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On a Subclass of Bi-univalent Functions Affiliated with Bell and Gegenbauer Polynomials

Mohamed Illafe*, Abdulmtalb Hussen, Maisarah Haji Mohd and Feras Yousef

ABSTRACT: This research paper explores the development of a novel class of analytic bi-univalent functions,
leveraging the Bell polynomials along with the Gegenbauer polynomials as a fundamental component for
establishing the new subclass. Analytical techniques are employed to determine and evaluate the Maclaurin
coefficients |az| and |a3| and the Fekete-Szegd functional problem for functions belonging to the constructed
class. We demonstrate that several new results can be derived by specializing the parameters in our main
findings. The conclusions drawn from this research enrich the theoretical foundation of this field and open
new avenues for mathematical inquiry and application.

Key Words: Bi-univalent functions, Gegenbauer(or ultraspherical) polynomials, Fekete-Szego func-
tional, Bell polynomials.
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1. Definitions and Preliminaries

Let A denote the class of all analytic functions f defined in the open unit disk U= {z¢€ C: |z| < 1}
and normalized by the conditions f(0) = 0 = f/(0) — 1. Consequently, every f € A can be expressed in
the form of Taylor-Maclaurin series

flz) =2+ anz", (z€D). (1.1)

Let S denote the class of all functions f € A which are univalent in U. In addition, let f, g € S, we say
that the function f is subordinate to g, written as f < g, if there exists a Schwarzian function w that is
analytic in U and satisfies

w(0) =0and |w(z)|<1 (z€U),

such that
f(z) = g(w(z)).
If the function g is univalent in U, then the following equivalence holds:

f(z) <g(z) ifand onlyif f(0)= g(0),

and
f(U) C g(U).
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It is well known that for every function f € S, there exists an inverse denoted by f~!, which is defined
as follows

fHfR) =2 (z€0),
and )
) =w (ol <rlfim(h = 1)
where
fHw) = w — asw? + (243 — a3) w® — (5a3 — basas + aq) wh + - - . (1.2)

A function f is said to be bi-univalent in U if both f(z) and f~1(z) are univalent in U. Let ¥ denote the
class of bi-univalent functions in U given by (1.1). Examples of functions in the class ¥ are

z | 1 | 142
o 0g 4/ .
11— ®1— V1,

In contrast, the Koebe function and the functions listed below does not belong to the set 3

2z — 22 z

5 and1_22.

Lewin [1] studied the class ¥ and discovered that |as| < 1.51. Following that, Brannan and Clunie
[2] claimed that |as| < v/2. On the contrary, Netanyahu [3] demonstrated that max ey |az| = 4/3.

The problem of estimating the coefficient for each of |a,|(n > 3;n € N) is presumably still an open
problem. Brannan and Taha [4] presented the subclasses of the bi-univalent function class ¥, S5 («) and
Ks(«) of bi-starlike, and bi-convex functions of order o (0 < o < 1) and the first two coefficients were
estimated. These results are similar to the well-known subclasses $*(«) and K(«) of starlike and convex
function of order o (0 < v < 1). Additional examples and details related to the class 3, can be found in
references [5,6,7,8].

Orthogonal polynomials have been widely studied since their discovery by Legendre in 1784 [9]. They
have been used as a mathematical approach to solve ordinary differential equations associated with model
problems under certain conditions. The advantages of orthogonal polynomials in modern mathematics
and their application in physics and engineering cannot be ignored. In mathematics, orthogonal polyno-
mials play a key role in approximation theory, differential integral equations, and mathematical statistics.
Additionally, these polynomials have been instrumental in various applications, such as scattering theory,
quantum mechanics, signal analysis, automatic control, and axially symmetric potential theory [10,11].

Amourah et al. [12] investigated the Gegenbauer polynomials, whose generating function H, (x, &)

is given by
1

(1 —2z2 + 22)"’
where —1 < x <1, and z € U. Also, since H, is analytic in U; hence it can be written in a power series
expansion as follows

Ho(2,2) = (1.3)

H,(z,z) = Z Co(x)z",
n=0
where C%(z) is a Gegenbauer polynomial of a degree n.

The Gegenbauer polynomials generate Legendre polynomials and Chebyshev polynomials when setting
a as 1/2 and 1; respectively, and they can also be defined by the following recurrence relations

C3(r) = - [2an + @~ )O3, (2) — (n+ 20— 205, (@),

n
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with the initial values

Ce(z)=1
Ce(z) = 2ax (1.4)
Cs(x) = 2a(1 + a)2? — a.

The Bell polynomials, named after the mathematician Eric Temple Bell, play a crucial role in the
study of set partitions and have significant connections to Stirling and Bell numbers. These polynomials
provide a combinatorial framework for understanding the ways in which sets can be partitioned into
non-empty subsets. Beyond their combinatorial importance, Bell polynomials appear in various mathe-
matical applications, including their prominent use in Faa di Bruno’s formula, which generalizes the chain
rule for higher-order derivatives. Their versatility makes them valuable in fields such as combinatorics,
probability theory, and mathematical analysis.

Amourah et al. in [13] has introduced the following convolution

0o _p_ e(*ﬂ)“
Frf(Z):L(T,Z)*f(Z):Z+ZT 1(2_1)' Fapd®, zel, (1.5)
k=2 )

where F, : A — A is a linear operator, By are the bell numbers for £ > 2 and 7 > 0.

In recent times, numerous researchers have been investigating the concept of bi-univalent functions
linked to orthogonal polynomials. Some notable studies in this area include references [14,15,16,17,18,19,
20,21,22,23,24,25]. However, when it comes to Gegenbauer polynomials, there is limited existing research
on bi-univalent functions.

2. The class B&(z, 7, A, 11, 9)

Recently, Yousef et al. [26] introduced the following class M$(z, A, 41, §) of analytic and bi-univalent
functions defined below.

Definition 2.1 For A>1, 4 >1,6>0,0<a<1,(= gi‘\i’f, and t € (1/2,1], a function f € ¥ given

by (1.1) is said to be in the class M$E(A, u, §) if the following subordinations hold for all z,w € U:

Re ((1 - ) (fiz))u +Af(2) (@)Wl + c(szf”(z)> > (2.1)

and

Re ((1 ~ ) (9(;“)>H + Mg (w) (g(ww)>“1 + gazg”(w)> > a, (2.2)

where the function f € ¥ defined by (1.1) , the function g = f=1 given by (1.2).

Definition 2.2 Let a be a nonzero real constant X > 1, 4 >0, 5 > 0, ( = g:\\i’f and x € (1/2,1], a

function f € ¥ given by (1.1) is said to be in the class BS(x, T, \, p, 0) if the following subordinations hold
forall z,weU

1-n (FL) aw sy (LR v se) <. @)
and
(1= (L) g (TR s g < Halow), (24)

where the function g = f~Y(w) is defined by (1.2) and H, is the generating function of the Gegenbauer
polynomial given by (1.3).
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By setting the values of the parameters A, p and Jd, we establish some subclasses of the class
BS(z, A, i, 6), as shown below.

Definition 2.3 The function f € 'B&(z, 7, \,p) = B&(x, 7, \, 11,0) iff it satisfies the following subordi-

nation "y (W)M AE () <]Frf(z))”_1 < Hy(z,2),

z z

and

-0 (EL) gty (M“’)) < Halw,w).

w w
Definition 2.4 The function f € 2B&(x,7,\,0) := B&(z,7,\,1,0) iff it satisfies the following subordi-

nation

(1) (I””) FAES()) 43¢z (B f(2))" < Halz,2),

z

and
(1= (S A E gl + 6w (Frg(w)) < Halorw)

Definition 2.5 The function f € 3B%(z,7,\) := B&(z,7,A,1,0) iff it satisfies the following subordina-
tion:
-0 (FLE) 4 rm s < Haloro)
and
(1-=2X) <F7i}(w)) + A(F,g(w)) < Hy(z,w).
Definition 2.6 The function f € *B&(z,7) := B&(x,7,1,1,0) iff it satisfies the following subordination:
(F-f(2))" < Ha(z,2),
and
(Frg(w))' < Ho(z,w).
Next, we state the following lemmas that we shall use to establish the desired bounds in our study.
Let P = {p: U — C| p is analytic function, such that fRe(p) > 0}, and of the form
p(2) = 1+ p1z +po2® +p3z’ + -
Lemma 2.1 ([27]) If p € P, then
lpnl < 2,n € N. (2.5)
Lemma 2.2 ([28]) Let w(z) =Y oo wy2™, z € U. Then

lwi] <1, |wa| <1—|w1]* for neN\{1}.
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3. Main Results

This research paper employs Gegenbauer polynomial expansions to calculate approximations for the
initial coefficients for a subset of bi-univalent functions, denoted as BE(z, A, i, d) associated with Bell
polynomials. Additionally, we address the Fekete-Szeg6 problem for functions belonging to this class.

Theorem 3.1 Assume that the function f € %, in Definition 2.2, is a member of the class
Bg(x, T, A\, 1t,6). Then

dazy/2|a|z

laz| <
.2 .2
\/ ‘[572(2az)2(u+2)\)(%(;¢— Dee ™ 424 :ig;) ~872(a(l + @)z — &) (i + A+ 2¢8)2e’ ]ee

b
1-72

(3.1)
and

a?x? 4|ax

ag| < + .
a3 T2+ A+ 2¢6)2e2¢ 7 572 (4 2\ + 6¢)ect

(3.2)

Proof: If f belongs to the class B (z, 7, A, i, ), then from the Definition 2.2, we can find two functions
analytic in U, namely w and v, satisfying w(0) = 0 = v(0) and for all z,w € U, |w(z)| < 1, |v(w)] < 1,
and

a-x (D am sy (L) e @) = Gane). (3)
and
(1= (P a @) (TR ocw (Frg(w)” = Goleow). (34)

From equating (3.3) and (3.4), we obtain

0= () sy () o sy

=1+ 0 (@)erz + [CF(x)es + C5 (2) 3] 22 + ..., (3.5)
and
02 (B2 gy (T2) s s gt
=1+ C(@)dyw + [C(x)ds + C§ (x)d3] w? + ..., (3.6)
where N N
w(z) = z; ¢;z?, and w(w) = z;djwf. (3.7)

Referring to Lemma 2.2 and (3.7), we have
lcjl] <1 and |d;| <1 forall jeN. (3.8)

Hence, from equations (3.5) and (3.6), we get

21(p+ A+ 2{6)@"‘177 ag = C{(x)eq, (3.9)
572 4 -2 o 6¢d R N o 9
7(# +2)) (5(u —1e a; + (1 + it 2)\)603)6 = C{'(x)ca + CF (x)ct, (3.10)

27 (4 A+ 200)e T ap = C¥(x)dy, (3.11)
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and
572 4 o1-72 12C(5 2 6C(5 el-72 o o 2
2(u+2x)<[5(u— et 42+ u+2A}“2 - (1+ s QA)ag e = CO(a)dy + O (x)d?. (3.12)
It follows from (3.9) and (3.11) that
C1 = 7d1, (313)
and )
872(p+ A +2¢6)%e® 7 a2 = (C2 () (3 + d). (3.14)
Adding (3.10) and (3.12) yield
2 61772 8 61772 12<6 2 % « 2 2
57%(u + 2M\)e S(M_ 1e +2+ P a5 = C¥(x)(eq + da) + C(x)(cf + dY). (3.15)

Substituting the value of (¢} + d3) from (3.14) in the right hand side of (3.15), we deduce that

2 12¢6 ) | 8T (@) (i A+ 200)%e T

{57’2(“—#2)\)(2(”—1)661 +2+M+2/\ (Cf‘(m))g }eeszag = C7'(x)(c2 +da).

(3.16)
Now, using (1.4), (3.8) and (3.16), we conclude that

dax/2|a|x
laa| < V2o

2 2 8 _ 51772 12¢6 _ 2 2 _ 2 61772 61772
57%(2ax)? (1 + 20 5(u —1)e +2+ o5 87 (a(l+ a)z® — a)(p + X+ 2¢d)%e e

(3.17)
Moreover, if we subtract (3.12) from (3.10), we have
1-72
572(p + 2\ + 6¢6)ef (az —a3) = O (2) (c2 — d2) + O (2) (¢} — d7) . (3.18)
Then, in view of (3.13) and (3.14), the equation (3.18) becomes
a5 — (Cf @) (& +d3) + i @) (co — ds) (3.19)
ST At acozeze T T s (kv 2oy 2 ) '
Thus, applying (1.4), we conclude that
a?x? 4|a|z
las| < — + o] —. (3.20)
T2(p+ A+ 2(5)2e2e 572(u + 2\ + 6¢0)ec
Hence, the proof of the theorem is complete. O

The next result regarding the Fekete—Szegd functional problem for functions in the class BS(x, A, i, 6).

Theorem 3.2 If f € B&(x, 7, A\, 1, 9), then

dax ; 1
if 0<1h <
572 (2A4p+65¢)est fo<lhtl = 572(2A+u+65¢) et T
1

4z |af |h(n)] if ()| =

|ag — na3| <

572 (2)\+,u+65§)e‘51772 ’

40”2? (1 —n)

[572(2az)2(u +2X) (%(u — 1)661_T2 +2+ :ff;;) —8r2(a(l+ a)z? —a)(p+ A+ 2C5)2661_T2]661_T2
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Proof: If f in the class B&(x, 7, A, i, §), then from (3.16) and (3.18) we have
Ct (z)(c2 — d2) — — a3
572(pu 4+ 2XA 4 6¢d)ec 7
CT (z)(c2 — da)
572(p + 2\ + 6§5)e€1772
(1= n)(CF (@) (e2 + da)
[572(Cf‘(w))2(u +2X) (%(,u - 1)@61_T2 +2+ iigi) —872CS (x)(u+ A+ 2(5)2661_T2] eel_Tz

Ot (x)(c2 — do)
572(p + 22X + 6(6)681772

2 2
az —mnaz = az +

=(1—n)a3+

1 1
— oo ( [mon + Jea+ | - Ja2).
1 @q ey e Pl el (T e vl
and
2
(1 —n)(CF (=)
h(n) = i)
[5r2(Cr @Gt 20 (30— e 24 1265 ) — 8203 ) A+ 200 e
Then, in view of (1.4), we conclude that
dax 3 < < 1 -
|a3 - nagf < 572 (2A+p465¢)ect T it 0<fh(ml < 572(2A+u+66C)ee’ T
~ | 4=z laf|h(n)] it [h(n)] = '

5T2(2)\+#+66C)6617T2 ’
this completes the proof of Theorem 3.2.

4. Consequences and Corollaries

By referring to the Definition (2.3) (considering 6 = 0), Definition (2.4) (considering A = 1), Definition
2.5 (considering g = 1 and § = 0), and Definition 2.6 (considering ¢ = 1,6 = 0 and A = 1), and from
Theorems 3.1 and 3.2 we deduce the next consequences, respectively. Setting 6 = 0, we obtain the
following corollary.

Corollary 4.1 If f € '1B&(x, 7, )\, 1), then

dax/2|alx

\/ ‘ [57’2(2043:)2(,u +2X) (g(,u - 1)66177—2 + 2) —872(a(1 + a)z? — a)(p + /\)266177—2} e

)

las| <

(4.1)
o?z? 4|la|x
ay] < Al (1.2
T2(p + A)2e?e 572(p + 2X)e®
and
4<x—x2 if 0<|h1(77)|<é2
az — 77(13’ < 5T@A e’ T o T 5T2(2AHp)est T
< ‘ - 1
sl i )2 o
where
40?22 (1 —n)
hi(n) = - -

[572(2051‘)2(/J +2X) (g(,u - 1)681772 + 2) — 872 (a1 + )22 — a)(pu+ N)2e® T |e®
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Next, setting = 1 yields the following consequence.

Corollary 4.2 [13] If f € 2B&(z, 7, A, 0), then

dor/2
Jaz| < ary2afr . (4.3)

1-7

\/ ‘ [57-2(20@)2(1 +2)) (2 + ;3_%‘;) —872(a(l+ a)z® —a)(1+ A+ 266)2661,72}66

and

a?x? 4|ax

|a3| < 1.2 + 1.2
T2(1 4+ X+ 2¢0)%e?e 572(1 + 2\ + 6¢d)ec

and

dox . < < 1

_ 9 < 572(1+2)\+66C)e‘31_"2 Zf 0< |h2(7])| = 57’2(1—&-2/\—&-65()5“1_"2
93 =191 <4 42 o Jaa ) i [ha(m)] > L
T T2 (1420466C)ect T

where

4a22(1 —n)

[572(20433)2(1 +2)) (2 4 11-52-4;3\) —87%(a(1 +a)z? — a)(1+ A+ QC(S)QeelJZ]ee

ha(n) =

1-7

Now, setting A = 1, and § = 0, we have the following consequence.

Corollary 4.3 If f € 3B&(x, 7, p), then

dax/2|alx
0] < V2|al

\/ ‘ [57'2(2041‘)2(,u +2) (g(u - 1)661772 + 2) —872(a(1 + a)z? — a)(u + 1)2681772} e

o?x? 4|alx

‘a3| < 1 .2 120
72( + 1)2e2¢ 572(p + 2)ee
and
dazx . . < |h < 1 5
a3 o nag‘ < 57—2(/‘4’2)65177 Zf 0 — | 3(17)| —_ 57‘2(;1,4»2)66177
. ; > 1
slal sl i st > ——t
where
4a%2%(1 —n)
h3(n) =

[572(2ax)2(u +2) (g(u — 1)661_T2 + 2) —872(a(1l + a)z? — o) (p + 1)2681 e°

Finally, sitting 4 =1, § = 0, and A = 1, we obtain our last consequence.

Corollary 4.4 If f € *B&(x, ), then

dax+/2]a|r
|a2|§ I |

\/ ' {307’2(20417)2 —327%(a(1 + a)2? — oz)eelfﬂ} e

)

§ 22 4|a|x
|a3| > 47’26261772 157.2661*"2’
and
_daz if 0<|ha(n)] < m

2 5r2pe
as —na S 157%e )
d {4$|a| (ha()| i [ha()] > ——=,

=2
1572ee 7
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where

4a22%(1 —
h4(77) - ( 77) 1.2 1.2
3072 (2ax)? — 3272 (a1 + a)z? — a)e® }ee

5. Conclusions

In the current investigation, we have established a new comprehensive subclass BS(x, 7, A, i, ) of
normalized bi-univalent analytic functions that involve Gegenbauer polynomials and a Bell polynomial
series. First, we have provided the best estimates for the first initial Taylor-Maclaurin coefficients, |as|
and |as|, and then we solved the Fekete-Szego inequality problem. Moreover, by setting appropriate values
of the parameters &, u, and A, we obtain similar findings for the subclasses 'B&(z, 7, \, p), 2B&(x, 7, A, 8),
3B&(z,7,A), and *B&(x, 7). The results presented in the present work will lead to many different results

for the subclasses of Legendre polynomials Bg 2(:5, 7, \, i1, 0) and Chebyshev polynomials of the second
kind BL(x, 7, A, 1, ).
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