (η_n) be convergent to η , then there exists a constant M > 0 such that $\|\eta_n\|_{C_2} \le M$ for all $n \in \mathbb{N}$. Since (η_n) is convergent, so for a given $0 < \varepsilon$, there exists an integer n_0 such that

$$\|\eta_n - \eta\|_{C_2} < \varepsilon$$
, for $n > n_0$.

Let P_n is unbounded. We choose n such that $\left\|\frac{\xi_k}{P_n}\right\|_{C_2} < \frac{\varepsilon}{2n_0M}$, for $n > n_0$. We have,

$$\begin{split} \|t_n - \eta\|_{C_2} &= \left\| \frac{\xi_1 \eta_1 + \xi_2 \eta_2 + \ldots + \xi_n \eta_n}{P_n} - \eta \right\|_{C_2} \\ &= \left\| \frac{\xi_1 \eta_1 + \xi_2 \eta_2 + \ldots + \xi_n \eta_n - \eta(\xi_1 + \xi_2 + \ldots + \xi_n)}{P_n} \right\|_{C_2} \\ &= \left\| \frac{\xi_1 (\eta_1 - \eta) + \xi_2 (\eta_2 - \eta) + \ldots + \xi_n (\eta_n - \eta)}{P_n} \right\|_{C_2} \\ &\leq \left\| \frac{\xi_1 (\eta_1 - \eta) + \xi_2 (\eta_2 - \eta) + \ldots + \xi_n (\eta_{n_0} - \eta)}{P_n} \right\|_{C_2} + \\ &= \left\| \frac{\xi_{n_0 + 1} (\eta_{n_0 + 1} - \eta) + \ldots + \xi_n (\eta_n - \eta)}{P_n} \right\|_{C_2} \\ &\leq \left\| \frac{\xi_1}{P_n} \right\|_{C_2} \|\eta_1 - \eta\|_{C_2} + \left\| \frac{\xi_2}{P_n} \right\|_{C_2} \|\eta_2 - \eta\|_{C_2} + \ldots + \left\| \frac{\xi_{n_0}}{P_n} \right\|_{C_2} \|\eta_{n_0} - \eta\|_{C_2} + \\ &= \left\| \frac{\xi_{n_0 + 1}}{P_n} \right\|_{C_2} \|\eta_{n_0 + 1} - \eta\|_{C_2} + \ldots + \left\| \frac{\xi_n}{P_n} \right\|_{C_2} \|\eta_n - \eta\|_{C_2} \\ &\leq \left(\left\| \frac{\xi_1}{P_n} \right\|_{C_2} + \ldots + \left\| \frac{\xi_{n_0}}{P_n} \right\|_{C_2} \right) M + \left(\left\| \frac{\xi_{n - n_0}}{P_n} \right\|_{C_2} + \ldots + \left\| \frac{\xi_1}{P_n} \right\|_{C_2} \right) \frac{\varepsilon}{2} \\ &< \frac{\varepsilon}{2n_0 M} n_0 M + \frac{\varepsilon}{2} = \varepsilon. \end{split}$$

Lemma 4.1 The Riesz mean (R, ξ_n) is regular if and only if (R, μ_{1n}) and (R, μ_{2n}) are both regular.

Remark 4.2 On considering $\xi_n = e_1$ or e_2 , for all $n \in \mathbb{N}$, one can get the Cesàro mean a particular case of the Nörlund mean as well as Riesz mean.

5. Conclusion

In this article we have studied Nörlund and Riesz mean for sequences of bi-complex numbers.. This is the first article on this topic and it is expected that it will attract researcher for further investigation and applications.

Declarations

- Funding: Not Applicable
- Conflict of interest/Competing interests: We declare that the article is free from Conflicts of interest and Competing interests.
- Availability of data and materials: Not Applicable.
- Code availability: Not Applicable.
- Authors' contributions: Both the authors have equal contribution in the preparation of this article.

References

- S. Bera, B. C. Tripathy, Statistical bounded sequences of bi-complex numbers, Probl. Anal. Issues Anal. 30(2)(2023), 3-16.
- 2. S. Bera, B. C. Tripathy, Cesáro convergence of sequences of bi-complex numbers using BC-Orlicz function, Filomat 37(28)(2023), 9769–9775.
- 3. S. Bera, B. C. Tripathy, Statistical convergence in bi-complex valued metric space, Ural Mathematical Journal 9(1)(2023), 49-63.
- 4. G. B. Price, An introduction to multicomplex spaces and functions, Marcel Dekker Inc., New York, (1991).
- 5. G. M. Petersen, Regular Matrix and Transformations, Mc-Graw-Hill Publishing Company Limited, (1966).
- D. Rochon, M. Shapiro, On algebraic properties of bi-complex and hyperbolic numbers, Anal. Univ. Oradea, fasc. Math. 11 (2004), 71-110.
- N. Sager, B. Sağir, On completeness of some bi-complex sequence space, Palestine Journal of Mathematics 9(2)(2020), 891-902.
- 8. S. Saha, B. C. Tripathy and S. Roy, On Riesz mean of complex uncertain sequences. Journal of Mathematical Analysis and Applications 499(2021), 125017. https://doi.org/10.1016/j.jmaa.2021.125017
- 9. C. Segre, Le rapesentation reali delle forme complesse e gil enti iperalgebrici. Mathematische Annalen 40 (1892), 413-467
- R. K. Srivastava, N. K. Srivastava, On a class of entire bi-complex sequences. South East Asian J. Math. and Math. Sc. 5(3)(2007), 47-68.
- 11. B. C. Tripathy and A. Baruah, Nörlund and Riesz mean of sequences of fuzzy real numbers. Applied Mathematics Letters 23(2010), 651–655.
- 12. B. C. Tripathy, P. K. Nath, Statistical convergence of complex uncertain sequences, New Mathematics and Natural Computation 13 (3)(2017), 359-374.
- 13. S. Saha, B.C. Tripathy, S. Roy, On Riesz mean of complex uncertain sequences, Journal of Mathematical Analysis and Applications 499(2)(2021), 125017, DOI: 10.1016/j.jmaa.2021.125017
- 14. B. C. Tripathy and P. J. Dowaria, Nörlund and Riesz Mean of sequence of complex uncertain variables. Filomat 32(8)(2018), 2875–2881.
- 15. M. A. Wagh, On Certain spaces of bi-complex Sequences, Inter. J. Phy. Chem. And Math. Fund 7(1)(2014), 1-6.

Subhajit Bera,
Department of Mathematics,
Tripura University
Suryamaninagar-799022, Agartala, Tripura,
INDIA.

 $E ext{-}mail\ address: berasubhajit0@gmail.com}$

and

Binod Chandra Tripathy,
Department of Mathematics,
Tripura University
Suryamaninagar-799022, Agartala, Tripura,
INDIA.

E-mail address: tripathybc@gmail.com