(3s.) **v. 2025 (43)** : 1–6. ISSN-0037-8712 doi:10.5269/bspm.68851

A Matrix Summability Factor Theorem Involving Almost Increasing Sequences

H. NEDRET ÖZGEN

ABSTRACT: In [9], we have already proved a main theorem dealing with the $|A|_k$ summability factors of infinite series. In this paper, we have generalized this theorem to the $|A, \delta|_k$ summability methods under some suitable conditions.

Key Words: Summability factors, absolute matrix summability, infinite series, Minkowski inequality, Hölder inequality.

Contents

1	Introduction	1
2	Known result	2
3	Main result	3

1. Introduction

A positive sequence (b_n) is said to be an almost increasing sequence if there exist a positive increasing sequence (c_n) and two positive constants M and N such that $Mc_n \leq b_n \leq Nc_n$ (see [1]). Let $A = (a_{nv})$ be a normal matrix, i.e., a lower triangular matrix of nonzero diagonal entries. Then A defines the sequence-to-sequence transformation, mapping the sequence $s = (s_n)$ to $As = (A_n(s))$, where

$$A_n(s) = \sum_{v=0}^n a_{nv} s_v, \ n = 0, 1, \dots$$
 (1.1)

The series $\sum a_n$ is said to be summable $|A|_k$, $k \ge 1$, if (see [12])

$$\sum_{n=1}^{\infty} n^{k-1} |A_n(s) - A_{n-1}(s)|^k < \infty.$$
 (1.2)

The series $\sum a_n$ is said to be summable $|A, \delta|_k, k \ge 1$ and $\delta \ge 0$, if (see [5])

$$\sum_{n=1}^{\infty} n^{\delta k + k - 1} | A_n(s) - A_{n-1}(s) |^k < \infty.$$
 (1.3)

In the special case for $\delta = 0$, the $|A, \delta|_k$ summability reduces to $|A|_k$ summability. If we take $a_{nv} = \frac{p_v}{P_n}$, then we have $|R, p_n; \delta|_k$ summability. Also if we take $\delta = 0$ and $a_{nv} = \frac{p_v}{P_n}$, then we have $|R, p_n|_k$ summability (see [2]).

AMS Mathematics Subject Classification. 26D15, 40D15, 40F05, 40G99

Keywords and phrases. Summability factors, absolute matrix summability, infinite series, Minkowski's inequality, Hölder's inequality.

Let $A = (a_{nv})$ be a normal matrix, we associate two lower semi-matrices $\overline{A} = (\overline{a}_{nv})$ and $\widehat{A} = (\widehat{a}_{nv})$ as follows:

$$\overline{a}_{nv} = \sum_{i=v}^{n} a_{ni}, n, v = 0, 1, \dots$$
 (1.4)

2020 Mathematics Subject Classification: 26D15, 40D15, 40F05, 40G99. Submitted July 07, 2023. Published December 05, 2025

and

$$\widehat{a}_{00} = \overline{a}_{00} = a_{00}, \widehat{a}_{nv} = \overline{a}_{nv} - \overline{a}_{n-1,v}, n = 1, 2, \dots$$
 (1.5)

 \overline{A} and \widehat{A} are the well-known matrices of series-to-sequence and series-to-series transformations, respectively. Then, we have

$$A_n(s) = \sum_{v=0}^n a_{nv} s_v = \sum_{v=0}^n \overline{a}_{nv} a_v$$
 (1.6)

and

$$\overline{\Delta}A_n(s) = \sum_{v=0}^n \widehat{a}_{nv} a_v. \tag{1.7}$$

 $A = (a_{nv})$ is said to be of class Ω if (see [9]) the following hold; A is lower triangular

$$a_{nv} \ge 0, \quad n, v = 0, 1, ...;$$
 (1.8)

$$a_{n-1,v} \ge a_{nv}, \quad for \ n \ge v+1,$$
 (1.9)

$$\overline{a}_{n0} = 1, \quad n = 0, 1, \dots$$
 (1.10)

A given by

$$A_1(x) = x_1$$
 and $A_n(x) = \frac{x_{n-1} + x_n}{2}$ for $n > 1$ (1.11)

is an example of a matrix of class Ω .

2. Known result

Recently many papers have been done for absolute summability factors of infinite series ([4]-[11]). Among them, in [9], we have proved the following theorem.

Theorem 2.1 Let $\sum a_n$ be a given infinite series with partial sums (s_n) and let $A \in \Omega$ satisfying

$$na_{nn} = O(1), (2.1)$$

$$\widehat{a}_{n,v+1} = O(v \mid \Delta_v \widehat{a}_{nv} \mid) \tag{2.2}$$

and let there be sequences (β_n) , (λ_n) and positive non-decreasing sequence (X_n) , such the following conditions hold:

$$|\lambda_n| X_n = O(1) \quad as \ n \to \infty,$$
 (2.3)

$$|\Delta\lambda_n| \le \beta_n,\tag{2.4}$$

$$\beta_n \to 0 \quad as \ n \to \infty,$$
 (2.5)

$$\sum_{n=1}^{m} n \mid \Delta \beta_n \mid X_n < \infty \quad as \ m \to \infty, \tag{2.6}$$

$$\sum_{n=1}^{m} a_{nn} \mid s_n \mid^k = O(X_m) \quad as \ m \to \infty.$$
 (2.7)

Then the series $\sum a_n \lambda_n$ is summable $|A|_k, k \geq 1$.

3. Main result

The purpose of this paper is to prove the following theorem dealing with $|A, \delta|_k$ summability.

Theorem 3.1 Let A be of class Ω such that

$$\sum_{n=v+1}^{m+1} n^{\delta k} \mid \Delta_v \widehat{a}_{nv} \mid = O(v^{\delta k} a_{vv}) \quad as \ m \to \infty.$$
 (3.1)

$$\sum_{v=1}^{m} v^{\delta k} a_{vv} \mid s_v \mid^k = O(X_m) \quad as \ m \to \infty, \tag{3.2}$$

where (X_n) is an almost increasing sequence. If the conditions (2.1)-(2.6) of Theorem 2.1 are satisfied, then the series $\sum a_n \lambda_n$ is summable $|A, \delta|_k, k \ge 1$ and $0 \le \delta < 1/k$.

Lemma 3.2 ([11]) Let $A \in \Omega$. Then

$$\sum_{v=1}^{n-1} \mid \Delta_v \widehat{a}_{nv} \mid \le a_{nn},$$

$$\sum_{n=v+1}^{m+1} \mid \Delta_v \widehat{a}_{nv} \mid \le a_{vv},$$

and

$$\sum_{n=v+1}^{m+1} \widehat{a}_{n,v+1} \le 1$$

Remark 3.1 It should be noted that if we take (X_n) as a positive non-decreasing sequence, $\delta = 0$, then we get Theorem 2.1. In this case, condition (3.2) reduces to conditions (2.7). Also, noticed that the condition (3.1) is automatically satisfied.

Lemma 3.3 ([3]) Under the conditions of Theorem 2.1, we have the following

$$n\beta_n X_n = O(1) \ as \ n \to \infty,$$

$$\sum_{n=1}^{\infty} \beta_n X_n < \infty.$$

Proof of Theorem 3.1. Let (I_n) denotes A-transform of the series $\sum a_n \lambda_n$. Then, we have, by (1.6) and (1.7),

$$\overline{\Delta}I_n = \sum_{v=1}^n \widehat{a}_{nv} a_v \lambda_v$$

Applying Abel's transformation, we have that

$$\begin{split} \overline{\Delta}I_n &= \sum_{v=1}^n \widehat{a}_{nv} a_v \lambda_v = \sum_{v=1}^{n-1} \Delta_v (\widehat{a}_{nv} \lambda_v) s_v + \widehat{a}_{nn} \lambda_n s_n \\ &= \sum_{v=1}^{n-1} \Delta_v (\widehat{a}_{nv}) \lambda_v s_v + \sum_{v=1}^{n-1} \widehat{a}_{n,v+1} s_v \Delta \lambda_v + a_{nn} \lambda_n s_n \\ &= I_{n,1} + I_{n,2} + I_{n,3}. \end{split}$$

Since

$$|I_{n,1} + I_{n,2} + I_{n,3}|^k \le 3^k (|I_{n,1}|^k + |I_{n,2}|^k + |I_{n,3}|^k),$$

to complete the proof of Theorem 3.1, it is sufficient to show that

$$\sum_{n=1}^{\infty} n^{\delta k + k - 1} \mid I_{n,r} \mid^{k} < \infty \ for \ r = 1, 2, 3.$$

First, applying Hölder's inequality with indices k and k', where k > 1 and $\frac{1}{k} + \frac{1}{k'} = 1$, we get that

$$\begin{split} \sum_{n=2}^{m+1} n^{\delta k + k - 1} \mid I_{n,1} \mid^k & \leq \sum_{n=2}^{m+1} n^{\delta k + k - 1} \left\{ \sum_{v=1}^{n-1} \mid \Delta_v(\widehat{a}_{nv}) \mid\mid \lambda_v \mid\mid s_v \mid \right\}^k \\ & = O(1) \sum_{n=2}^{m+1} n^{\delta k + k - 1} \left(\sum_{v=1}^{n-1} \mid \Delta_v(\widehat{a}_{nv}) \mid\mid \lambda_v \mid\mid^k \mid s_v \mid^k \right) \\ & \times \left(\sum_{v=1}^{n-1} \mid \Delta_v(\widehat{a}_{nv}) \mid \right)^{k-1} \\ & = O(1) \sum_{n=2}^{m+1} n^{\delta k + k - 1} a_{nn}^{k-1} \left(\sum_{v=1}^{n-1} \mid \Delta_v(\widehat{a}_{nv}) \mid\mid \lambda_v \mid\mid^k \mid s_v \mid^k \right) \\ & = O(1) \sum_{n=2}^{m+1} n^{\delta k} \left(\sum_{v=1}^{n-1} \mid \Delta_v(\widehat{a}_{nv}) \mid\mid \lambda_v \mid\mid^k \mid s_v \mid^k \right) \\ & = O(1) \sum_{v=1}^{m} \mid \lambda_v \mid^{k-1} \mid \lambda_v \mid\mid s_v \mid^k \sum_{n=v+1}^{m+1} n^{\delta k} \mid \Delta_v(\widehat{a}_{nv}) \mid \\ & = O(1) \sum_{v=1}^{m} v^{\delta k} a_{vv} \mid \lambda_v \mid\mid s_v \mid^k \\ & = O(1) \sum_{v=1}^{m-1} \Delta \mid \lambda_v \mid \sum_{v=1}^{v} r^{\delta k} a_{rr} \mid s_r \mid^k \\ & + O(1) \mid \lambda_m \mid \sum_{v=1}^{m} v^{\delta k} a_{vv} \mid s_v \mid^k \\ & = O(1) \sum_{v=1}^{m} \mid \Delta \lambda_v \mid X_v + O(1) \mid \lambda_m \mid X_m \\ & = O(1) \sum_{v=1}^{m} \beta_v X_v + O(1) \mid \lambda_m \mid X_m \\ & = O(1) as m \to \infty, \end{split}$$

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.4.

Applying Hölder's inequality with the same indices above, we have

$$\begin{split} \sum_{n=2}^{m+1} n^{\delta k + k - 1} \mid I_{n,2} \mid^k & \leq \sum_{n=2}^{m+1} n^{\delta k + k - 1} \left\{ \sum_{v=1}^{n-1} \mid \widehat{a}_{n,v+1} \mid \mid \Delta \lambda_v \mid \mid s_v \mid \right\}^k \\ & = O(1) \sum_{n=2}^{m+1} n^{\delta k + k - 1} \left(\sum_{v=1}^{n-1} \widehat{a}_{n,v+1} \beta_v \mid s_v \mid \right)^k \\ & = O(1) \sum_{n=2}^{m+1} n^{\delta k + k - 1} \left(\sum_{v=1}^{n-1} \widehat{a}_{n,v+1} \beta_v \mid s_v \mid k \right) \\ & \times \left(\sum_{v=1}^{n-1} \widehat{a}_{n,v+1} \beta_v \right)^{k-1} \\ & = O(1) \sum_{n=2}^{m+1} n^{\delta k + k - 1} a_{nn}^{k-1} \sum_{v=1}^{n-1} v \mid \Delta_v \widehat{a}_{nv} \mid \beta_v \mid s_v \mid k \right. \\ & = O(1) \sum_{n=2}^{m+1} n^{\delta k + k - 1} a_{nn}^{k-1} \sum_{v=1}^{n-1} v \mid \Delta_v \widehat{a}_{nv} \mid \beta_v \mid s_v \mid k \\ & = O(1) \sum_{n=2}^{m} v^{\delta k} \sum_{v=1}^{n-1} v \mid \Delta_v \widehat{a}_{nv} \mid \beta_v \mid s_v \mid k \\ & = O(1) \sum_{v=1}^{m} v^{\delta k} a_{vv} v \beta_v \mid s_v \mid k \\ & = O(1) \sum_{v=1}^{m-1} \Delta(v \beta_v) \sum_{v=1}^{v} r^{\delta k} a_{rr} \mid s_r \mid k \\ & + O(1) m \beta_m \sum_{v=1}^{m} v^{\delta k} a_{vv} \mid s_v \mid k \\ & = O(1) \sum_{v=1}^{m-1} v \mid \Delta \beta_v \mid X_v + \sum_{v=1}^{m-1} \beta_{v+1} X_{v+1} + O(1) m \beta_m X_m \\ & = O(1) as m \to \infty, \end{split}$$

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.4.

Finally, by the similar process in $I_{n,1}$, we have that

$$\begin{split} \sum_{n=1}^{m} n^{\delta k + k - 1} \mid I_{n,3} \mid^{k} &= \sum_{n=1}^{m} n^{\delta k + k - 1} \mid a_{nn} \lambda_{n} s_{n} \mid^{k} \\ &= \sum_{n=1}^{m} n^{\delta k + k - 1} a_{nn}^{k} \mid \lambda_{n} \mid^{k - 1} \mid \lambda_{n} \mid \mid s_{n} \mid^{k} \\ &= O(1) \sum_{n=1}^{m} n^{\delta k} a_{nn} \mid \lambda_{n} \mid \mid s_{n} \mid^{k} = O(1) \ as \ m \to \infty, \end{split}$$

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.4. So we get

$$\sum_{n=1}^{\infty} n^{\delta k + k - 1} | I_{n,r} |^k < \infty, \text{ for } r = 1, 2, 3.$$

This completes the proof of Theorem 3.1.

Corollary 3.4 Let $\sum a_n$ be a given infinite series with partial sums (s_n) and let (p_n) be a sequence of positive real constants such that

$$P_n = \sum_{v=0}^n p_v \to \infty,$$

$$np_n = O(P_n), (3.3)$$

$$P_n = O(np_n), (3.4)$$

and

$$\sum_{n=v+1}^{m+1} n^{\delta k} \mid \frac{p_n}{P_n P_{n-1}} \mid = O\left(\frac{v^{\delta k}}{P_v}\right). \tag{3.5}$$

Let (X_n) be an almost increasing sequence, satisfying conditions (2.3)-(2.6) of Theorem 2.1. If

$$\sum_{n=1}^{m} n^{\delta k} \frac{p_n}{P_n} \mid s_n \mid^k = O(X_m) \text{ as } m \to \infty,$$
(3.6)

then the series $\sum a_n \lambda_n$ is summable $|R, p_n; \delta|_k, k \ge 1$ and $0 \le \delta < 1/k$.

Proof: Conditions (2.1) and (2.2) of Theorem 2.1 are automatically satisfied for any weighted mean method. Condition (3.1) and (3.2) of Theorem 3.1 becomes condition (3.5) and (3.6) of Corollary 3.5. \square

Disclosure statement. The author declares that there is no conflict of interest regarding the publication of this paper.

References

- N. K. Bari, S. B. Stečkin, Best approximation and differential properties of two conjugate functions, Tr. Mosk. Mat. Obŝ., 5 (1956), pp. 483-522 (in Russian).
- 2. H. Bor, On the relative strength of two absolute summability methods, Proc. Amer. Math. Soc., 113 (1991) 1009-1012.
- 3. K. N. Mishra, R. S. L. Strivastava, $On \mid \bar{N}, p_n \mid$ summability factors of infinite series, Indian J. Pure Appl. Math., 15 (1984), 651–656.
- 4. H. S. Özarslan, On almost increasing sequences and its applications, Int. J. Math. Math. Sci., 25 (5) (2001), 293-298.
- H. S. Özarslan, A note on generalized absolute Riesz summability, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), 60
 (1) (2014), 51-56.
- 6. H. S. Özarslan, Generalized almost increasing sequences, Lobachevskii J. Math., 42 (2021), 167-172.
- H. S. Özarslan, B. Kartal, Absolute matrix summability via almost increasing sequence, Quaest. Math. 43 (10) (2020), 1477–1485.
- 8. H. S. Özarslan and H. N. Özgen, Necessary conditions for absolute matrix summability methods, Boll. Unione Mat. Ital., 8 (3) (2015), 223-228.
- 9. H. N. Özgen, A note on generalized absolute summability, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), 59 (1) (2013), 185-190.
- 10. H. N. Özgen, On two absolute matrix summability methods, Boll. Unione Mat. Ital., 9 (2016), 391-397.
- 11. B. E. Rhoades, Inclusion theorems for absolute matrix summability methods, J. Math. Anal. Appl., 238 (1999), 82-90.
- 12. N. Tanovic-Miller, On strong summability, Glas. Mat. Ser. III, 14 (1979), 87-97.

H. NEDRET ÖZGEN

Department of Mathematics and Science Education, Faculty of Education, Mersin University, TR-33169 Mersin, Turkey E-mail address: nogduk@gmail.com